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Abstract

This paper aims at studying local and global dynamics in a nonlinear duopoly with quantity-
setting firms and non-cooperative advertising investments that affect the degree of (horizon-
tally) differentiated products. It concentrates on persuasive advertising in a model where each
firm has limited information and uses a behavioural rule to set the quantity for the subsequent
period. By using some mathematical techniques and numerical simulations, our results show
the existence of weak (à la Milnor) attractors, multistability and chaotic dynamics. In the long
term, firms may continuously shift from states in which they invest in advertising to states in
which advertising investment is absent.
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1 Introduction

The aim of this paper is to build on a nonlinear duopoly (Bischi et al., 1998; Bischi et al., 2010)
à la Cournot augmented with advertising investments - that affect the degree of (horizontally)
differentiated products - to study long-term dynamics from both local and global perspectives.
The importance of advertising as an instrument that allows firms to differentiate goods and get a
competitive advantage on the market is well recognised (Bagwell, 2007). The industrial economics
literature distinguishes between purely informative advertising (Grossman and Shapiro, 1984; Stahl,
1994; Hamilton, 2009) and persuasive advertising (Dixit and Norman, 1978). The former kind of
investment provides information about price and product characteristics, but it does not influence
the consumers’ willingness to pay for the advertised good. As a consequence, it tends to favour
competition, for instance by reducing search costs. The latter one consists in expenditures on
interventions to persuade consumers that the own product is not perfectly substitutable with the
rivals’ one (Dixit and Norman, 1978). As a result, persuasive advertising is clearly anticompetitive
because it tends to realise a spurious product differentiation, which in turn increases firms’ market
power. Product differentiation then represents a strategic variable especially in duopoly markets in
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both profit-maximising firms (Singh and Vives, 1984) and managerial firms (Kopel and Lambertini,
2013). Then studies that aim at clarifying the long-term behaviour of producers that operate in
these kind of markets may be relevant also from a policy perspective.

This paper focuses on non-cooperative persuasive advertising in a nonlinear duopoly with
quantity-setting firms. So far, the dynamic duopoly literature has dealt with similar issues in
some works that concentrate on: 1) the relationship between advertising and goodwill (Luhta and
Virtanen, 1996; Ahmed et al., 1999), or 2) the effect of brand competition on global dynamics in
models where players have limited information (Bischi et al., 2000; Bischi and Kopel, 2003). How-
ever, a model that directly captures the long-term effects of advertising on product differentiation
with quantity-setting firms is still lacking. The aim of this work is to fill this gap by considering
players (firms) with limited information about rival’s decision variables. Specifically, we assume
that the degree of substitutability between products is affected by the level of advertising invest-
ment chosen by firms, and the larger such investment the more consumers perceive products as
differentiated between each other. The assumption of limited information in a dynamic context
follows several works in the related literature (Bischi et al., 1998; Bischi and Naimzada, 2000) and
aims at capturing possible erratic behaviours of economic agents also when there are no exogenous
stochastic shocks. Specifically, the assumption of full rationality implies that all agents have perfect
knowledge about every detail of the game in which they are involved, and every agent knows that
all others have perfect knowledge as well. In order to capture in a better way the complexity of "real
world" situations (limited ability to compute optimal solutions, costs related to the enforcement
of optimal plans and so on), the literature on nonlinear duopolies has relaxed this hypothesis by
considering repeated instead of one-shot games and players whose strategies follow trial-and-error
methods (for which less information than full rationality is required) and behave adaptively.

By considering feasibility constraints and the opportunity for firms to invest or not to invest in
advertising, our model is described by a two-dimensional piecewise differentiable nonlinear map that
shows some dynamic results related to chaos synchronisation and multistability (initial conditions
matter). We have investigated bifurcations specifically related to piecewise maps along the diagonal
and we have analysed the role of constraints in defining the basins of attractions of the system. The
existence of constraints implies that the model is piecewise differentiable, so that possible border
collision bifurcations may arise. In particular, we have concentrated on the existence of this kind
of bifurcations related to the map restricted on the diagonal, by leaving to future research a deeper
analysis of the role of points of non differentiability on the evolution of attractors that do not lie
on the diagonal.

From an economic point of view, the model is able to generate long-term dynamics in which firms
move from states where they decide to do not invest in advertising to states in which advertising
investment is positive.

The rest of the paper proceeds as follows. Section 2 sets up the model. Section 3 takes a
dynamic view of the problem and studies local stability properties. Section 4 concentrates on
global analysis and provides some numerical experiments. Section 5 outlines the conclusions. The
Appendix provides details of the static game and shows the existence of Nash equilibria in the cases
of both positive advertising and no advertising.

2 The model

Consider an economy that consists of two types of agents: consumers and firms. There exists a
competitive sector that produces the numeraire good k ≥ 0 (whose price is normalised to 1), and
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a duopolistic sector with firm 1 and firm 2 that produce (horizontally) differentiated products of
variety 1 and variety 2, respectively. Let pi ≥ 0 and qi ≥ 0 be the price and quantity of product of
firm i (i = 1, 2), respectively.

Consumers are identical and their preferences towards goods q1, q2 and k are captured by the
separable utility function V (q1, q2, k) : R

3
+ → R+. They are specified by the following quasi-linear

formulation: V (q1, q2, k) = U(q1, q2) + k, where U(q1, q2) : R
2
+ → R+ is a twice differentiable

function. The representative consumer maximises V (q1, q2, k) subject to budget constraint p1q1 +
p2q2+k =M , where M > 0 is the exogenous nominal income of the consumer (assumed to be high
enough to avoid the existence of corner solutions). Since V (q1, q2, k) is a separable function and it
is linear in k, there are no income effects on the duopolistic sector. The consumer’s optimisation
problem can then be written as: max{q1,q2} U(q1, q2) − p1q1 − p2q2 +M . By following Singh and
Vives (1984), Häckner (2000) and Kopel and Lambertini (2013), we specify U(q1, q2) as follows:

U(q1, q2) = a(q1 + q2)−
1

2
(q21 + q22 + 2dq1q2), (1)

where a > 0 is the extent of market demand and 0 < d ≤ 1 captures the degree of horizontal
product differentiation. More in detail, if d → 0 then products of variety 1 and variety 2 tend to
be independent and each firm acts as a monopolist in its own market. For any d < 1 products
are perceived as imperfect substitutes by consumers and for d = 1 they are perceived as perfect
substitutes. By using (1) the consumer’s maximisation programme gives the following inverse
demands of goods 1 and 2, respectively:

p1 = max{0, a− q1 − dq2} and p2 = max{0, a− q2 − dq1}. (2)

In order to guarantee that prices p1 and p2 are non-negative for any d ∈ (0, 1], quantities q1 and q2
must belong to set A := {q1, q2 : q1 + q2 ≤ a}.

