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Summary

This paper deals with the application of Model Predictive Control (MPC) to optimize

power flows in a network of interconnected MicroGrids (MGs). More specifically,

a Distributed MPC (DMPC) approach is used to compute for each MG how much

active power should be exchanged with other MGs and with the outer power grid.

Due to the presence of coupled variables, the DMPC approach must be used in a suit-

able way to guarantee the feasibility of the consensus procedure among the MGs. For

this purpose, we adopt a tailored dual decomposition method that allows us to reach a

feasible solution while guaranteeing the privacy of single MGs (i.e., without having

to share private information like the amount of generated energy or locally consumed

energy). Simulation results demonstrate the features of the proposed cooperative

control strategy and the obtained benefits with respect to other classical centralized

control methods.
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1 INTRODUCTION

1.1 Motivation

Electric MicroGrids (MGs) have been the subject of intense research during the last decade. While the initial interest in MGs was

mainly motivated by the possibility of using them to supply energy in remote regions, recent advances in power grid technologies

and the increasing penetration of distributed energy resources are also considering the possibility of splitting the already existing

power grids into semi-independent MGs. Among others, expected advantages of this choice include a better grid resiliency, a

simpler control hierarchy, a more flexible resource allocation, and an increased robustness against unexpected failures in the

power grid1,2,3.

Roughly speaking, a MG is defined as a smart power system of small size that includes (i) conventional power generators and

renewable-based generators; (ii) loads, and (iii) energy storage devices (e.g., most notably batteries, but in general also thermal

storage devices and possibly plug-in electric vehicles), grouped together within a limited geographic region4,5. However, the

main property of a MG is its ability to both operate connected to the main power grid, interconnected to other MGs, or also

disconnected from other power grids (i.e., in island mode).

The Energy Management System (EMS) represents the core of the MG, as it is responsible of taking the most convenient

choices for the MGs. Among others, the EMS chooses the optimal mode of the MG (e.g., connected or disconnected from the

outer grid), it optimizes the power flows within the MG (e.g., deciding which power generators should be used to provide the

required energy), and it tries to maximize the revenues of the MG by selling the exceed energy to other MGs, or to the outer
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grid. In this context, the presence of storage devices adds a further degree of flexibility, as storage devices may either behave as

conventional loads (i.e., when they are charged) or may be used to provide energy (i.e., when they are discharged).

The first papers on this topic6,7 only addressed the problem of optimizing the decisions of single MGs, neglecting the existing

interactions among different MGs. More recently, there is an increasing interest in investigating how the interactions among MGs

may improve the operation of single MGs1, and in general affect the stability of the power grid8. Due to the difficulty of predicting

a future behavior of uncertain variables, most notably, the amount of energy that will be generated from renewable sources,

most optimization strategies that have been proposed in the literature either focus on instantaneous, or greedy, optimization8

neglecting what will happen in a future horizon, or have assumed that future forecasts of uncertain variables may be regarded

as perfectly accurate9.

In this paper, we explicitly take into account a future time horizon, and we do so by adopting a popular receding horizon

control strategy like Model Predictive Control (MPC). MPC is a class of advanced control techniques, widely used especially

in the context of process industries, mainly due to its ability to ensure closed-loop stability and optimality under constraint

satisfaction. Also, this strategy is known to be robust also for many classes of multivariable linear and nonlinear systems10,11,12.

The global performance of a large-scale power system consisting of many interconnected microgrids generally depends on the

amount of information that is exchanged among the MGs. One possibility is to assume that all MGs are willing to exchange their

local information with all the other MGs to cooperatively achieve a common goal. Then, a single MPC algorithm shared among

all the interconnected MGs can be used to achieve the optimal performance13,14,15,16. However, if we assume that MGs have

the personal interest of maximizing their own revenues (e.g., by selling energy to other MGs), and that they may be owned by

different energy providers, then it is more realistic to consider that MGs will be actually reluctant to reveal local information, e.g.,

how much power is generated, or the state of charge of their storage devices. In addition to this, decentralized/distributed solutions

are known to be more scalable than centralized solutions, especially when the overall number of subsystems becomes large.

Even if this limitation does not hold, it is often the case that organizational reasons impose the use of smaller local controllers,

which are easier to maintain and operate17,18. Moreover, a distributed solution is also prone to possible faults or deliberated

attacks since in that case they guarantee a controlled behaviour of at least a part of the network. For the aforementioned reasons,

we take a distributed approach in this paper as well.

1.2 Related works

A distributed control architecture to solve the power scheduling approach, so that the aggregate demand equals the supply, is

considered in19. Similarly, a distributed peer-to-peer multi-agent framework is proposed for solving the power sharing problem

in MGs with inverter-interfaced distributed energy resources20. A recent paper reported approaches such as ADMM, and dis-

tributed population dynamics21, that could also solve this problem. Recently, a cooperative MPC-based approach for energy

management in a network of MGs was also formulated in order to achieve a common goal22. Also, less conventional ways of

implementing cooperative control actions in an MPC framework can be found in literature23.

More in detail, a recent work presented a decentralized MPC for tracking formulation, and it proposed an algorithm based on

the dual decomposition algorithm24. For this purpose, a slack variable is added to the objective function to penalize deviations

from a perfect balancing between generated and consumed power. On the other hand, in our case, we consider the power balance

as a hard constraint, and we rather maximize the revenues of the MGs once the constraint is satisfied.

A dual decomposition method is presented by Zhang et al.19 as well, but the obtained solution is implemented in open-loop,

i.e. the optimization problem is not solved at each time as in MPC framework.

