
A survey on the existence of isoperimetric sets in

the space RN with density

Aldo Pratelli∗

July 15, 2014

Abstract

The aim of this survey is to give a precise idea of the recent results on

existence of isoperimetric sets in RN with density. We will mainly focus on

the overall ideas, leaving away some technical details of the proofs, which

can be found in the cited papers. No previous knowledge on the subject is

assumed from the reader.

This survey originates from a talk of the author at the conference “New

Trends in Nonlinear PDE’s” held at the Accademia dei Lincei on November

26th, 2013. I wish to dedicate this paper to Carlo Sbordone, because of his

recent 65th birthday, and to Ula, because she will become my wife in few

days.

1 Introduction

The aim of this short survey is to discuss the more recent results on the existence

of isoperimetric sets in the space RN with density. The problem is very easy to

state: for a given L1
loc and l.s.c. function f : RN → R+, one defines the generalized

volume and the generalized perimeter of a Borel set Ω ⊆ RN as

|Ω| =
∫

Ω

f(x) dx , P (Ω) =

∫
∂∗Ω

f(y) dH N−1
(y) ,

where the reduced boundary ∂∗Ω of Ω coincides with the usual topological bound-

ary if the set Ω is smooth enough. To read this survey there is no need to know
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what exactly the reduced boundary is, however the interested reader can find all

the definitions and main properties for instance in [1].

The isoperimetric problem consists then, as always, in trying to minimize

the perimeter of sets with a fixed volume. Of course, this coincides with the

classical (or “Euclidean”) isoperimetric problem when f ≡ 1, but otherwise a

number of different possibilities arise. This problem is estremely well-known and

deeply studied for a number of reasons; the interested reader can find some history,

explanations and a large bibliography for instance in the papers [5, 3]. Let us

now start by discussing, in a very informal way, what should happen about this

problem, and which are the most interesting questions.

First of all, it is very simple to understand that, in general, one should not

expect existence of isoperimetric sets (i.e., sets minimizing the perimeter for their

volume). Indeed, starting with any positive density f , and with any sequence of

sets with constant volume, it is possible to lower the value of f on the boundaries

of these sets: this will not affect the volumes of the sets, but then the perimeters

can be made arbitrarily small. Notice that, in this way, the function f remains

lower semi-continuous (actually, if one wants only to consider continuous densities,

then the same argument applies with minor modifications).

As a consequence, it is clear that the first important task is to obtain condi-

tions under which the existence of isoperimetric sets is ensured, and the goal of this

survey is to discuss precisely this question. Of course, other interesting questions

concern the regularity and other geometrical properties of the isoperimetric sets.

In the remaining of the introduction, we will explain some simple but fundamental

properties of the problem, and then we will give the claim of the main result that

we are going to present.

1.1 Preliminaries on the problem: the mass which escapes

at infinity

Let us immediately recall a very basic lower semi-continuity result, which directly

comes from the analogous result for BV functions (see for instance [1]).

Lemma 1.1. Let {Ωj}j∈N ⊆ RN be a sequence of sets such that the characteristic

functions χΩj
weakly converge in the BVloc sense to χΩ for some Ω ⊆ RN . Then,

P (Ω) ≤ lim inf P (Ωj).

Since standard compactness results ensure that, from any sequence {Ωj} of
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sets, it is possible to extract a subsequence such that the sets χΩj converge to

some characteristic function χΩ, the above lemma could seem to give immediately

a general existence result: indeed, for any given volume V one can always find a

sequence which tends to minimize the perimeter (such a sequence is called “isoperi-

metric sequence”), and extract a converging subsequence, hoping that the limit

will be an isoperimetric set. Unfortunately, this does not work so easily, becuase

the limiting set Ω could happen to have a strictly smaller volume, hence it would

be not a competitor for the isoperimetric problem with volume V . Actually, for

any given bounded domain D ⊆ RN one has that the volume of Ω in D coincides

with the limit of the volumes of Ωj in D; in other words, the only risk is that the

sequence Ωj “loses some mass at infinity”. For instance, if the sets Ωj are all balls

of unit volume whose centers go to infinity, then the limit is the empty set, which

clearly does not have unit volume. As a consequence of the above observations,

the following results are straightforward to prove.

Theorem 1.2. If the volume of the whole RN is finite, say |RN | = M , then

there exists an isoperimetric set for every volume V ≤M . If the volume of RN is

infinite, but for some volume V > 0 there exists a bounded isoperimetric sequence

relative to volume V , then an isoperimetric set for volume V exists.

The idea of proof is extremely simple: if RN has only a finite volume, then

it is not possible that some mass escapes at infinity, because “there is no space

at infinity”. More precisely, for any positive ε > 0 one can find a big domain D

such that, out of D, there is only a volume smaller than ε. As a consequence,

taking an isoperimetric sequence Ωj and calling Ω a limiting set of (a suitable

subsequence of) {Ωj}, then the volume of Ω is bigger than V − ε for any positive

ε, and then |Ω| = V and so Ω is isoperimetric, as said above. In RN has infinite

volume, but there is an isoperimetric sequence completely contained in some big

bounded domain D, then again the volume of Ω is exactly V , because the mass is

not escaping at infinity, being confined in D.

These simple facts already allow us to do some interesting observations. A

first one concerns the cases when the volume of RN is finite: in all these cases,

the study of existence is useless because existence is always automatically true.