Firm 1 and firm 2 may differentiate their own product through advertising investment z1 and
z2, respectively. Similar to Colangelo (1992), we assume the following specification of the degree of
product differentiation d:

d = d(z1, z2) :=
1

2(1 + z1)
+

1

2(1 + z2)
, (3)

where d ≤ 1 for any z1, z2 ≥ 0. The relationship between the degree of product substitutability and
firm specific advertising investment described by (3) is made up to capture the effects of persuasive
advertising on competition. In particular, the higher advertising investment, the lower consumers’
ability to recognise product characteristics and the higher firm’s market power.

Firms operate with the same marginal cost w > 0, so that firm i’s cost function is ci = wqi+gzi
(i = 1, 2), where g > 0 is the cost per unit of advertising. Therefore, there exist constant marginal
returns to labour and the production function is qi = Li, where Li is the labour force employed.
For firm i, therefore, profits (Πi) are given by:

Πi = (pi −w)qi − gzi. (4)

We note that (4) includes - through the expression of prices pi given by (2) - the decision
variables of the rival (firm j). Therefore, expectations of firm i on the behaviour of the rival enter
the profit maximisation programme. By considering the maximisation of Πi with respect to zi and
making use of (2) and (3), we get:

max
{zi}

Πi = max
{zi}

{(max [0, a− qi − d(z1, z2)qj]−w)qi − gzi} , (5)
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where Πi is a concave with respect to zi. From the maximisation problem (5) we find the following
expression for the optimal value of z:

zopti := max



0,
�
qiqej
2g

− 1



 . (6)

By substituting out zopti in Πi and assuming some restrictions on parameters in order to guar-
antee the concavity of the maximisation problem with respect to qi, we get the optimal allocation
(qi, zi) for firm i (see Colangelo, 1992), through which it is possible to define the Nash equilibrium
of the model.

In the static game developed in this section and the Appendix, we have assumed that each firm
knows the market demand and then proceeds with the calculation of the reaction function and
the optimum in a strategic context. In the next section we will study the dynamics of a Cournot
model with advertising by assuming discrete time and an adjustment mechanism of quantities based
on a behavioural rule introduced when there is no perfect knowledge of the market (Bischi et al.,
1998). To this purpose, we relax the assumption of knowledge of the market demand and use an
adjustment mechanism based on marginal profits (Bischi and Naimzada, 2000).

3 Dynamics

At time t = 0 both firms enter the market and choose the couple (qi, zi). At this stage, they do not
have information about the behaviour of the rival. We now introduce the following assumption:

Assumption A.1. qi(0) + qj(0) < a.

Assumption A.1 guarantees that prices are strictly positive at t = 0. From now on, we avoid
to report the time subscript when this does not cause ambiguity. Consider now a dynamic setting
where time is discrete and indexed by t = 0, 1, 2, ... At every t ≥ 1 both firms decide the quantity
that should be produced for time t+ 1 by assuming that they have information about advertising
investments. With regard to the rule used by firm i at time t ≥ 1 to determine qi in the subsequent
period, we assume - by following Bischi et al. (1998) and Fanti et al. (2012, 2013) - that it has
limited information (no knowledge on rival’s decision variables) and chooses production for time
t + 1 through an adjustment mechanism based on its own marginal profit (∂Πi/∂qi) at time t.
In particular, once the choices of the rival about couple (qj , zj) have been observed, firm i uses
the optimal rule (6) to compute its own profits and marginal profits by considering both rival’s
advertising investment and rival’s production as given. We note that expression (6) is symmetric
for both firms and zi is independent of zj for any t ≥ 1. Then, either both firms will decide to make
the strictly positive advertising investment

�
q1q2
2g − 1 or they do not invest in advertising.

From a mathematical point of view this implies that firm i’s profits can be written as follows:

Π̃i = Πi(qi, qj , z
opt
i (qi, qj), zj) =

	
Πi(qi, qj ,

�
qiqj
2g − 1, zj), if qi ≥ 2g

qj

Πi(qi, qj , 0, 0), if qi <
2g
qj

. (7)
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From straightforward calculations it is possible to verify that Π̃i is a continuous and differentiable
function with respect to qi for any qi, qj ≥ 0. Therefore, the marginal profit is:

∂Π̃i
∂qi

=

	
MPADVi := a−w − 2qi −

�
2gqj
qi

, if qi ≥ 2g
qj

MPNOADVi := a−w − 2qi − qj , if qi <
2g
qj

, (8)

where we have substituted (6) in rival’s advertising expenditure zj after having computed the
derivative, and MPADVi and MPNOADVi represent marginal profits under positive advertising
investments and no advertising investments, respectively. Given firm i’s own optimal advertising
expenditure and given both the advertising expenditure and production of firm j, firm i chooses
the quantity that should be produced for time t+1 according to the rule introduced by Bischi and
Naimzada (2000) when players have limited information. Therefore, the behaviour of production
of firm i from time t to time t+ 1 is described by the following equation:

q′i = qi + αqi
∂Π̃i
∂qi

, (9)

where ′ is the unit-time advancement operator, α > 0 and ∂Π̃i/∂qi is determined by (8) depending
on whether qi ≥ 2g

qj
or qi <

2g
qj
.