On the other hand, a specific paper greatly inspired our work here25. In the aforementioned work, a cooperative MPC algorithm

with a global objective function is defined. While most of the assumptions and test cases in our paper are taken from the previous

mentioned paper, the main difference is that we formulate the optimization problem in a distributed way, while a centralized

approach have been adopted in the above one25. In our opinion, a distributed solution has many advantages, and most notably

in this context it allows MGs not to reveal sensitive information. An interesting approach to avoid a safe information exchange

is proposed in26.

In the recent literature, a distributed solution is also investigated20 as well, even though a PI control is used instead of MPC.

Finally, a distributed cooperative MPC approach has been already proposed22. However, this latter solution22 assumes the

presence of an aggregator that collects information of single MGs to centrally solve the optimization problem. On the other

hand, our distributed MPC solution can be applied by using a similar aggregator, but also without it, in a completely distributed
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way. The Distribution System Operator (DSO) as well as a third-role party may be interested in playing the role of aggregator.

However it is not in the scope of this paper to know who might play the role of the aggregator.

1.3 Original contribution

As from the discussion in Section 1.2, although MPC methods have been already used to optimally schedule power flows in a

network of MGs, some aspects have not been completely tackled yet. For instance, how to implement this scenario without using

an aggregator to handle the coupled variables (e.g., the power exchanged between two MGs). In this context, our paper proposes

a way to do so without requiring the presence of an aggregator. In particular, we propose here a fully distributed MPC solution,

e.g., without the presence of aggregators, which is a novel solution in this context. Such distributed solutions may be highly

desirable in terms of low communication burden and safer information exchange. The rest of this paper is organized as follows.

In Section 2, the MG system is described and a brief review of a centralized predictive formulation is given. A Distributed

MPC scheme and the potential issues derived from this formulation for a power scheduling problem are formalized in Section

3. Then, the proposed distributed predictive energy management system to overcome these issues is presented in Section 3.2.

Finally some simulation scenarios are described in Section 4 and conclusions are presented in Section 5.

2 A CENTRALIZED FORMULATION OF THE OPTIMAL POWER FLOW PROBLEM IN A
NETWORK OF MGS

2.1 Problem description

MGs generally consist of Distributed Energy Resources (this may both include conventional and renewable-based DERs), storage

devices and uncontrollable loads. MGs are connected at the level of the Distribution Network and may either exchange power

among themselves or with the Distributed Network Operator (DNO), as exemplified in Figure 1 where the network of MGs

is depicted together with the physical links for power exchange. Accordingly, the network of MGs is equivalent to a graph

 = ( , ), where the MGs correspond to the set of nodes  that communicate and exchange power among themselves by means

of a set of edges  . Here we consider that the edges both refer to the communication links and to the power exchange links,

though this is not required in principle. The only required assumption is that both the communication and the power exchange

graphs need to be connected27. The objective of each MG is to provide the required power to serve all the connected loads, while

minimizing the operational costs for doing so. In this context, we shall use negative costs to represent (positive) profits. Under the

assumption that each MG has a 24-hour ahead accurate hourly forecast of the power demand/generation imbalances25, the local

controller of each MG can decide to exchange power with either another MG or with the DNO, on the basis of its convenience

(e.g., on the basis of the time-varying values of the energy price). The aforementioned problem becomes very challenging to

solve in a distributed way, as we shall see in the next section, due to the presence of coupling constraints. Namely, the power

that the i-th MG sells to the j-th MG must obviously equal the power that the j-th MG buys from the i-th MG.

2.2 Problem formulation

Following similar works25, we assume that the only state of a MG corresponds to the state of charge of its energy storage device

(if more storage units are available, then we shall consider the aggregate set of all of them). Thus, we have that the overall state

of the network of MGs, that aggregates all the states of the single MGs, is represented by

x =
[
x1,… xM

]
T ∈ ℝ

M (1)

where M is the number of microgrids. Then, the time-discrete dynamic equation of a MG is expressed by

xi(k + 1) = xi(k) + �cℎ,iucℎ,i(k) − �dis,iudis,i(k) (2)

where xi(k) is the state of charge of the storage device at time k, �cℎ,i and �dis,i represent the charging/discharging efficiency

coefficients for each storage device respectively, and ucℎ,i, udis,i ≥ 0 are the charge and discharge powers, respectively. In

addition, the problem is subject to a number of constraints as follows where over and under bar notations represent upper and

lower bounds of relative variables, respectively:

x
i
≤ xi(k) ≤ xi {x

i
, xi} ∈ ℝ (3)
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(a) The diagram depicts the topological scheme of the network. The dotted-dashed lines represent the communication from/to

the MGS from/to the DNO.

(b) The network of Microgrids and the Distributed Network Operator can be seen as a graph. Each MG, as well as the DNO, can

be represented by a node of the graph. The edges represent the communication line.

FIGURE 1 Two different graphics to describe in an intuitive way the topology of the network of MGs and the Distributed

Network Operator.