This does not mean that the isoperimetric problem is not interesting (for instance,

the Gaussian density f(x) = e−|x|
2/2 is extremely studied), but only that the

interesting questions are not the existence. A second, deeper, one concerns the
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general case when RN has infinite volume: to show the existence of isoperimetric

sets of a given volume, one could try to show that isoperimetric sequences do not

have any reason to escape at infinity. Even though this is a basic and obvious

observation, a good strategy for showing the existence is precisely this one.

1.2 Preliminaries on the problem: the regions with high or

low density

Let us now discuss what we should expect to happen in zones where the density

f is high, or low. To start with, let us imagine that f is constantly C in a large

region of RN , and seek for an isoperimetric set, say of volume 1, in that region.

Since the density is constant, then of course the problem coincides with the usual

Euclidean problem, up to a multiplicative constant, and then an isoperimetric set

is simply a ball Br of radius r and volume 1. Its volume and perimeter are then

given by

1 = |B| = CωNr
N , P (B) = CNωNr

N−1 ,

which just by substituting gives

P (B) = C1/NNω
1/N
N .

As a consequence, the perimeter of a ball of unit volume is higher when the constant

C is higher. Notice that this is a consequence of the fact that volume scales with

power N , and perimeter only with power N − 1; in other words, to obtain a unit

volume in a region where the constant C is small, one needs a much “bigger”

ball (that is, a ball with a big radius), and of course a larger radius goes in the

direction of a larger perimeter: however, the positive effect of the density being

low is stronger than the negative effect of the radius being large. This is a simple

but quite interesting information; suppose, indeed, that there are two big regions

where the density is constant, and that the two constants are different: the above

calculation suggests that, for the isoperimetric problem, placing a ball in the zone

with low density is the better idea.

From this observation, one can get a general “rule”, that is, isoperimetric sets

tend to privilege zones with lower density. Of course, this is absolutely not a rule,

and in fact it is in general false: the very best for a set would clearly be that the

density is big inside the set (so the set can have a small dimension still reaching
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the desired volume) and small on the boundary of the set (so the set has a smaller

perimeter); hence, if the density is rapidly changing then nothing can be easily

said. However, keeping in mind the above “rule” is still useful, because in many

cases this actually suggests the correct answer to the questions of existence or non

existence, as we are going to see in a moment.

1.3 The main result of this survey

We are now going to present the main result of this survey, Theorem 1.4 below,

which says that whenever a density is converging from below in the sense of Def-

inition 1.3, isoperimetric sets exist for every volume. Before stating this result,

we list some known existence of non-existence results, which are either trivial or

can be found for instance in [5, 3]; basically, all these results should convince the

reader that the case of densities converging from below treated here, is the only

interesting one.

• A density which diverges at infinity: in this case, the “rule” would suggest

that an isoperimetric sequence remains bounded, because there should be no gain

for the isoperimetric problem in going where the density is big; since Theorem 1.2

ensures the existence of isoperimetric sets when isoperimetric sequences remain

bounded, we can guess that existence should be true in this case. Actually, the

existence is true only if the density is also radial: for a general diverging density

it is still possible that existence fails.

• A density which goes to zero at infinity: in this case, the existence is auto-

matically true if the volume of RN is finite, thanks to Theorem 1.2; on the other

hand, if the volume of RN is infinite, the “rule” would suggests that any isoperi-

metric sequence goes to infinity, hence that no existence holds. And actually, it is

true that existence always fails for densities which go to zero at infinity, of course

under the assumption |RN | =∞.

• A density for which lim inf f(x) < lim sup f(x) at infinity: in this case, the

density is “oscillating”, hence one can expect that an isoperimetric sequence could

either stay bounded or go to infinity, depending on how fast the density oscillates.

And in fact, this intuition is correct: it is very easy to build examples of oscillating

densities both with existence and with non-existence of isoperimetric sets, thus in

this case one cannot find any general result.

• A density with a strictly positive and finite limit at infinity: this is the last
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possible case, and by the above discussion it is the only interesting one which is

left, since in all the other cases either no result is true, or the true result is already

known. Actually, it is immediately seen that this case should be divided in two

subcases; indeed, if the density converges to the limit from above, then the “rule”

would suggest that isoperimetric sequences might go to infinity, preventing the

existence; on the other hand, if the density converges to its limit from below, then

the suggestion would be that isoperimetric sequences are bounded, and then the

existence should hold. To say this more formally, let us introduce the following

notation.

Definition 1.3. We say that the density f : RN → R+ is converging from below

to a limit 0 < ` < +∞ if f converges to ` at infinity, and f ≤ ` out of a sufficiently

big ball.

The above intuition can then be rephrased as follows: one could expect ex-

istence of isoperimetric sets for densities converging from below, and no general

result for other densities (which are then either converging from above, or oscil-

lating around the limit). The second guess is easily seen to be correct: it is simple

to construct examples of densities which are converging to a limit 0 < ` <∞, but

not from below, both such that existence is true, and such that existence fails.

Also the first guess is true, but the proof is quite more complicate, and the goal

of this survey is precisely to describe it in good detail.

Theorem 1.4. Let f be a density converging from below to 0 < ` < ∞. Then,

for every volume V > 0, there exist isoperimetric sets of volume V .