According to Fanti et al. (2013), where non-negative constraints on quantity are introduced, we
have the following map:

T :





q′1 = max


0, q1 + αq1

∂Π̃1
∂q1

�

q′2 = max


0, q2 + αq2

∂Π̃2
∂q2

� . (10)

Let Mi (qi, qj) := qi + αqiMPADVi and Ni (qi, qj) := qi + αqiMPNOADVi . Then, by following Radi
et al. (2014) map T is given by the following smooth maps defined in different subregions of the
phase plane (see Figure 1, panel b):

TΩ1 :

�
q′1 =M1 (q1, q2)
q′2 =M2 (q1, q2)

if (q1, q2) ∈ Ω1, (11)

where Ω1 :=


(q1, q2) ∈ R2+ : q1q2 ≥ 2g, M1 (q1, q2) ≥ 0,M2 (q1, q2) ≥ 0

�
.

TΩ2 :

�
q′1 = N1 (q1, q2)
q′2 = N2 (q1, q2)

if (q1, q2) ∈ Ω2, (12)

where Ω2 :=


(q1, q2) ∈ R2+ : q1q2 < 2g, N1 (q1, q2) ≥ 0, N2 (q1, q2) ≥ 0

�
.

TΩ3 :

�
q′1 =M1 (q1, q2)

q′2 = 0
if (q1, q2) ∈ Ω3, (13)

where Ω3 :=


(q1, q2) ∈ R2+ : q1q2 ≥ 2g, M1 (q1, q2) ≥ 0,M2 (q1, q2) < 0

�
.

TΩ4 :

�
q′1 = 0

q′2 =M2 (q1, q2)
if (q1, q2) ∈ Ω4, (14)
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where Ω4 :=


(q1, q2) ∈ R2+ : q1q2 ≥ 2g, M1 (q1, q2) < 0,M2 (q1, q2) ≥ 0

�
.

TΩ5 :

�
q′1 = N1 (q1, q2)

q′2 = 0
if (q1, q2) ∈ Ω5, (15)

where Ω5 :=


(q1, q2) ∈ R2+ : q1q2 < 2g, N1 (q1, q2) ≥ 0, N2 (q1, q2) < 0

�
.

TΩ6 :

�
q′1 = 0

q′2 = N2 (q1, q2)
if (q1, q2) ∈ Ω6, (16)

where Ω6 :=


(q1, q2) ∈ R2+ : q1q2 < 2g, N1 (q1, q2) < 0, N2 (q1, q2) ≥ 0

�
.

TΩ7 :

�
q′1 = 0
q′2 = 0

if (q1, q2) ∈ Ω7, (17)

where

Ω7 : =


(q1, q2) ∈ R2+ : q1q2 ≥ 2g, M1 (q1, q2) < 0,M2 (q1, q2) < 0

�
∪

∪


(q1, q2) ∈ R2+ : q1q2 < 2g, N1 (q1, q2) < 0,N2 (q1, q2) < 0

�
.

We note that for initial conditions that belong to sets Ω3 and Ω5 (resp. Ω4 and Ω6), dynamics
definitely lie on q2 (resp. q1) semi-axis, that results to be forward invariant under T . This implies
that if a trajectory ends up on one of the two axis, the subsequent iterates will lie on the same axis
as well. Initial conditions that start from Ω7 generate trajectories mapped in (0, 0) in one iteration.
In addition, depending on the value of g, some of sets Ωi (i = 1, ..., 7) may be empty. Specifically,

if g > a2

8 we get Ω2 = Ω5 = Ω6 = ∅ (see Figure 1, panel a). More complicated is the behaviour
of trajectories that start from initial conditions that belong to Ω1 ∪Ω2. In fact, they can converge
towards attractors that belong to Ω1 ∪ Ω2 or they can end up on non-negative semiaxes. In order
to clarify this last result it is crucial the analysis through critical curves that will be developed
subsequently.
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Figure 1. (a) Sets Ω1, Ω3, Ω4 and Ω7 lie at north-east with respect to curve q1q2 = 2g. For
sufficiently high values of g, that is g > a2/8 (the price of advertising is relatively high), curve
q1q2 = 2g (dashed line) completely lies outside of triangle A and then maps defined at least by one
Mi are not involved in the dynamics of the model. In this case the dynamics are described only by
maps T2, T5 and T6. The solid line describes case g < a2/8 (the price of advertising is relatively
low) for which sets Ωi are non-empty. The dotted line (g = a2/8) represents the separating element
between the two cases. (b) Case g < a2/8. Regions Ωi (i = 1, ..., 7) of the phase plane are evidenced
by different colors. The dark-blue region is Ω1, the light-blue region is Ω2, the aqua green region is
Ω3, the green region is Ω4, the orange region is Ω5, the red region is Ω6 and the blood-red region
is Ω7.

With regard to the dynamic analysis at time t = 0 (the time at which both firms enter the
market), it is assumed that each firm does not know the quantity produced by the rival and then
it cannot decide the optimal value of z through equation (6). Therefore, at t = 0 firm i has
to simultaneously choose both the quantity qi and advertising investment zi. According to the
partition of the phase plane and depending on expectations that firm i has on the behaviour of firm
j, at time t = 1 the system will be in one of the region Ωi. Because of the dimension of the problem,
we study the behaviour of the system (given the initial conditions) on the projection of the space
(q1(0), q2(0), z1(0), z2(0)) on plane (q1(0), q2(0)), that is by fixing initial conditions on advertising
investment zi and zj we characterise the initial conditions on quantities qi and qj such that the
system will be in one of sets Ωi. Specifically, given the couple of initial conditions (z1(0), z2(0)),
then through the use of





q1(1) =


0, q1(0) + αq1(0)

�
a−w − 2q1(0)− 1

2

�
1

1+z1(0)
+ 1

1+z2(0)

�
q2(0)
��

q2(1) =


0, q2(0) + αq2(0)

�
a−w − 2q2(0)− 1

2

�
1

1+z1(0)
+ 1

1+z2(0)