0 ≤ ucℎ,i(k) ≤ ucℎ,i ucℎ,i ∈ ℝ

0 ≤ udis,i(k) ≤ udis,i udis,i ∈ ℝ
(4)

Δubal,i(k) − �cℎ,iucℎ,i(k) + �dis,iudis,i(k) + unet,i(k) +
∑
j∈i

uij(k) = 0. (5)

u
net,i

≤ unet,i(k) ≤ unet,i {u
net,i

, unet,i} ∈ ℝ (6)

u
ij
≤ uij(k) ≤ uij {u

ij
, uij} ∈ ℝ ∀j = 1, ..., pi (7)

unet,i(k) ≤ 0 and umg,ij(k) ≤ 0 ifΔubal,i(k) > 0

unet,i(k) ≥ 0 and umg,ij(k) ≥ 0 ifΔubal,i(k) < 0.
(8)

uij(k) + uji(k) = 0 ∀j = 1, ..., pi (9)

Constraints (3-4) refer to the storage units. In particular, constraint (3) prevents one from overcharging or over-discharging the

storage units. Constraint (4) takes into account that the charging and discharging rates in equation (2) are non-negative and upper

bounded, according to the physics of the specific storage devices (e.g., batteries). Constraint (5) enforces the balancing constraint

at the level of single MGs, where i is the set of the neighbors of the i-th MG, represented with the arcs of the network graph that

involve the i-th MG. In particular, the (hourly) predicted power imbalance Δubal,i of the i-th MG (i.e., the difference between the

generated and consumed power) needs to be covered by either charging/discharging the storage units, or by exchanging power

with another MGs j (denoted as uij) or with the DNO (denoted as unet,i). Available hourly inaccurate predicted power imbalances

have been considered in this work (similarly to other papers25), while it is assumed that the predictions are perfect when the

horizon of prediction is equal to zero (i.e., there are no measurement errors). At this regard, constraint (6) is required to take into

account the upper (positive, unet,i) and lower (negative, u
net,i

) bounds due to the power flow constraints in the power network.
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Here, negative values of unet,i correspond to sold energy, and positive values correspond to purchased energy. Similar power

flow constraints are considered for the power exchange among MGs in the constraint (7). Here, non-negative values of uij mean

that power is purchased by the i-th MG from the j-th MG. Upper uij and lower u
ij

bounds limit the amount of the exchanged

power among MGs in (7). In case one MG can exchange power with only a subset of the other MGs, we use pi to denote the

number of neighbors of the i-th MG. Finally, it is assumed that one MG can not simultaneously purchase and sell power to other

MGs (similarly to other papers25) in constraints (8). In particular, one MG can sell power only if its predicted imbalance is

positive (i.e., more power generated than consumed) otherwise it can only buy energy. Since the sign of the imbalances changes

with time index, this needs to be taken explicitly into account. A further implicit equality constraint (namely, (9)) is required to

enforce that the power purchased by the j-th MG from the i-th MG is equal to that sold by the i-th MG to the j-th one.

2.3 Objective Function and MPC formulation

Assuming that the set of constraints listed in Section 2.2 is feasible, here we are interested in choosing the most convenient

sequence of control actions of each MG to minimize the operational costs (possibly down to negative values that correspond

to positive revenues for the MGs). As in the well-known spirit of MPC, at each time step a MG computes its optimal control

sequence for the upcoming future horizon of time (using available non-exact predictions) and only implements the first control

action u∗
i
(0) in the computed sequence, in terms of power exchanged. In particular, this is:

u∗
i
(0) =

[
u∗
cℎ,i

, u∗
dis,i

, u∗
net,i

, u∗
i1
,… , u∗

ipi

]T
∈ ℝ

ni+pi (10)

where pi is the number of neighbors of the i-th microgrid, u∗
net,i

is the (optimal) power exchanged with the distributed network

operator, and ni = 3. The superscript ∗ corresponds to an optimal computed value. As mentioned, unet,i and
[
ui1,… , uipi

]
can

assume both positive and negative values where, for our convention, positive values correspond to purchased power and negative

values correspond to sold power. By collecting the input vector of each single MG we obtain the global input vector as

u∗(0) =
[
u∗
1
(0)T ,… u∗

M
(0)T

]
T (11)

We have to find an optimal control sequence u∗
i
, ∀ i = 1,… ,M , along the prediction horizon N , given the current state x̂,

while respecting all the input and state constraints previously listed, (3)–(9), and here summarized as

x(k) ∈ X, u(k) ∈ U k = 0,… , N − 1 (12)

where X ⊂ ℝ
M and U ⊂ ℝ

(ni+pi)⋅M are compact polyhedral sets.

Given x̂, and a finite-horizon input sequence u = (u(0),… , u(N − 1))we define the global cost function over the finite horizon

as follows:

V (x̂, u) =

N−1∑
k=0

M∑
i=1

li (u (k)) s.t. (13a)

x(0) = x̂ (13b)

x (k + 1) = x (k) + B u (k) k = 0, … , N − 1 (13c)

in which B = diag
[
B1, … , BM

]
is a block diagonal matrix with blocks Bi =

[
�cℎ,i, −�dis,i

]
for i = 1,… ,M is accordingly

defined from (2), and li(⋅) is the stage cost function, for each MG, given by:

li (u) = Fi ⋅ ui =
[
0, 0, cnet,i, ci1, … , cipi

]
⋅
[
ucℎ,i, udis,i, unet,i, ui1,… , uipi

]T
(14)

where
[
ci1, … , cipi

]
is a vector containing the prices of energy exchange between microgrid i and its neighbors. We can now

define the finite horizon optimal control problem (FHOCP) to be solved given the current state x̂ as follows:

ℙ(x̂) ∶ min
u

{
V (x̂ , u) ∣ u ∈ N (x̂)

}
(15)

where:

N (x̂) = {u ∣ u (k) ∈ U, x (k) ∈ X} (16)

or equivalently, such that the set of the inequality and equality constraints (3)–(9) are fulfilled. Solving problem ℙ(x̂)

in (15) provides u
∗(x̂) as the optimal input sequence, associated with a corresponding optimal state sequence x

∗(x̂) =

{x∗(0) = x̂, x∗(1),… , x∗(N)}. Then, as in the MPC framework, only the first element of the optimal input sequence is sent to
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the controlled system, i.e. u = u∗(0). Finally, we recall that ℙ(x̂) can be formulated as a Linear Programming Problem and

effectively solved numerically.