The proof of the above theorem is contained in the very recent paper [3];

the result was conjectured, and some particular cases were already proven, in the

paper [5]. The plan of this survey is very simple: we collect some technical known

facts and a basic definition in Section 2, and then Section 3 is devoted to describe

in detail the proof of Theorem 1.4; our goal is not to give the completely formal

proof, which is already contained in the above-cited paper, but to explain all the

steps of the construction, proving almost formally most of them, in order to give

a precise idea both to the initiated and to the non-initiated reader.
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2 Some basic known facts and a definition

In this section we present a couple of known technical facts, and we give a useful

definition. The first result shows that if an isoperimetric sequence weakly converges

to a set, then this set is an isoperimetric set. Notice carefully that this seems in

contrast with what we said right after Lemma 1.1, but it is not so: we are not

saying that a weak limit Ω of an isoperimetric sequence corresponding to volume

V is an isoperimetric set for the volume V , but that it is an isoperimetric set for

the volume |Ω| ≤ V ! In particular, we have noticed that an isoperimetric sequence

could also vanish at infinity: in this case the lemma below just says that the empty

set is an isoperimetric set for the problem with volume 0, which is of course emptily

true.

Lemma 2.1. Assume that f ∈ L1
loc and that f is bounded from above and below

far from the origin. Assume also that an isoperimetric sequence {Ωj} of volume

V weakly converges in L1 to a set Ω. Then Ω is an isoperimetric set with volume

|Ω|.

Proof. If |Ω| = 0 there is nothing to prove, while if |Ω| = V then the claim is a

direct consequence of Lemma 1.1; we can then assume without loss of generality

that 0 < |Ω| < V .

Suppose now that Ω is not an isoperimetric set of volume |Ω|: then, there

exists F so that

|F | = |Ω| , P (F ) = P (Ω)− ε ,

for some ε > 0. By continuity, there exist a small constant δ > 0 and a big radius

R > 0 such that, for every −δ ≤ t ≤ δ, there exists a set Ft satisfying

Ft ⊆ B(0, R) , |Ft| = |Ω| − t , P (Ft) ≤ P (Ω)− ε

2
. (2.1)

Up to increase R if necessary, we can also assume that

|Ω ∩B(0, R)| ≥ |Ω| − δ

2
, H N−1

f

(
∂Ω ∩B(0, R)

)
≥ P (Ω)− ε

8
, (2.2)

where for any k > 0 we define the measure H k
f as H k

f (A) =
∫
A
f(x) dH k

(x) for

every Borel set A.

Let us now consider the set Ωj ; recalling that

H N−1
f

(
∂Ω ∩B(0, R)

)
≤ lim inf

j→∞
H N−1

f

(
∂Ωj ∩B(0, R)

)
,
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by (2.2) we immediately get that, if j is big enough, then

|Ωj | ≤ |Ω|+ δ , |Ωj ∩B(0, R)| ≥ |Ω| − δ , H N−1
f

(
∂Ωj ∩B(0, R)

)
≥ P (Ω)− ε

6
.

(2.3)

It is now possible to select some Rj > R such that

H N−1
f

(
Ωj ∩ SRj

)
≤ ε

8
,

where for every r > 0 we denote by Sr = ∂B(0, r) the sphere centered at the origin

with radius r. We have then, calling Ω−j = Ωj ∩B(0, Rj) and Ω+
j = Ωj \B(0, Rj),

P
(
Ω+
j

)
+ P (Ω−j ) = P (Ωj) + 2H N−1

f

(
Ωj ∩ SRj

)
≤ P (Ωj) +

ε

4
. (2.4)

Notice now that, since Rj > R and by (2.3), then

tj := |Ω| − |Ω−j | ∈ [−δ, δ] ,

thus we can define the competitor Ω̃j = Ω+
j ∪ Ftj , being the sets Ft as above. By

construction, we have that |Ω̃j | = V for any j � 1, hence we have now to estimate

the perimeters of Ω̃j . Using that R < Rj and (2.1), (2.4) and (2.3), we find that

P
(
Ω̃j
)

= P (Ftj ) + P (Ω+
j ) ≤ P (Ω)− ε

2
+ P (Ω+

j ) + P (Ω−j )− P (Ω−j )

≤ P (Ω)− ε

2
+ P (Ωj) +

ε

4
−H N−1

f

(
∂Ωj ∩B(0, R)

)
≤ P (Ωj)−

ε

12
.

Since this is in contrast with the fact that the original sequence {Ωj} is isoperi-

metric, we have found an absurd, and this concludes the proof.

The second result is a refinement of the first one, valid in the case when the

density f converges to a limit at infinity. Here, and in the following, we will denote

by J(V ) the infimum of the perimeters of sets of volume V (hence, if {Ωj} is an

isoperimetric sequence relative to volume V , then P (Ωj)→ J(V )).

Lemma 2.2. In the same assumptions as in Lemma 2.1, if we further assume

that f → 1 at infinity, then

J(V ) = P (Ω) +Nω
1/N
N

(
V − |Ω|

)N−1
N . (2.5)

Proof. First of all, by approximation we can find a bounded set Ω̃ with

|Ω̃| = |Ω| , P (Ω̃) ≤ P (Ω) + ε .
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Then, consider a ball B of volume V − |Ω| very far from the origin, so that it does

not intersect Ω̃: since f → 1, we can assume that P (B) is as close as we wish to

the perimeter of a ball of volume V −|Ω| in the standard Euclidean space, which is

Nω
1/N
N (V − |Ω|)N−1

N : then, the set Ω̃∪B has exactly volume V and its perimeter

is less than

P (Ω) +Nω
1/N
N

(
V − |Ω|

)N−1
N + 2ε ;

since ε is arbitrary, this implies the first inequality in (2.5).

To obtain the other one, we can argue more or less as in the proof of the

preceding lemma: having fixed a small constant ε > 0, for every j � 1 we select

Rj very big and such that
H N−1

f (Ωj ∩ SRj
) ≤ ε ,∣∣∣|Ωj ∩B(0, Rj)| − |Ω|
∣∣∣ < ε ,

P
(
Ωj ∩B(0, Rj)

)
> P (Ω)− ε .