�
q1(0)
�� , (18)

it is possible to build on the subset of initial conditions (q1(0), q2(0)) (eventually empty) that verifies
Assumption A.1 and guarantees that iterate (q1(1), q2(1)) belongs to Ωi, where the expression in
(18) defines the iterate at time t = 0 of the map. In addition, we note that z1(0) and z2(0) can be
positive (both firms invest in advertising at time t = 0), zero (both firms do not invest in advertising
at time t = 0) or, alternatively, z1(0) = 0 and z2(0) > 0 or viceversa. Figure 2 panel (a) (resp.
panel (b)) shows in the (q1(0), q2(0)) plane the region Ωi in which the system will be located at
time t = 1 if each firm expects that the rival will not invest (resp. will invest) in advertising. In
other words, in Figures 2.a and 2.b the preimages of order 1 through T of regions Ωi are depicted.
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Figure 2. (a) At time t = 0, each firm chooses quantity and advertising investment by expecting
no advertising investments by the rival. (b) At time t = 0, each firm chooses quantity and advertising
investment by expecting positive advertising investments by the rival. Different colours evidence
different behaviours of map T at t = 0. Colours in Figures 2.a and 2.b correspond to colours in
Figure 1.b. Specifically, an initial condition (q1(0), q2(0)) that starts from the dark-blue region in
both figures is mapped into Ω1 at time t = 1 (a similar behaviour holds for other colours).

Map T has the non-interior fixed points

E0 = (0, 0), E1 =

�
a−w

2
, 0

�
, E2 =

�
0,
a−w

2

�
, (19)

that are fixed points also for maps TΩ1 , TΩ5 and TΩ6 . We now state the following proposition.

Proposition 1 Let a−w > 0. Then, map T admits a unique interior fixed point E∗, where

E∗ =

	 �
a−w−√2g

2 , a−w−
√
2g

2

�
, if g ≤ (a−w)2

18�
a−w
3 , a−w3

�
, if g > (a−w)2

18

. (20)

Proof. First, we note that an interior fixed point of T is a fixed point of map TΩ1 or map TΩ2 . If
the fixed point belongs to Ω2, its coordinates are solution in Ω2 of

�
MPNOADV1 = 0
MPNOADV2 = 0

. (21)

From (21), we find
�
a−w
3 , a−w3

�
which is feasible if g > (a−w)2

18 . If the fixed point belongs to Ω1, we
have to solve �

MPADV1 = 0
MPADV2 = 0

, (22)
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which is equivalent to �
MPADV1 = 0
q2
q1
= a−w−2q1

a−w−2q2
. (23)

From (23) we have the following couple of solutions (and their symmetric counterparts)

�
a−w

2
, 0

�
,

�
a−w

4
−
√
2

8

�
2(a−w)2 − 16g, a−w

4
+

√
2

8

�
2(a−w)2 − 16g

�
, (24)

that do not belong to Ω1, and
�
a−w−√2g

2 , a−w−
√
2g

2

�
which is feasible if g ≤ min



(a−w)2
18 , (a−w)

2

2

�
=

(a−w)2
18 .

We now have the following remark.

Remark 2 Fixed point E∗ coincides with coordinates (q∗1 , q
∗
2) of the Nash equilibrium (q∗1 , z

∗
1 , q

∗
2 , z

∗
2)

for the static game, where z∗i = zopti (q∗i ). As a consequence, if g ≤ (a−w)2
18 (resp. g > (a−w)2

18 ) firms
invest (resp., do not invest) in advertising at stationary state E∗.

In order to study the local properties of the model around the stationary equilibria, we have to
compute the Jacobian matrix. Specifically, the generic Jacobian matrix for map T is the following:

J(q1, q2) =



−4αq1 + 1+ α(a−w)− α

�
gq2
2q1

−α
�

gq1
2q2

−α
�

gq2
2q1

−4αq2 + 1 + α(a−w)− α
�

gq1
2q2


 , (25)

if (q1, q2) ∈ int(Ω1), while we have that

J(q1, q2) =

�
−4αq1 + 1 + α(a−w)− αq2 −αq1

−αq2 −4αq2 + 1 + α(a−w)− αq1

�
, (26)

if (q1, q2) ∈ int(Ω2).
Then, we can easily find that E0 is unstable, and E1 and E2 are saddles. In order to characterise

the dynamic properties of E∗, a useful starting point is the analysis of the behaviour of the map
restricted on the diagonal. In particular, we will concentrate on how a change in parameter g (that
represents the price per unit of advertising investment) affects the dynamics of the model. Map
T is symmetric, i.e. it does not change if variables q1 and q2 are swapped, that is T ◦ S = S ◦ T
, where S : (q1, q2) → (q2, q1). This implies that the diagonal ∆ = {(q1, q2) : q1 = q2} is an
invariant manifold, i.e. by starting from q1(0) = q2(0) the dynamics lie on ∆ for every t. In this
case, the behaviour of the dynamic system is characterised by the restriction of map T on ∆, and
synchronised trajectories (i.e., q1(t) = q2(t) for every t) are governed by T∆ : ∆→ ∆, where

T∆ : q
′ := f(q) =

�
f1(q) := q + αq

�
a−w − 2q −√2g

�
if q ≥ √2g

f2(q) := q + αq (a−w − 3q) if q <
√
2g

, (27)

is the map restricted on the diagonal (by ignoring the non-negativity constraints).
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We note that each piece in (27) resembles the logistic map. More specifically, the former (resp.
latter) piece is conjugated with the logistic map y′ = µy(1 − y) by the linear transformation

q =
1+α(a−w−

√
2g)

2α y with µ = 1 + α
�
a−w −√2g

�
(resp. q = 1+α(a−w)

3α y with µ = 1 + α (a−w)).
In particular, if

g >
[1 + α (a−w)]

2

18α2
:= g̃, (28)

and
α (a−w) < 3, (29)

bounded dynamics are completely defined by the second equation in (27). We note that the dynamic
properties of map (27) are different than the traditional results of the logistic map because of the
non-differentiability of T∆ at q =

√
2g. Specifically, multiple attractors with non-connected basins

can exist. In addition, the unitary cost of advertising (g) enters the definition of both equations
in (27) and the definition of the threshold of the map. Thus, a change in g causes several changes
that may be difficult to be classified. In contrast, if g < g̃ the map restricted on the diagonal
is properly smooth piecewise since both branches of map T∆ are involved. In this case, the map
continues to be unimodal. In fact, if f ′2

�√
2g
�
= 1 + α

�
a−w − 6√2g

�
< 0 then f ′1 (q) < 0 for

any q >
√
2g. Let qmax :=

1+α(a−w)
6α be a threshold value of the quantity produced by both firms.