3 THE PROPOSED DISTRIBUTED PREDICTIVE ENERGY MANAGEMENT

3.1 The decomposition framework

One of the main challenges for solving these problems is the task of breaking the large scale system up into smaller ones and

solving each one separately, either in parallel or sequentially. Decomposition in optimization is an old idea28,29,30,31,32 and several

recent works described novel approaches to the decoupling strategy33,34,35. The decomposition task may be not trivial due to

the fact that variables of each microgrids could be not separable. This implies that some of the decision variables can appear in

more than one subproblems, i.e. uij in (9).

This coupled structure can be represented by a hypergraph. Each nodes of the hypergraph is associated to a subproblem,

which involves local variables, objective terms, and local constraints. Differently from classical edges, hyperedges can connect

also more than two nodes. Each hyperedge can be associated to coupled variables or constraints among subproblems. Hence,

this formulation allows to deal with the case of coupling constraints involving more than two subproblems. From the considered

problem on microgrids, the private (local) variables are those that are associated only with the single microgrid and the public

(interface) variables are those that are shared between two microgrids. Indeed in our case, the coupled constraints are those of

constraint (9) and hence the hypergraph is actually a graph. However, the approach proposed in this section is valid for the more

general case of hypergraphs.

Even if several methods can be used for decomposing the large scale system into smaller ones, we refer to the well established

theory from36,37,38 in which two approaches are described: primal and dual decomposition. The former solves the original

problem by solving the derived subproblems separately using an iterative method such as the subgradient method. The latter,

instead, solves the original problem after introducing some new variables, and working with the dual problem. See37 for further

details on the methods. In the next subsection the dual decomposition framework will be briefly recalled for reader convenience.

Roughly speaking, from the graph standpoint, each subsystem has its own private copy of the public variables of the links it is

adjacent to and an associated price. The subsystem uses this price to optimize its private and local copy of the public variables.

The public variables on each link are then compared, and the prices are updated, in order to ensure consistency of the local

copies of public variables (i.e. uij). Note that the goal is to obtain consistency without any exchange of private variables.

First, let us divide the optimization vector in (10) into private wi and public yi variables as:

wi =
[
ucℎ,i, udis,i, unet,i

]
T ∈ ℝ

ni (17a)

yi =
[
yij

]
j∈i

∈ ℝ
pi (17b)

ui =
[
wT

i
, yT

i

]T
∈ ℝ

ni+pi (17c)

where

yij =

{
uij if i < j

−uij if i > j
(18)

Thus, the inequality constraints described in (3) − (8) can be rewritten, in a compact form, as

ui =
[
wT

i
, yT

i

]
∈ Ui(x̂) ⊆ ℝ

ni+pi . (19)

Moreover, subsystems are coupled through constraints that require various subsets of the components of the public variables to

be equal. This procedure can be described by collecting all the public variables together into a single vector y =
[
yT
1
, … , yT

M

]T
∈

ℝ
p, where p = p1 + … + pM is the total number of the public variables. We assume K links exist, and we introduce a vector

z ∈ ℝ
K that gives the common values of the public variables on the links. We can express the coupling constraints as

y = Ez, (20)

where E ∈ ℝ
p×K is defined by its elements:

Elj =

{
1 yl ∈ Kj

0 otherwise
l = 1,… , p (21)
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where yl is to denote the l-th scalar component of y for l = 1,… , p and Kj is the j-th link (i.e. the j-th link that constrains two

local copies of a public variable to share the same value). The matrix E specifies the list of the links, for the decomposition

structure: it is the list that forces microgrids to share the local copies of the public variables. Let Ei ∈ ℝ
pi×K denote the

partitioning of the rows of E into M blocks associated with the different subsystems, so that yi = Eiz. The matrix Ei maps the

vector of link variables into the public variables of subsystem i. Vector z can be referred to as the vector of the link variables.

Problem (15) then becomes,

ℙ(x̂) ∶ min
{wi, yi}

M
i=1

,z

{
V (x̂, wi, yi) =

N−1∑
k=0

M∑
i=1

li

(
wi(k), yi(k)

)}
(22a)

subject to (3) - (8), (13b),(13c) and

yi(k) = Eiz(k), i = 1,… ,M, k = 0,… , N − 1 (22b)

where
(
wi(k), yi(k)

)
∈ ℝ

ni+pi for i = 1,… ,M , k = 0,… , N − 1, and

wi = (wi(0)
T , wi(1)

T ,… , wi(N − 1)T )T

yi = (yi(0)
T , yi(1)

T ,… , yi(N − 1)T )T

z = (z(0)T , z(1)T ,… , z(N − 1)T )T .

(23)

To better understand the framework it is useful to apply the previous formulation to an example of a network as depicted in

Figure 2 .

FIGURE 2 Example of a graph associated with 4 subproblems (nodes) with 3 shared variables (links): the vector of the common

values of the public variables is z =
(
z1, z2, z3

)
.