Since f → 1, if Rj is big enough then the perimeter of Ωj \B(0, Rj) is arbitrarily

close to the Euclidean perimeter of the same set, which is bigger than the Euclidean

perimeter of the ball with the same volume: we deduce that

P
(
Ωj \B(0, Rj)

)
≥ Nω1/N

N

(
V − |Ω|

)N−1
N − ε̃ ,

for some ε̃ which depends on ε and goes to 0 when ε goes to 0. As a consequence,

we get

P (Ωj) = P
(
Ωj ∩B(0, Rj)

)
+ P

(
Ωj \B(0, Rj)

)
− 2H N−1

f (Ωj ∩ SRj
)

≥ P (Ω) +Nω
1/N
N

(
V − |Ω|

)N−1
N − 3ε− ε̃ .

Again recalling the ε is arbitrary, we obtain the other inequality and the proof is

concluded.

Let us now give a simple definition; to introduce it, consider a ball B in a

region where f is constantly C. As already noticed at the beginning of Section 1.2,

we can immediately observe that

P (B) = C1/NNω
1/N
N |B|

N−1
N .

We give then the following definition.
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Definition 2.3. We say that the mean density of the set Ω is the (unique) number

ρ such that

P (Ω) = ρ1/NNω
1/N
N |Ω|

N−1
N .

Basically, the mean density of a set is the constant ρ such that, in a region

where the density is constantly ρ, balls with the same volume as Ω have also the

same perimeter. This definition, which first appeared in [5], could seem strange

at first glance; nevertheless, for densities which converge to a limit, this turns out

to be extremely useful thanks to the following result.

Lemma 2.4. Let f be a density which converges to 1 at infinity. Assume that

there exist bounded isoperimetric sets for any volume, and that there exist sets

of any volume arbitrarily far from the origin and with mean density less than 1.

Then, for every V > 0 there exists an isoperimetric set of volume V .

Proof. Let {Ωj} be an isoperimetric sequence corresponding to the volume V ,

and assume that Ωj weakly converges to some Ω (this is always true, up to a

subsequence). By Lemma 2.1 and Lemma 2.2 we know that Ω is an isoperimetric

set for volume |Ω|, and that (2.5) holds. By assumption, there exists a set E with

volume |E| = |Ω| which is isoperimetric and also bounded. Again by assumption,

there exists a set F with volume V −|Ω| which has mean density less than 1; since

F can be taken arbitrarily far from the origin, we can assume that E ∩ F = ∅.
The set E ∪ F is then a set with volume exactly V , and recalling that E is

isoperimetric and that the mean density of F is less than 1, we get

P (E ∪ F ) ≤ P (E) + P (F ) = P (Ω) + P (F ) ≤ P (Ω) +Nω
1/N
N |F |

N−1
N = J(V ) .

Since this implies that E∪F is an isoperimetric set of volume V , we have concluded

the proof.

One of the assumptions of the above lemma is the a priori boundedness of

isoperimetric sets, which has been recently well studied. In fact, it is always true

under our assumptions, thanks to the following result, which concludes this section.

Lemma 2.5. Assume that the density f is either continuous and bounded above

and below far from the origin, or it converges to a positive limit at infinity. Then,

all the isoperimetric sets are bounded.
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We do not give the proof of this result here, since it is quite involved. The

proof of the continuous case can be found in [2], while the proof of the second case

comes from an observation by F. Morgan, and can be found in [3].

3 Proof of our main result

This section is devoted to describe in detail the proof of Theorem 1.4, with a big

emphasis on the underlying ideas.

Let us start by considering the claim of Lemma 2.4: thanks to Lemma 2.5, it

tells us that to prove our Theorem 1.4 we can limit ourselves in finding sets with

any volume and mean density less than 1 arbitrarily far from the origin (up to

a trivial rescaling of f , we can of course assume without loss of generality that

` = 1).

Observe that, in order to have a small mean density, a set should be suitably

placed with respect to the density (the best would be if the density is big inside

the set and small on its boudary), but it should also have a small perimeter in

the Euclidean sense: if the density on the boundary is small, but the boundary

has a huge extension, then this is not convenient. . . In particular, since we are

looking for sets which are far from the origin, and the density converges to 1, the

volume and perimeter are very close to the Euclidean volume and to the Euclidean

perimeter; hence, a set with a mean density smaller than 1 must be very similar

to a ball. For this reason, we start (in the first step) to search a ball with mean

density smaller than one, and for simplicity we work in the simpler radial case.

Then, in the second step we conclude the thesis of Theorem 1.4, still in the radial

case. Having the strategy in mind, in steps 3 and 4 we do the same thing in the

more complicate general case.

3.1 Step 1: A “good” ball of given radius when f is radial.

In this first step, we assume that f is radial (at least far from the origin), and we

look for a ball of mean density less than 1 arbitrarily far from the origin. Notice

that we must find such balls for any given volume. Up to a dilation, we can clearly

reduce ourselves to consider only a particular value of the volume; however, it is

important to underline immediately that we must choose this value in advance.

In other words, just finding a ball with mean density less than 1 and a random
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volume is not sufficient! Even if this might seem not such a big problem, at first

glance, this will nevertheless give some difficulties later: indeed, it is much easier

(and this is what we will do) to search for a “good” ball (that is, a ball with mean

density less than 1) having fixed its radius, not its perimeter. But then, we have

to take care of adjusting the volume (in principle, it would be possible that there

exist balls with mean density less than one with any possible radius, but not with

any possible volume!).