Then, we can have three different cases: 1) if g > 1
2

�
1+α(a−w)

6α

�2
the maximum point belongs to f2;

2) if g < 1
2

�
1+α(a−w)

6α

�2
the maximum point belongs to f1; 3) if g =

1
2

�
1+α(a−w)

6α

�2
the maximum

point corresponds to the point in which the map is not differentiable.
We recall that the maximum point and the point at which the map is not differentiable play

an important role in the definition of the absorbing areas. We now wonder whether by starting
from an initial condition that does not lie on the diagonal, the dynamics converge towards it or,
alternatively the dynamics do not synchronise, i.e. we can have a coordination failure. Then, by
considering the restriction of map T on a generic point on∆, we have the following Jacobian matrix:

J(q, q) =

�
l(q) m(q)
m(q) l(q)

�
, (30)

which is differently defined depending on whether (q1, q2) ∈ int(Ω1) or (q1, q2) ∈ int(Ω2). In
particular,

l(q) =

�
−4αq + 1 + α(a−w)− α

�
g
2 if q >

√
2g

−4αq + 1 + α(a−w)− αq if q <
√
2g

, (31)

and

m(q) =

�
−α
�

g
2 if q >

√
2g

−αq if q <
√
2g

. (32)

The eigenvalues associated to a generic point on ∆ are the following:

λ|| = l(q) +m(q) =

�
−4αq + 1 + α(a−w)− 2α

�
g
2 if q >

√
2g

−4αq + 1 + α(a− w)− 2αq if q <
√
2g

, (33)

with eigenvector (1, 1) and

λ⊥ = l(q)−m(q) =

�
−4αq + 1 + α(a−w) if q >

√
2g

−4αq + 1 + α(a−w) if q <
√
2g

, (34)
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with eigenvector (1,−1). The eigenvalue λ|| is related to the invariant manifold ∆ and coincides
with the multiplier of the restriction of the map on ∆. The eigenvector associated with the other
eigenvalue is always orthogonal to ∆ regardless of q.

Through the study of the eigenvalues it is possible to characterise the bifurcations that occur
on the diagonal.

Proposition 3 The fixed point E∗ is locally asymptotically stable if: 1) g < 2
9α2 and 0 < a−w <

2
α +

√
2g; 2) g > 2

9α2 and a− w ∈ V , where V =
�
0, 2α
�
∪
�
3
√
2g, 2α +

√
2g
�
. The fixed point E∗

undergoes a supercritical flip bifurcation when: a) g < 2
9α2 and a− w = 2

α +
√
2g; b) g > 2

9α2 and
a − w = 2

α ; c) g > 2
9α2 and a − w = 2

α +
√
2g. The fixed point E∗ undergoes a border collision

bifurcation when g > 2
9α2 and a−w = 3

√
2g.

Proof. If E∗ ∈ int(Ω1), that is g < 1
18 (a−w)2, the Jacobian matrix is the following:

J(E∗) =

�
1− α
�
a−w − 3

2

√
2g
�

−1
2α
√
2g

−1
2α
√
2g 1− α

�
a−w − 3

2

√
2g
�
�
, (35)

In contrast, if E∗ ∈ int(Ω2), that is g > 1
18 (a−w)

2
, we get:

J(E∗) =

�
1− 2

3α (a−w) −1
3α(a−w)

−1
3α(a−w) 1− 2

3α (a−w)

�
. (36)

By combining the conditions for the existence of the fixed points and the stability conditions given
by the eigenvalues of Jacobian matrices (35) and (36), we get the result.

Remark 4 We note that if g > 1
2α2 the second set in V is empty.

The results of Proposition 3 can be generalised when an attracting cycle for T∆ on ∆ does exist.
We now recall that for a k-cycle {(q1, q1), ..., (qm, qm)} of T embedded into the invariant line ∆ and
corresponding to cycle {q1, ..., qm} of f , multipliers are given by

λk|| =
k�

i=1

(l(qi) +m(qi)), (37)

with eigenvector (1, 1) and

λk⊥ =
k�

i=1

(l(qi)−m(qi)), (38)

with eigenvector (1,−1). Stability is ensured by the condition
���λk||
��� < 1. We recall that an attractor

X of f is an asymptotically stable attractor of T if and only if all trajectories that belong to X are
transversely attracting. In particular, if X is a chaotic attractor a stability condition can be given
in terms of the transverse Lyapunov exponent
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Λ⊥ = lim
n→∞

1

n

n 

i=1

ln |λ⊥(q(i))| , (39)

where q(0) ∈ A and q(i) is the trajectory generated by f . The following classical definition of
attractiveness can be established

Definition 5 X is an asymptotically stable attractor (or topological attractor) if it is Lyapunov
stable, i.e. for every neighbourhood U of X there exists a neighbourhood V of X such that Tn(V ) ⊂
U for every n ≥ 0 and the basin of attraction B(X) contains a neighbourhood of X.

According to the initial conditions, it is possible to define a spectrum of Lyapunov exponents

Λmin⊥ < ... < Λnat⊥ < ...Λmax⊥ ,

where Λnat⊥ is the Lyapunov exponent evaluated on a generic trajectory taken in the chaotic attrac-
tor. If a set is a Lyapunov attractor then Λmax⊥ < 0. If Λmax⊥ > 0 and Λnat⊥ < 0, the set is no longer
Lyapunov stable but it attracts a large set (the basin of attraction has positive Lebesgue measure)
of points in the two-dimensional phase space. In this case, X is a Milnor attractor.

Definition 6 A closed invariant set X is said to be a weak attractor in Milnor sense if its stable
set B(X) has positive Lebesgue measure.