By following equation (21) we obtain

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

− − −

E2

− − −

E3

− − −

E4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

− − − − − − − − −

1 0 0

0 1 0

0 0 1

− − − − − − − − −

0 1 0

− − − − − − − − −

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Hence we have that y1 = z1, y2 = [z1, z2, z3]
T , y3 = z2, y4 = z3 with the meaning that subsystem 1 has a variable (z1)

shared with subsystem 2 etc.
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With the proposed decomposition, the problem (22a) can be solved by each MG separately while the verification of the

coupling constraint (22b) must be ensured.

3.2 Dual decomposition

From (23), let us consider the following aggregate decision variables over the prediction horizon:

w =

⎡⎢⎢⎢⎢⎣

w1

w2

⋮

wM

⎤⎥⎥⎥⎥⎦
∈ ℝ

n×N , y =

⎡⎢⎢⎢⎢⎣

y1

y2

⋮

yM

⎤⎥⎥⎥⎥⎦
∈ ℝ

p×N , (25)

with n =
∑M

i=1
ni. By exploiting the dual decomposition structure, we can form the Lagrangian of problem (22a) subject to the

constraints (22b) as:

L (w, y, z, �) =

M∑
i=1

li

(
wi, yi

)
+ col(�)T col (y − Ez) =

M∑
i=1

[
li

(
wi, yi

)
+ col(�i)

T col(yi)
]
− col(�)T col(Ez) (26)

where li is cost function of microgrid i-th along the prediction horizon N , � ∈ ℝ
p×N is the Lagrange multiplier (matrix)

associated with y = Ez, col(⋅) is the column-wise vectorization operator applied to a given matrix, and �i ∈ ℝ
pi×N is the

submatrix of � associated with the i-th subsystem. The minimization over z results in the condition ET � = 0. This condition

states that for each link, the sum of the Lagrange multipliers over the link is zero. By recalling the example in Figure 2 , we can

obtain the set of feasible solutions as:

ET � = 0 ⇒ �(k) ∈<

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0

−1 0 0

0 1 0

0 0 1

0 −1 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

> (27)

where < A > denotes the span of matrix A and �(k) is the k-th column of �.

We now define the subproblem associated with the i-th subsystem:

min
wi, yi

li

(
wi, yi

)
+ col(�i)

T col(yi)

subject to (3) - (8), (13b),(13c)
(28)

as a function of �i. The dual of the original problem (22) is

max
�

g(�) =
∑K

i=1
gi(�i)

s.t. ET � = 0.
(29)

where gi(�) is the optimal value of the subproblem (28). We solve this dual decomposition master problem using a projected

subgradient method. A subgradient for −gi at �i is simply −col(yi), that represents the exchanged information among neighbors,

i.e. the public variables as defined in Equation (9). However, following such a subgradient direction would not guarantee the

condition ET � = 0. Then, the projection onto the feasible set
{
� ∣ ET � = 0

}
can be computed as

[
I − E

(
ETE

)−1
ET

]
y, (30)

leading to the following update law for �:

�+
i
= �i + �

(
I − E

(
ETE

)−1
ET

)
y = �i + � (y − Eẑ) (31)

in which � is an appropriate step size (see Appendix A for details), and ẑ represents an average of y over each link, given by:

ẑ = (ETE)−1ET y (32)

Note that each subproblem can be solved separately once the step � and the initial values of �i are available to all the MGs.

In general, infeasible solutions may be locally obtained, due to the fact that each microgrid produces a local copy of the public

variables related to its own constraints. Thus, if all primal subproblems (28) with yi = Eiẑ and �i fixed have a feasible solution,
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we obtain a feasible input sequence and an associated upper bound to the centralized problem (22). We finally note that the

vector � can be interpreted as the balancing prices for the supply demand market.

Let us summarize the distributed MPC formulation using the dual decomposition method. The subproblem solved by the i-th

microgrid is:

ℙi(x̂i) ∶ min
wi, yi

⎧⎪⎨⎪⎩
Vi(x̂i, wi, yi) =

N−1∑
k=0

⎡
⎢⎢⎣
[
0, 0, cnet,i(k)

]
⋅wi(k) + �T

i
(k) ⋅ yi(k) +

∑
j∈i

cij(k) ⋅ yi(k)

⎤
⎥⎥⎦

⎫⎪⎬⎪⎭
(33)

subject to (3) − (8), (13b),(13c) and (22b).

Note that, at each optimization iteration, �i(k) is fixed. Our algorithm performs a further primal subproblem optimization

using yi = Eiẑ to obtain a (possibly) feasible solution, and an associated upper bound on the optimal value for the minimization

of the centralized problem:

ℙ
f

i
(x̂i) ∶ min

wi

{
V

f

i
(x̂i, wi, yi) =

N−1∑
k=0

[
0, 0, cnet,i(k)

]
⋅wi(k)

}
(34)

subject to (3) − (8), (13b) and (13c).

Finally, a pseudo-code algorithm can be formulated by considering the Model Predictive Control strategy together with the

dual decomposition method as described in Algorithm 1.

Algorithm 1 MPC + Dual decomposition pseudocode

1: Given initial price vector � that satisfies ET � = 0

2: while
(
wi

∗, yi
∗
)

not feasible for some i ∈ {1 …M} do

3: Solve subproblems ℙi(x̂i) (33) separately to obtain wi
∗ and yi

∗.

4: Compute average value of public variables as ẑ = (ETE)−1ET y.

5: Update prices on public variables �+ = � + �(y − Eẑ).

6: Solve subproblems ℙ
f

i
(x̂i) (34) separately with yi = Eiẑ and �i fixed.