For simplicity, let us then search for a good ball with radius 1: the goal of

this first step is to prove the following result.

Lemma 3.1. Under the assumptions of Theorem 1.4, if in addition f is radial

then there exist balls of radius 1 and mean density less than 1 arbitrarily far from

the origin.

Notice that a ball very far from the origin and with unit radius has volume

very close to ωN , and perimeter very close to NωN , since f → 1; hence, by the

definition, the mean density is very close to 1, so to check that some particular ball

has mean density less than 1 we need a careful analysis of the difference between

f and 1. Hence, it is useful to define the auxiliary density g = 1 − f , which by

assumption is radial and positive far from the origin, and to evaluate volumes and

perimeters also in terms of g: to avoid confusion, let us write then Pg(E) and |E|g
to denote the perimeter and volume of the set E with respect to the density g. Of

course, any ball B(R) of radius 1 and centered at distance R from the origin has

volume and perimeter

|B(R)| = ωN − |B(R)|g , P (B(x)) = NωN − Pg(B(R)) . (3.1)

In order to prove Lemma 3.1, we first need a couple of simple elementary

properties.

Lemma 3.2. Let g : R+ → R be definitively positive and converging to 0, and let

α : (−1, 1)→ R be an L1 function such that∫ 1

−1

α(t) dt = 0 ,

∫ σ

−1

α(t) dt > 0 ∀σ ∈ (−1, 1) . (3.2)

Then, there exists R arbitrarily big such that∫ 1

−1

α(t)g(t+R) dt ≥ 0 ,

with strict inequality unless g ≡ 0 in (R− 1, R+ 1).
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Proof. Let us assume that the claim is false. Hence, for any R+ � R− � 1 we

have

0 ≥
∫ R+

R=R−

∫ 1

t=−1

α(t)g(t+R) dt dR =

∫ R++1

x=R−−1

g(x)

∫
Ax

α(t) dt dx ,

where Ax is defined by

Ax =
{
t ∈ (−1, 1) : x−R+ < t < x−R−

}
.

Notice now that, if R− + 1 < x < R+ − 1, then Ax = (−1, 1); as a consequence,

by (3.2), for those x one has
∫
Ax
α(t) dt = 0. So, the estimate above can be

rewritten as

0 ≥
∫ R−+1

x=R−−1

g(x)

∫
Ax

α(t) dt dx+

∫ R++1

x=R+−1

g(x)

∫
Ax

α(t) dt dx

=

∫ R−+1

x=R−−1

g(x)

∫ x−R−

−1

α(t) dt dx+

∫ R++1

x=R+−1

g(x)

∫ x−R+

−1

α(t) dt dx .

Again by (3.2) we know that the first integral is positive and the second one is

negative; moreover, if we keep R− fixed and we send R+ → ∞, then the second

integral converges to 0. We have to divide now two possibilities: if g ≡ 0 in

(R− − 1, R− + 1), then we have already the claim with R = R−; otherwise, the

first integral is strictly positive, hence for R+ big enough we find a contradiction.

In both cases, the proof is concluded.

Lemma 3.3. Let g : R+ → R be definitively positive and converging to 0, and

let α : (−1, 1) → R be an L1 function such that α̃(t) :=
∫ t
−1
α(σ) dσ satisfies the

assumption of Lemma 3.2 as well as α̃(1) = 0. Then there exists R arbitrarily big

such that ∫ 1

−1

α(t)g(t+R) dt ≥ 0 .

Proof. We can argue exactly as in the previous Lemma. In fact, Let R+ � R− � 1

and assume that the claim is false for every R− ≤ R ≤ R+: since α̃(1) = 0 means

that
∫ 1

−1
α(σ) dσ = 0, with the same calculation as in the previous proof we can

evaluate

0 >

∫ R+

R=R−

∫ 1

t=−1

α(t)g(t+R) dt dR

=

∫ R−+1

x=R−−1

g(x)

∫ x−R−

−1

α(t) dt dx+

∫ R++1

x=R+−1

g(x)

∫ x−R+

−1

α(t) dt dx .
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Since second term is again going to 0 for R+ → ∞, to conclude we just need to

prove that the first term is strictly positive. Let us rewrite it as∫ R−+1

x=R−−1

g(x)

∫ x−R−

−1

α(t) dt dx =

∫ R−+1

x=R−−1

g(x)α̃(x−R−) dx

=

∫ 1

t=−1

g(t+R−)α̃(t) dt .

Applying Lemma 3.2 to the function α̃, we precisely obtain a suitable choice of

R− such that the above integral is strictly positive (our assumption reules out the

possibility that g ≡ 0 in (R− − 1, R− + 1)), hence this proof is concluded.

We are now in position to prove Lemma 3.1; as said above, it is notationally

simpler to use the perimeters and volumes with respect to g, and then deduce the

desired results for f .

Lemma 3.4. Under the assumptions of Theorem 1.4, if in addition f is radial

then for every ε > 0 there exists a ball B(R) of radius 1 arbitrarily far from the

origin such that

Pg(B(R)) ≥ (N − ε)|B(R)|g . (3.3)

Proof (of Lemma 3.1). The claim of Lemma 3.1 is a straightforward consequence

of Lemma 3.4. Indeed, keeping in mind formulas (3.1), we know that the ball

B(R) has mean density less than 1 if and only if

NωN − Pg(B(R)) < Nω
1/N
N

(
ωN − |B(R)|g

)N−1
N

,

and since g → 0 at infinity the previous inequality reduces to

Pg(B(R)) >
(
N − 1 + o(1)

)
|B(R)|g ,

where o(1) is a quantity which goes to 0 when |B(R)|g goes to 0, hence when

R→∞. Thus, the claim of Lemma 3.4 is stronger than what we need.