Finally, if Λnat⊥ > 0 then X is a chaotic saddle and trajectories that start from initial conditions
close to the diagonal can either be captured by an attractor that envelops the saddle or captured
by other attractors.

In order to stress the interplay between the behaviours of the system on the diagonal and those
that involve the whole phase plane, in what follows we will investigate both phenomena at the same
time.

4 Global analysis and numerical simulations

This section is concerned with the study of some local and global phenomena related to map T . In
particular, we will deepen the analysis of: 1) the possible (loss of) synchronisation in the dynamics
of the model and coexistence of attractors, 2) the existence of bifurcations related to the non-
differentiability of the map, and 3) the evolution of the basins of attraction. In order to preserve
the non-negativity of prices, in the following numerical experiments we will consider parameter sets
for which Ω1 ∪Ω2 are subset of A.

By using arguments similar to those in Bischi et al. (1998) and Fanti et al. (2012), the following
proposition on the boundaries of basins of attraction can be stated.
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Proposition 7 Let S be the union of attractors that lie on non-negative semiaxes. If 0 < α(1−w) <
3 then

∂B(S) =
�
∪+∞n=0T−n(ω1)

�
∪
�
∪+∞n=0T−n(ω2)

�
, (40)

where ω1 (resp. ω2) is the segment line whose coordinates are (0, 0) and (1+α(1−w)2α , 0) (resp. (0, 0)

and (0, 1+α(1−w)2α )).

Proof. See Bischi et al. (1998).

This finding allows us to analytically define the borders of region ∪7i=3Ωi. In particular, it is
possible to identify the set of initial conditions such that trajectories definitely lie on the non-
negative semiaxes, that is the initial conditions whose trajectories imply that at least one of the
two firms exits the market. We note that on the non-negative semiaxes only the definitions of TΩ2 ,
TΩ5 and TΩ6 hold. From an economic point of view, this implies that when one of the two firms
exits the market the other one does not invest in advertising. In this case, the dynamics of variable
q−i (that is, the quantity produced by the firm that remains on the market) is described by the
equation

q′−i = max{0, q−i + αq−i(a−w − 2q−i)}, (41)

which is conjugated to the logistic map (see Bischi et al., 1998 for details) and can have either
dynamics convergent to (a−w)/2 (the non null coordinate of fixed point E−i) or cyclical or chaotic
dynamics.

In what follows, we perform the global analysis of map T through the use of some numerical
experiments reported in Cases 1-3.

Case 1. The parameter set is the following: α = 0.64, a = 4.6, w = 0.4 and g = 0.8. First,
we note that E∗ ∈ Ω1 is the unique attractor (with positive coordinates) for points that start on
set int(Ω1 ∪ Ω2). With this parameter values, the Nash equilibrium implies positive advertising
investments for both firms (see Figure 3.a that describes the dynamics on the diagonal). However,
there also exist attractors E0, E1 and E2 that respectively capture the dynamics that start from
initial conditions that lie on the sets represented by the red, light-grey and yellow coloured regions
in Figure 3.b. The bound of the basin has been obtained with techniques similar to those used by
Bischi et al. (1998). In particular, in this case it can be shown that the lines (preimages) that mark
the borders between Ω1 ∪Ω2 and ∪7i=3Ωi also define the basin of attraction of E∗.
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Figure 3. (a) Dynamics associated to map T∆. (b) Basins of attraction of the fixed points of
map T (see the main text for details).

Case 2. Let the parameter set be α = 0.67, a = 4.6, w = 0.4 (this also holds for Case 3) and let g
vary. Figure 4.d shows the evolution of the transverse Lyapunov exponent for g. In particular, when
g = 1.31 we have a chaotic attractor for the map restricted on the diagonal that captures (in the
Milnor sense) all trajectories that start from int(Ω1∪Ω2) (see Figures 4.a and 4.b). This is pointed
out in Figure 4.c that shows a long transient together with some burst away from the diagonal that
eventually lead to synchronisation of trajectories towards it (on-off intermittency). For lower values
of g (1.305) the Lyapunov exponent is positive. Then, we have the loss of synchronisation (Figure
4.e) and the attractor does not lie on the diagonal anymore.

We note that for the different values of g considered in Case 2, it is possible to obtain through
the theory of critical curves 1) the absorbing area in which trajectories are bounded during several
bursts away from the diagonal before the synchronisation (g = 1.31), or 2) the absorbing area
completely fill up by the chaotic attractor after the loss of synchronisation (see Figure 4.f, plotted
for g = 1.305, where the boundaries of the basin of attraction have been obtained through the use
of Proposition 7).

It is important to stress that the synchronisation failure holds in spite of the hypothesis of
homogeneous players (i.e., when firms use the same technology and behavioural rule). Furthermore,
it is interesting to note that when g changes the economy continuously alternates between long time
periods in which both firms do not invest in advertising and long time periods in which they invest
in advertising.
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Figure 4. (a) Chaotic dynamics associated to map T∆. (b) Basins of attraction of the fixed
points of map T (g = 1.31). (c) On-off intermittency (the graph of q1−q2). (d) Lyapunov exponent
versus parameter g. (e) A unique (chaotic) interior attractor captures long-term dynamics that
start from blue-coloured region (g = 1.305). (f) Critical curves when g = 1.305.