7: end while

Note that communication takes place at Line 4. Moreover, iterations are performed until a feasible solution is found, i.e. a

solution in which all public variables have reached a consensus and the power balance of all microgrids is respected, along with

all other constraints. This implies that, in general, a sub-optimal solution is found. The level of sub-optimality can be evaluated

by considering ℙi(x̂i). By using the subgradient method in the dual problem for updating �, the smaller is the descent rate

(y−Eẑ), the smaller is the distance of wi and yi from wi
∗ and yi

∗ respectively, in the primal problem. The dual decomposition

theory states that the dual problem ℙ
f

i
(x̂i) is a lower bound with respect to primal problem ℙi(x̂i). Due to the the convexity of

the problem, when ℙ
f

i
(x̂i) and ℙi(x̂i) have the same value, the optimality occurs. Hence, the smaller is the difference between

primal and dual problem, the nearest is the control input sequence that provides the optimal solution of the primal problem.

3.3 A discussion on the distributed implementation approaches

In the proposed method, each local controller decides how to fulfill the microgrid demand, by receiving or sending power towards

the rest of the network in a distributed fashion. Usually, the problem of the optimal scheduling of the power flow in a network of

MGs can be solved in a distributed way, by using an aggregator to gather and process the information arising from single MGs. In

this way, the MGs do not have to exchange communications among themselves, while they only communicate to the aggregator.

Then, the coupling constraints are solved in practice by the aggregator. From the standpoint of the communication network, this

solution is decentralized, as MGs do not have to exchange information among themselves. Nonetheless, Algorithm 1 can be

realized either by the adoption of an aggregator, or by exchanging peer-to-peer communications directly with the other nodes.

This means our methodology could be implemented without using an aggregator as well. In this case, the MGs need to exchange

information to find a consensus on the value of the coupled variables. From the standpoint of the communication network, this

solution is distributed, as MGs need to exchange information among themselves. However, from the MPC perspective, if the
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overall system has an interacting dynamics among the subsystems is considered again as distributed. Then, in the distributed

MPC literature there are two different subcategories in which the objective function is local or global, for the entire system.

These approaches are called non-cooperative and cooperative, respectively. Further details are well described in literature11.

Thus, for our standpoint a non-cooperative distributed MPC approach is considered and analyzed for the network of microgrids.

Essentially, the constraint (9) is the aim of the discussion and in the centralized formulation it is automatically included

in the mathematical formalization. However, in a distributed way, it is not possible to handle it directly due to the fact that

each microgrid has no information, at the beginning, about its neighbors. Thus, the presence or the absence of the aggregator

distinguishes how this problem is tackled in a distributed approach. Figure 3 describes the two ways in which the algorithm

can be implemented in practice. On the left, the two MGs do not exchange information directly, but an aggregator gathers the

FIGURE 3 Different topologies the proposed algorithm is compliant with.

local copies of the public variables from the single MGs. On the right, the MGs directly exchange the values of the local copy

of the public variable without needing any aggregator. In this case it is possible to implement a privacy-preservation strategy to

avoid malicious (curious) attacks.

4 SIMULATION RESULTS AND DISCUSSION

4.1 Case study description

In order to assess the performance of the proposed approach, a network of five microgrids is considered. In this work, a complete

graph is considered, thus K =
∑M−1

i=1
i. Let us recall that the stage cost function li(⋅) is defined as

li (u) = Fi ⋅ ui =
[
0, 0, cnet,i, cij

]
⋅
[
ucℎ,i, udis,i, unet,i, uij

]T
j = 1,… , pi. (35)

The expected costs of purchasing/selling power from/to the distribution network operator and the other microgrids (cnet,i, cij
respectively) are modeled as constant values equal to 0.08 $/kWh between 0 and 6 A.M. and represented by independent dis-

tributed random vectors ranging between 0.075 and 0.14 $/kWh for the rest of the day25. Figure 4 shows a realization of the

costs that is used in the simulation. In this case we are using a day-ahead prices during the prediction horizon N . This is again

consistent with the choice of25. At the next time step, then the price vector is shifted accordingly.

Each microgrid is equipped with two different renewable generators (a wind turbine and a photovoltaic module), uncontrol-

lable loads, and an energy storage system. These components have certain bounds as specified in Equations (3) − (8). The

maximum capacity of the energy storage system is between 5 (x
i
) and 500 (xi) kWh for all microgrids. The maximum charge and

discharge powers are all equal, and limited to 50% of the energy storage system capacity per hour (ucℎ,i = udis,i=250 kW). The

power exchanged with the DNO must be less than 100 kW in absolute value (i.e. purchase or sold). The maximum power that

microgrids can exchange with each other is 125 kW (in absolute value). Initial charge of the energy storage system is x̂0,i = 5

kWh for each micro-grid i = 1,… ,M . This is consistent with the assumption of previous works25.

5 ≤ xi ≤ 500 (kWh) (36a)

0 ≤ ucℎ,i ≤ 250 (kW) (36b)

0 ≤ udis,i ≤ 250 (kW) (36c)

−100 ≤ unet,i ≤ 100 (kW) (36d)

−125 ≤ uij ≤ 125 (kW) (36e)
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FIGURE 4 Exchange costs among microgrids and the distributed network operator.

TABLE 1 Initial predicted power balance (Δubal,i) (kW).