Proof (of Lemma 3.4). Since the density is radial, we can express the perimeter

and volume of B(R) as

Pg(B(R)) =

∫ R+1

x=R−1

ϕ1(x−R,R)g(x) dx ,

|B(R)| =
∫ R+1

x=R−1

ϕ2(x−R,R)g(x) dx ,

(3.4)
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and the functions ϕ1,2 : (−1, 1) × R+ → R+ clearly converge, for R → ∞, to the

functions

ϕ1(t) = (N − 1)ωN−1(1− t2)
N−3

2 , ϕ2(t) = ωN−1(1− t2)
N−1

2 ,

which depend only on t. Notice that the convergence is quite strong, namely the

ratio ϕ1, 2/ϕ1, 2 converge uniformly to one: as a consequence, the claim follows if

we can find balls of radius 1 arbitrarily far from the origin such that

P g(B(R)) ≥ NV g(B(R)) , (3.5)

where the modified perimeter and volume P g and V g are defined as

P g(B(R)) =

∫ 1

t=−1

ϕ1(t)g(t+R) dx , V g(B(R)) =

∫ 1

t=−1

ϕ2(t)g(t+R) dx ,

compare with (3.4). A trivial check ensures that the function α(t) = ϕ1(t)−Nϕ2(t)

satisfies the assumptions of Lemma 3.3, and then the existence of some arbitrarily

big R satisfying (3.5) follows, thus the proof is concluded.

3.2 Step 2: Conclusion when f radial.

As described above, the proof of Theorem 1.4 follows as soon as we find a set of

any given volume arbitrarily far from the origin. Since the density converges to

1, let us look for a set of volume ωN , which is the volume of a ball of radius 1 at

infinity. Lemma 3.1 of Step 1 already gives us balls arbitrarily far from the origin

with radius 1 and mean density smaller than 1; however, since f is converging to 1

from below, the volume of these balls is slightly smaller than 1. As a consequence,

we need to enlarge these balls a little. Notice that considering big balls would not

be a good idea: indeed, since f is not even continuous, also a small movement

of the boundary would possibly increase the perimeter too much, destroying the

information about the mean density. Let us give here the construction.

Lemma 3.5. Under the assumptions of Theorem 1.4, if in addition f is radial

then there exists a set of volume ωN and mean density smaller than 1 arbitrarily

far from the origin.

Proof. Thanks to the first step, in particular by (3.3) of Lemma 3.4, we get a ball

of radius 1 and such that

Pg(B(R)) ≥ (N − ε)|B(R)|g . (3.6)

15



Since f ≤ 1, we know that |B(R)| ≤ ωN , in particular by definition

|B(R)| = ωN − |B(R)|g . (3.7)

Hence, we enlarge the ball as shown in Figure 1. More precisely, we divide the

ball B(R) into two half-balls, the “upper one” and the “lower one”, which are the

two parts divided by an hyperplane passing trough the origin and the center of

B(R). Then, we “rotate down” the lower part of the boundary ∂B(R), call it Σ−,

in such a way that it becomes a half-sphere Σ̃− whose center is below the original

one of a distance δ. Finally, we define the new set B̃ as the set whose boundary

is the union of the upper half-sphere ∂B(R) \ Σ−, plus the new half-sphere Σ̃−,

plus the union Γ of all the arcs of circle centered at the origin and connecting each

point of Σ− with the corresponding point of Σ̃− (for the case of dimension N = 2,

Γ is actually made only by two arcs of circle). In Figure 1 the new boundary

∂B̃ \ ∂B(R) is made in dash.

Γ

δ

O

Σ−

Σ̃−

B(R)

Figure 1: Ball expansion in Step 2.

The quantity δ is chosen in such a way that |B̃| = ωN : as a consequence, we

deduce that δ � 1 and that B̃ ⊇ B(R). Moreover, since the Euclidean volume of

B̃ \B(R) is of course

|B̃ \B(R)|eucl = ωN−1δ(1 + o(1)) ,

where o(1) is a quantity which goes to 0 when R → ∞, since f ≈ 1, and since

by construction –just keeping in mind (3.7)– we have |B̃ \ B(R)| = |B(R)|g, we

obtain

δ =
|B(R)|g
ωN−1

(1 + o(1)) .
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We are now in position to calculate P (B̃): since by construction, and thanks to

the fact that f is radial, we have that H N−1
f (Σ−) = H N−1

f (Σ̃−), recalling (3.6)

we directly have

P (B̃) = P (B(R)) + H N−1
f (Γ) ≤ P (B(R)) + H N−1

(Γ)

= P (B(R)) + (N − 1)ωN−1δ(1 + o(1))

= P (B(R)) + (N − 1)|B(R)|g(1 + o(1)) ≤ P (B(R)) + Pg(B(R)) = NωN ,

where the last equality comes from the fact that f + g = 1 and so P (B(R)) +

Pg(B(R)) is the Euclidean volume of B(R), which is a ball of radius 1. We

conclude by noticing that the set B̃ has volume ωN by construction, and then

having perimeter less than NωN is equivalent to have mean density less than one,

which concludes the proof.

3.3 Step 3: A “good” ball of given radius for a generic f .

In this and in the next step we are going to obtain the very same results as in

Steps 1 and 2, but for a generic density f instead of a radial one. The result of this

step is then the following result, which is analogous to Lemma 3.4: the idea of the

proof is simply to use an auxiliary radial density, obtained by radially averaging

f .