Case 3. Other interesting phenomena can be observed when g ∈ (0, 1.1]. For small values of g the
absorbing area for map T∆ is defined by a subset in which only the branch of map f1 is involved.
In particular, chaotic attractors or cycles of various period that capture all the dynamics that start
from Ω1 and Ω2 can exist. This system definitely defines a case in which both firms invest in
advertising in the long term. Specifically, for g = 0.67 a two-period cycle is the unique attractor
of the system (this is shown by P1 and P2 Figure 5, panel a) with respect to which firms invest in
advertising. When g = 0.685 a saddle-node bifurcation creates a four-period cycle whose basin of
attraction is bounded by the stable manifolds of the four-period saddle that coexists with a cycle
of period two on the diagonal (see the bifurcation diagram depicted in Figure 5, panel b and the
phase plane plotted in Figure 5, panel c for g = 0.7, where the four-period cycle is denoted by R1,
R2, R3 and R4). We note that the basin of attraction of the cycle of period four is comprised of
the immediate basin and other regions of the phase plane. This phenomenon is caused by the non
invertibility of the map. For g ∼= 0.725 the four-period attracting cycle undergoes a Neimark-Sacker
bifurcation that creates a four-piece quasi-periodic attractor that initially coexists with the cycle
of period two on the diagonal. For g ∼= 0.738, a period halving bifurcation occurs after which
the two-period cycle on the diagonal becomes a stable fixed point that continues to coexist with
the four-piece quasi-periodic attractor (see Figure 5.d plotted for g = 0.75, where the four-piece
quasi-periodic attractor is denoted by Y1, Y2, Y3 and Y4). When g ∼= 0.763, a non-local bifurcation
occurs around the fixed point on ∆ and an attracting cycle of period two for T is born (defined by
two points belonging to the two different pieces of map T∆), that coexists with the attracting fixed
point on ∆. This is shown in Figure 5.e, plotted for g = 0.769, that represents the map restricted
on the diagonal where it is shown that, according to different initial conditions, trajectories are
captured by two different attractors, and the phase plane reported in Figure 5.f that shows the
coexistence of E∗ with a two-period cycle on the diagonal S1 and S2 and a four-piece quasi-periodic
attractor Y1, Y2, Y3 and Y4 for g = 0.769. When g = 0.7702 a flip bifurcation of the cycle of period
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two (transverse with respect to the diagonal) is just occurred, so that an attracting four-period
cycle outside of the diagonal (W1, W2, W3 and W4) coexists with E∗ and an attracting four-piece
closed invariant curve (this is shown in Figure 5, panel g).

Another interesting phenomenon is obtained when the price per unit of advertising increases
at g = 0.9. In fact, for this parameter set, the basin of attraction becomes complex and a slight
change in the initial conditions determines very different long-term dynamic outcomes (as pointed
out in Figure 5.h), e.g. a continuous shift from positive to zero advertising investments. This is
relevant from an economic point of view, especially from policy perspectives because a slight change
in initial conditions due to advertising investments may determine unexpected long term outcomes.
Specifically, Figure 5.h shows that an attracting fixed point on the diagonal (that lies in a region
of the phase plane where advertising investments are positive) coexists with two distinct attracting
twelve-period cycles (symmetric with respect to two distinct complex basins).
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Figure 5. (a) Case g = 0.67 (phase plane). (b) Bifurcation diagram for g. (c) Case g = 0.7
(phase plane). (d) Case g = 0.75 (phase plane). (e) Case g = 0.769 (dynamics associated to map
T∆). (f) Case g = 0.769 (phase plane). The fixed point E∗ coexists with an attracting two-period
cycle on the diagonal and an attracting four-piece closed invariant curve born through a Neimark-
Sacker bifurcation. (g) Case g = 0.7702 (phase plane). We do not show the dynamics associated to
T∆ in this case as the bifurcation occurs in transverse direction. (h) Case g = 0.9 (phase plane).
Tangled basins of attraction.

5 Conclusions

This paper has studied local and global dynamics of a nonlinear duopoly with quantity setting
firms, limited information and non-cooperative (persuasive) advertising that affects the degree of
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(horizontal) products differentiation. As stressed by Bagwell (2007), advertising represents a rele-
vant instrument for firms to make their own product different for consumers and get a competitive
advantage on the market. In this context, we have found that the long-term behaviour of the econ-
omy is compatible with the existence of attractors such that firms continuously alternates between
a state where there positive advertising investments to a state where there are no advertising in-
vestments, thus resembling the long-term findings of the standard Cournot duopoly (Bischi et al.,
1998) in this last case. The paper has concerned with the study of both local and global behaviours
of a two-dimensional dynamic discrete time system. The global study of the map has allowed us to
highlight some relevant properties such as chaos synchronisation and multistability. We have shown
that the choices of firms to invest or to do not invest in advertising can represent an additional
cause for the non-differentiability of a map, alongside the non-differentiability induced by technol-
ogy or capacity constraints already studied, for instance, by Puu and Norin (2003) and Bischi et
al. (2012).

Though several analyses regarding advertising have exclusively been framed in terms of fully
non-cooperative firms’ interaction, a growing body of studies is focusing on semi-collusion (Fer-
shtman and Gandal, 1994; Brod and Shivakumar, 1999; Simbanegawi, 2009). For example, when
firms compete on multiple dimensions (e.g. quantity or price and advertising), semi-collusion oc-
curs whenever economic agents choose to cooperate along some dimension(s) (advertising) while
competing on another ones (price or quantity). It is important to note that in several countries semi-
collusion on advertising is not illegal and it may be even encouraged or mandatory. An extension
of the present analysis in that direction may be part of a fruitful research agenda.
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bini, Laura Gardini and participants at AMASES 2014 held at Mediterranean University of Reggio
Calabria (Italy), and MDEF 2014 held at University of Urbino (Italy). The authors also acknowl-
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Appendix. The static game and Nash equilibria

Let us consider the static Cournot duopoly game developed in the main text, where firms choose
advertising investments (z) and quantities (q) in the product market. Every player knows the market
demand and is able to modify the degree of product differentiation (d) through adequate investments
in advertising, while also affecting the marginal willingness to pay of consumers. Therefore, player
1 solves the maximisation problem:

P :





max
z1,q1

Π1(q1, z1, q2, z2)

s.t.
z1 ≥ 0
q1 ≥ 0

, (42)

where

Π1(q1, z1, q2, z2) :=

�
a− q1 −

�
1

2 + 2z1
+

1

2 + 2z2

�
q2 −w

�
q1 − gz1, (43)

given the values q2 and z2 that player 1 expects player 2 will play. In order to avoid trivial cases,
let us assume that
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Assumption A.2. a > w.