Hour Microgrid 1 Microgrid 2 Microgrid 3 Microgrid 4 Microgrid 5

1 9.67079 -37.4347 -26.494 -18.728 -10.3645

2 39.0944 3.4149 43.3593 47.7657 12.9227

3 -8.97945 -42.5555 -38.1107 36.6328 -19.5104

4 5.48782 37.3142 17.6692 45.6643 -18.2151

5 44.8317 36.6844 38.9273 -36.6203 28.1923

6 28.3048 40.8821 -31.5469 -43.7577 -46.7124

7 -3.97557 -13.8361 9.76554 -44.3611 -42.5498

8 -3.58206 4.32963 -25.2645 -0.715182 -32.436

9 -40.536 -49.1489 -30.788 30.8216 24.6507

10 13.9433 25.1515 -38.7525 -48.1786 45.7398

11 -20.8858 34.7042 47.0619 -32.6539 -0.94774

12 -23.3351 -36.1138 40.2481 23.408 -11.1987

13 -2.96255 -23.5074 -42.2645 48.3192 19.6489

14 -15.8886 0.709367 4.03815 -19.0965 5.99215

15 16.9505 -43.5514 47.6784 37.2654 10.535

16 0.140528 -46.4334 11.9735 -21.9273 3.46699

17 28.8477 2.41981 34.4541 37.8464 -4.10521

18 11.9132 -44.6631 -29.0382 -13.326 -32.2797

19 -48.36 -37.1291 -45.2477 -10.0116 46.8043

20 34.5849 -6.84211 8.35187 15.7509 44.3326

21 27.7089 7.46616 -37.2975 -14.7768 1.72214

22 13.5405 40.2782 -22.6432 -20.6672 -36.0828

23 -42.1615 -27.3988 30.8939 24.8035 -33.5008

24 -20.1591 48.7584 13.7667 42.4103 29.3526

Only the hourly estimated power balances are required to solve the optimization problem25. That is, the difference between

generated and consumed energy. Then, in order to take into account the fact that predictions cannot be perfect, we add some

artificial noise (as ± 10% of the nominal value) to test the robustness of the proposed method. In the following we set the

prediction horizon equal to N = 12. The initially predicted power balances are show in Table 1 .
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In the MPC strategy, at each time instant we apply only the first of the optimal input sequence u0
i
. Thus, at the next time instant

new predictions for the power balances are required. This can be done in practice by using a forecasting technique to predict the

uncertain variables. With such a short future horizon of interest (i.e. 12 hours) predictions are usually quite accurate.

Finally, a diminishing step-size for the projected subgradient method in the MPC using dual decomposition algorithm is used,

as detailed in Appendix A. In these simulation scenarios we set:

�k =
1√

1 + 20 ⋅ c
(37)

where c is the current number of the cooperative iteration.

4.2 Scenario 1: Centralized vs. Distributed approach

Figure 5 shows the comparison between the instantaneous optimal costs of the distributed algorithm with respect to the central-

ized one. The centralized version (orange continuous line) produces similar results with respect to those depicted in literature25

FIGURE 5 Comparison between instantaneous centralized and distributed computed optimal costs with a prediction horizon

length set equal to 12 hours.

for the same case study (with very minor differences caused by stochastic fluctuations of prices). A centralized 12 hour predic-

tion horizon version is also presented (the blue dotted line). However, the proposed distributed approach (the green dashed line)

provides comparable results with the centralized version, especially when the prediction horizon is the same (12 hours). A sub-

optimal and feasible solution, i.e. a consensus, is always achieved within a certain number of cooperative iterations. Although

coupled variables represent the hard constraints in terms of MPC formulation, the use of the iterative algorithm of the dual

decomposition method allows the receding horizon control problem to find a distributed feasible, and sub-optimal, solution of

the centralized (hardly scalable) problem. Even if distributed solutions are half of the time better than the centralized solution,

the centralized approach knows all about the constraints and the state of charge of the energy storage units of each MG. Thus,

it generates the optimal revenue in the considered time interval, by taking into account all the prediction horizon. This fact will

be clear in Figure 6 in which the cumulative cost is presented. However, note that suboptimal methodologies, such as the pro-

posed one, may still occasionally outperform the optimal solution in some sub-intervals of the considered time interval. In the

warm-start case, at the end of each decision time, the columns of � previously calculated are shifted 1 hour forward, adding a

zero column at the end, and are assigned again as a warm start of the algorithm, rather than being set to 0 as in the standard

distributed approach.

Figure 6 shows the aggregated costs of each implemented algorithm to evaluate the long term advantages of the proposed

method. The aggregated cost is obtained by integrating each cost hour-by-hour. Thus, it is quite intuitive to see that the centralized

version with 24 hours as prediction horizon produces the greater revenue in a long term scenario (see the aggregated cost at time

23). However, also the 12 hour prediction horizon version produces similar results. The distributed algorithms (with or without
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FIGURE 6 Comparison between aggregated centralized and distributed computed optimal costs with a prediction horizon

length set equal to 12 hours.

a warm-start feature) produce in the long a lower revenue. Even if they are similar during the overall simulation, the warm-start

produce a slight improvement in the final result, i.e., the global revenue of the network. Given the linear nature of the model and

the convexity of the optimization problem it is possible to note how the warm-start solution produces a slightly better revenue

with respect to the non-warm-start approach, as expected.

Notice that the centralized version can be considered, in the selected time interval, as a lower bound in terms of cost (or an

upper bound in terms of revenues) for the purchased/sold energy. Also note that solutions obtained with different prediction

horizons and different time intervals generate different, and in principle non-comparable, solutions.