Lemma 3.6. Under the assumptions of Theorem 1.4, there exists a ball Bβ(R) of

radius 1 arbitrarily far from the origin such that

Pg(Bβ(R)) ≥ (N − ε)|Bβ(R)|g . (3.8)

Proof. Let us use polar coordinates, denoting every point x ∈ RN as x ≡ (ρ, θ),

where ρ ≥ 0, θ ∈ SN−1. Let us then define the radial density g̃(ρ, θ) = g̃(ρ), where

g̃(ρ) = −
∫
SN−1

g(ρ, θ) dH N−1
(θ) ,

that is, g̃ is the radial average of g. Now, fix a large R� 1: in the previous steps

we simply called B(R) any ball of unit radius with center at distance R from the

origin, because all such balls were equivalent due to the radial assumption on the

density. Since now f (thus g = 1 − f) is generic, all the balls of unit radius and

distance R from the origin may have different perimeters and different volumes,

hence it is more convenient to call each of these balls Bβ(R) for β ∈ SN−1, with
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the obvious meaning that we fix arbitrarily one of these balls and then Bβ(R) is

the ball obtained after a rotation of angle β. A trivial calculation then gives that,

if we define Γ(R, ρ) ⊆ SN−1, for every ρ ∈ (R− 1, R+ 1), as the set

Γ(R, ρ) =
{
θ ∈ SN−1 : x ≡ (ρ, θ) ∈ B0(R)

}
,

then the g-volume of each ball Bβ(R) is

|Bβ(R)|g =

∫ R+1

ρ=R−1

∫
θ∈Γ(R,ρ)

g(ρ, θ + β) dH N−1
(θ) dρ .

As a consequence, we simply have

−
∫
β∈SN−1

|Bβ(R)|g dH N−1
(β)

= −
∫
β∈SN−1

∫ R+1

ρ=R−1

∫
θ∈Γ(R,ρ)

g(ρ, θ + β) dH N−1
(θ) dρ dH N−1

(β)

=

∫
θ∈Γ(R,ρ)

∫ R+1

ρ=R−1

−
∫
β∈SN−1

g(ρ, θ + β) dH N−1
(β) dρ dH N−1

(θ)

=

∫
θ∈Γ(R,ρ)

∫ R+1

ρ=R−1

g̃(ρ) dH N−1
(β) dρ = |B(R)|g̃ ,

where B(R) is again the generic ball with distance R from the origin, since g̃ is

radial. The very same calculation of course gives

−
∫
β∈SN−1

Pg(Bβ(R)) dβ = Pg̃(B(R)) . (3.9)

Putting together the last two estimates we obtain that

−
∫
β∈SN−1

Pg(Bβ(R))− (N − ε)|Bβ(R)|g dβ = Pg̃(B(R))− (N − ε)|B(R)|g̃ ,

thus there exists some β ∈ SN−1 such that

Pg(Bβ(R))− (N − ε)|Bβ(R)|g ≥ Pg̃(B(R))− (N − ε)|B(R)|g̃ . (3.10)

We can now apply Lemma 3.4 to the density f̃ = 1− g̃, finding an arbitrarily big

R such that

Pg̃(B(R)) ≥ (N − ε)|B(R)|g̃ ,

hence by (3.10) the ball Bβ(R) satisfies (3.8).
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3.4 Step 4: Conclusion for a generic f .

In this last step we need then to generalize Lemma 3.5 removing the radial as-

sumption on f . Keep in mind that the proof of Lemma 3.5 used this assumption

twice; once, to apply Lemma 3.4, which was valid only for radial f but which has

been generalized to non necessarily radial densities in Lemma 3.6. And once, in a

crucial way, to know that H N−1
f (Σ−) = H N−1

f (Σ̃−), that is, all the half-spheres

having the same distance from the origin have the same H N−1
measure. Since

this last fact is clearly in general false for a non-radial density, we cannot simply

take the ball Bβ(R) provided by Lemma 3.6 and modify it: indeed, it may happen

that g is much bigger in the boundary of Bβ(R) than in the points nearby, and

as a consequence the mean densities of even small adjustments of Bβ(R) could be

strictly bigger than one. And in fact, in the argument of this last step we will not

use the claim of Lemma 3.6, but a modification of its proof. The goal of this last

step is to prove the following lemma, which as discussed above will conclude the

proof of Theorem 1.4.

Lemma 3.7. Under the assumptions of Theorem 1.4, there exists a set of volume

ωN and mean density smaller than 1 arbitrarily far from the origin.

Proof. Let us present the proof for the planar case N = 2; in fact, it is much

simpler to follow the construction, and to obtain the complete proof then just a

simple linear algebra argument is needed, but no new idea.

First of all, let us define f̃ and g̃ the radial averages of f and g, as in the

proof of Lemma 3.6; applying Lemma 3.4 to f̃ , then, we find an arbitrarily large

R such that

Pg̃(B) ≥ (2− ε)|B|g̃ , (3.11)

where for the sake of shortness we write B instead of B(R), since R has been fixed

once for the whole proof. Now, for every β ∈ S1, we call again Bβ the ball of unit

radius and centered at the point of polar coordinates x ≡ (R, β). Moreover, as

in Figure 2 we decompose ∂Bβ = ∂+Bβ ∪ ∂−Bβ , where each point (x, θ) in ∂Bβ

belongs to ∂+Bβ (resp., ∂−Bβ) if θ ≥ β (resp., θ ≤ β). Notice that since R � 1

then for every (x, θ) ∈ ∂Bβ one has θ ≈ β, thus the above definition makes sense.