4.3 Scenario 2: Open-loop vs. Closed-loop

Figure 7 shows the comparison between an Open-loop and a Closed-loop implementation, in the case where some variations

of the power balances reported in Table 1 occur. These variations are unknown to the controllers. The Open-loop approach, at

FIGURE 7 Comparison between instantaneous cost of Open-loop and Closed-loop implementations; the dot-dashed line rep-

resents the Open-loop strategy with a recovery strategy; the dashed line is the previously mentioned Closed-loop strategy with

a prediction horizon equal to 12.
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the first time instant, provides a 24 hour prediction horizon solution. The overall optimal input control sequence is then applied

for all the following 24 hours25. However, due to the gap between estimated and measured power balance, a recovery strategy

is necessary to prevent infeasibility issues. To this aim, two different scenarios are possible:

1. If the generated power is greater than the expected one, the microgrid cannot sell to the distributed network operator or to

the other microgrids. Thus, if the state of charge of the battery is lower than the upper bound, each MG loads the energy

storage system device. If it is not possible, the power in excess is discarded.

2. If the generated power is lower than the expected one, the MGs can draw energy for their storage unit, and if this is not

enough to balance or possible, because the battery state-of-charge is at the lower bound, they are allowed to purchase

some extra power from the grid.

The Closed-loop solution, instead, implements a receding horizon control approach (only the first control action is applied).

Then, a new measurement (of the actual power balance) is obtained and a new control problem is solved. This makes the problem

always feasible with respect to small power balance variations as expected.

Figure 8 shows the comparison between the Open-loop and the Closed-loop strategies when the cost is aggregated along the

time intervals, i.e., it is integrated to provide a long term cost analysis. Although the Open-loop solution seems to have a greater

FIGURE 8 Comparison between the aggregated cost of the Open-loop strategy with respect to the Closed-loop implementa-

tions.

revenue in the first time intervals, due to an exploitation of the storage system, the aggregated cost, as shown in Figure 8 ,

demonstrates that it is not true in the long term. Since, the Open-loop approach does not consider the gap between the estimated

and measured power balances, this leads, in the specified time interval, the non-achievement of the cooperative global objective

of minimizing the overall net costs.

On the other hand, the receding horizon control approach leads to a greater revenue, given that it takes into account the

latest measurement of the actual power balance, recomputing at each decision time the new optimal control sequence. Thus, the

aggregated cost analysis further demonstrates how a Closed-loop strategy can be parsimonious with respect to an Open-loop

strategy.

Even if the focus of the presented results was on a closed-loop solution, the goal of Figure 8 was to remark that a predictive

closed-loop strategy is essential in this type of scenario in which each single MG has no knowledge about the neighbors state

and the constraints. In fact, although in the first part of the time interval the open-loop strategy (with recovery) seems to have

greater revenue, it presents a significantly higher aggregate cost at the end of the day.
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5 CONCLUSIONS AND FUTURE WORKS

This paper presented a cooperative distributed approach for an optimal predictive power scheduling in a network of microgrids.

The proposed methodology is based on a dual-decomposition algorithm, and it allows each microgrid to optimize, by solving

linear programs independently, private power variables (exchange with DNO and charging/discharging of batteries) and public

power variables (exchange among microgrids) also taking into account state-of-charge constraints. Iterations on dual variables

are performed so that the microgrids cooperate towards the centralized optimum. Such an update occurs due to communication

of the public variables, either to an aggregator or directly among microgrids. One remarkable feature of the proposed distributed

methodology is that each microgrid does not need to share private variables. The algorithm is implemented in closed-loop

according to the standard receding horizon principle, common to MPC algorithms. That is, each microgrid solves an optimization

problem in which variables are optimized over a prediction horizon of 12 hours, but then only the optimal power variables of

the first hour are actually implemented, and the overall optimization problems are solved again at the next hour.

The simulation results depict that a consensus is always reached and a slightly sub-optimal solution with respect to a central-

ized version is found. The mathematical formalization shows that the algorithm is completely scalable and it can be applied to

a large scale system. Simulation of operational scenarios were presented in order to validate numerically the algorithm perfor-

mances. In particular, results show how the distributed MPC approach allows one to cope effectively with differences between

power balance predictions and actual values, e.g. due to different generation from renewable sources and different power con-

sumption from loads. It is worth pointing out that the proposed dual decomposition based distributed MPC algorithm is able to

cope with the difficulties associated with the coupling constraints of power exchanges among the microgrids.

Future works can concern a mathematical formalization of an extension of the presented algorithm in order to handle a time-

varying behavior of the microgrids. This deals with the possibility that a single microgrid could go offline for a while and then

become operating again. Another opportunity is to expand the microgrid dynamics, from an electrical standpoint, to test the

predictive distributed algorithm with a de-facto standard power systems analysis and simulation software39.
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APPENDIX

A DIMINISHING STEP-SIZE

The choice of the step length in subgradient methods is different from the case of standard gradient methods, and we refer to

the literature40,41,42 for a detailed discussion on projected subgradient methods. It can be shown that for constant step size and

constant step length, the (projected) subgradient algorithm is guaranteed to converge within some range of the optimal value36.

Instead, for the diminishing step size and step length rules the algorithm is guaranteed to converge to the optimal value. In our

case the nonsummable diminishing strategy was involved. The step size satisfies

�c ≥ 0, lim
c→∞

�c = 0,

∞∑
c=1

�c = ∞ (A1)

Step sizes that satisfy these conditions are called diminishing step size rules. In this paper we set �c as:

�c =
a√

1 + b ⋅ c
(A2)

where a, b > 0, and c is the index of the current iteration of the algorithm.