19



Notice also that, arguing exactly as in (3.9), we get

Pg̃(B) = −
∫
β∈SN−1

Pg(Bβ) dβ = 2−
∫
β∈SN−1

H 1
g(∂

+Bβ) dβ

= 2−
∫
β∈SN−1

H 1
g(∂
−Bβ) dβ .

(3.12)

Now, since f ≤ 1, we have that |Bβ | ≤ 1, hence we have again to enlarge the

Γ+

O γ
β

∂−Bβ

∂+Bγ

Γ−

Figure 2: Situation in Step 4 and ball expansion.

ball; to do so, let us fix an angle β, and let γ = τ(β) to be specified in a moment.

Then, let us call B̃β the set whose boundary is the union of ∂−Bβ , ∂+Bγ , and

two arcs of circle Γ− and Γ+ centered at the origin, with radii R − 1 and R + 1,

and ranging from the direction β to the direction γ: see Figure 2 for a sketch of

this set, where the dashed curves are ∂B̃β \ ∂Bβ . The choice of γ is simple: we let

γ = τ(β) be the angle such that |B̃β | = ωN . Notice that, since f ≈ 1 because we

are very far from the origin, there exists a unique such τ(β), and τ(β)− β � 1.

Let us now take an angle β, and a very small δ � 1: since |Bβ | = |Bβ+δ|,
then of course the volume of the “added part” A+

τ(β), τ(β+δ) between ∂+Bτ(β) and

∂+Bτ(β+δ) coincides with the volume of the “removed part” A−β,β+δ between ∂−Bβ

and ∂−Bβ+δ. Since, up to take R big enough, we have 1 − ε ≤ f ≤ 1, then an

immediate integration in polar coordinates ensures us that

2(1− ε)δ(R− 1) ≤
∣∣A−β,β+δ

∣∣ ≤ 2δ(R+ 1) ,

and in the very same way

2(1−ε)
(
τ(β+δ)−τ(β)

)
(R−1) ≤

∣∣A+
τ(β),τ(β+δ)

∣∣ ≤ 2
(
τ(β+δ)−τ(β)

)
(R+1) . (3.13)

Therefore, we deduce

(1− ε)R− 1

R+ 1
≤ τ(β + δ)− τ(β)

δ
≤ R+ 1

(R− 1)(1− ε)
,
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hence we obtain that τ : S1 → S1 is a Lipschitz function, and τ ′(β) ∈ (1−2ε, 1+2ε),

up to further increase R if necessary. We can then write, keeping in mind (3.12)

−
∫ 2π

β=0

H 1
g

(
∂+(Bτ(β)

)
dβ = −

∫ 2π

θ=0

H 1
g

(
∂+(Bθ)

)
τ ′(τ−1(θ)

dθ

≥ (1− 2ε)−
∫ 2π

θ=0

H 1
g

(
∂+(Bθ)

)
dθ =

1− 2ε

2
Pg̃(B) .

As a consequence,

−
∫ 2π

β=0

H 1
g

(
∂+(Bτ(β)

)
+ H 1

g

(
∂−(Bβ)

)
dβ ≥ (1− ε)Pg̃(B) .

Hence we can calculate, with the aid of (3.11),

−
∫ 2π

β=0

∣∣Bβ∣∣g dβ = |B|g̃ ≤
Pg̃(B)

2− ε

≤ 1

(2− ε)(1− ε)
−
∫ 2π

β=0

H 1
g

(
∂+(Bτ(β)

)
+ H 1

g

(
∂−(Bβ)

)
dβ ,

and this implies the existence of some β ∈ S1 such that

H 1
g

(
∂+(Bτ(β)

)
+ H 1

g

(
∂−(Bβ)

)
≥ (2− 3ε)

∣∣Bβ∣∣g . (3.14)

We finally claim that the set B̃β has mean density less than 1: since |B̃β | =
π = ω2 by construction, this will conclude the proof. To start, notice that the ball

Bβ has of course Euclidean volume equal to π, so its volume with respect to f is

π − |Bβ |g; on the other hand, π is the volume with respect to f of the enlarged

set B̃β , which coincides with the union of Bβ with the “added part” A+
β,τ(β). This

implies that |A+
β,τ(β)| = |Bβ |g, which with the same argument as in (3.13) gives

τ(β)− β ≤ |Bβ |g
2(1− ε)(R− 1)

. (3.15)

Notice now that the perimeter of B̃β is the sum of the lengths of the two half-

circles ∂−Bβ and ∂+Bτ(β), plus the two arcs Γ− and Γ+ in Figure 2. And in turn,

the lenghts of those two arcs are smaller than the Euclidean lengths (since f ≤ 1),

and the Euclidean lengths are (R−1)(τ(β)−β) and (R+1)(τ(β)−β) respectively.
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Summarizing, by (3.15) and (3.14) one has

P (B̃θ) ≤H 1
f (∂−Bβ) + H 1

f (∂+Bτ(β)) + 2R(τ(β)− β)

≤ 2π −
(
H 1

g(∂
−Bβ) + H 1

g(∂
+Bτ(β))

)
+

R|Bβ |g
(1− ε)(R− 1)

≤ 2π − (2− 3ε)|Bβ |g +
R|Bβ |g

(1− ε)(R− 1)
≤ 2π ,

where the last inequality is true as soon as ε and R have been chosen sufficiently

small and sufficiently big respectively.

We have finally concluded, because the last inequality is equivalent to the fact

that the mean density of |B̃β |) is smaller than one.
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