We note that Π1 is a continuous function with respect to q1 and z1. However, since problem
P is defined on a closed and unbounded set the Weierstrass theorem on the existence of solutions
of the problem cannot directly be applied. We observe, however, that since (z1 = 0, q1 = 0) is a
feasible choice, then if a maximum point does exist the value of the objective function related to it
must be non negative. In addition, it is possible to show that since variables are non negative, the
objective function takes negative values for q1 or z1 sufficiently large. In particular, since

�
a− q1 −

�
1

2 + 2z1
+

1

2 + 2z2

�
q2 −w

�
q1 − gz1 < (a− q1 −w)q1 − gz1, (44)

then for q1 ≥ a−w or z1 ≥ 1
g

�
a−w
2

�2
the function takes strictly negative values.

Therefore, solutions of problem P coincide with solutions of the following problem:

P ′ :





max
z1,q1

Π1(q1, z1, q2, z2)

s.t.
z1 ≥ 0
q1 ≥ 0

q1 ≤ a−w

z1 ≤ 1
g

�
a−w
2

�2

. (45)

The optimisation problem is now defined on a rectangle, i.e. it is defined on a closed and bounded
set so that a solution for P ′ does exist. Since Π1(q1, z1, q2, z2) takes negative values on constraints

q1 = a − w and z1 =
1
g

�
a−w
2

�2
of problem (45) as well as on points (z1 > 0, q1 = 0), its global

maximum point will be located either on an interior point of the feasible region or on a point such
that (z1 = 0, q1 > 0). Since Π1(q1, z1, q2, z2) is not concave with respect to (q1, z1), identifying the
global maximum is not an easy task. Let us now proceed by using the following line of reasoning.
First, we use the property (two-stage optimisation) such that given f : U ×V → R and D ⊆ U ×V
we have:

max
(x,y)∈D

f(x, y) = max
x∈U

max
y∈D(x)

f(x, y), (46)

where D(x) = {y ∈ V : (x, y) ∈ D}. Since the objective function in our problem is concave with
respect to z1, it is possible to easily find the maximum point of Π1 with respect to z1. Then,
the solution for z is a function of q1, expectations on q2 as well as on parameters of the problem.
Specifically, by avoiding to stress the dependency of z1 on parameters we have that:

zopt1 = zopt1 (q1, q2) :=

	 �
q1q2
2g − 1, if q1 ≥ 2g

q2

0, if q1 <
2g
q2

= max

�
0,

"
q1q2
2g

− 1
#
. (47)

In order to find the optimal solution we may consider the problem:

max
q1≥0
$Π1(q1, q2, z2), (48)

where

$Π1(q1, q2, z2) :=
�
a− q1 −

�
1

2 + 2zopt1

+
1

2 + 2z2

�
q2 −w

�
q1 − gzopt1 . (49)
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It can easily be shown that this function is of class C1 (but in general not of class C2) with respect
to q1. Therefore, if the maximum is an interior point then the first derivative evaluated at that
point is null. Since the function is not concave in its domain, this condition is necessary but not
sufficient. One important fact that will be useful later in the discussion is that $Π1 is concave with
respect to q1 in the interval

�
0, 2gq2

�
, that is where zopt1 = 0, while when q1 > 2g/q2 function $Π1:

Case A.1 can be monotonically decreasing;

Case A.2 can admit a local maximum (qmax);

Case A.3 can admit a local minimum (qmin) and a local maximum (qmax) such that qmin < qmax.

When q1 > 2g/q2 the sign of the first derivative can be analysed through the study of the sign
of the concave function

�
(a−w − 2q1)(1 + z2)−

1

2
q2

�√
2−√g

"
q2
q1
(1 + z2). (50)

As a consequence, the first derivative admits at most two changes in sign (negative, positive,
negative) for q1 > 2g/q2. We note that there may exist expectations on the choices of the rival
such that the optimal choice for firm 1 is q1 = 0, so that z1 = 0. In order to rule out this case we
introduce the following assumption:

Assumption A.3.

∂$Π1(q1, q2, z2)
∂q1

�����
q1=0

= a−
�
1

2
+

1

2 + 2z2

�
q2 −w > 0. (51)

From (51) we have that at the optimum q1 > 0 and profits are positive while advertising
investments can be positive or null. The following claims summarise our findings.

Claim 8 If ∂�Π1(q1,q2,z2)
∂q1

���
q1=

2g

q2

> 0, given the concavity of $Π1 in the interval
�
0, 2gq2

�
, $Π1 results

to be monotonically increasing and in
�
0, 2gq2

�
and then a local optimum does not exist in such an

interval. Therefore, the optimum for firm 1 will involve a strictly positive value of z1. The optimum
can easily be found since when q1 > 2g/q2 only one critical point does exist (Case A.2 above).

Claim 9 If ∂�Π1(q1,q2,z2)
∂q1

���
q1=

2g

q2

< 0, a local optimum for the objective function does exist in the

interval
�
0, 2gq2

�
. However, this does not guarantee that it is the global optimum (i.e., the solution

of the optimisation problem). It is also the global optimum if Case A.1 above holds. In contrast,
if Case A.3 holds the global optimum can be identified only numerically at each of the two local
maxima.
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Equilibrium. From the analysis above, it is clear that if Nash equilibria exist will be such that
marginal profits of both firms are simultaneously zero, that is:





∂Π1(q1,z1,q2,z2)
∂q1

= 0
∂Π1(q1,z1,q2,z2)

∂z1
= 0

∂Π2(q2,z2,q1,z1)
∂q2

= 0
∂Π2(q2,z2,q1,z1)

∂z2
= 0

, (52)

or equivalently





∂�Π1(q1,q2,z2)
∂q1

= 0
∂�Π2(q2,q1,z1)

∂q2
= 0

z1 = zopt1 (q1)
z2 = zopt2 (q2)

. (53)

Since the optimal rule for z is the same for both firms, a Nash equilibrium will imply that either
firms will invest the same amount of resources in advertising (positive or zero). Then, we can split
(52) in the following two systems:





a−w − 2q1 −
�

2gq2
q1

= 0

a−w − 2q2 −
�

2gq1
q2 = 0

zopt1 = zopt2 =
�

q1q2
2g − 1

, if q1q2 ≥ 2g, (54)

and 



a−w − 2q1 − q2 = 0
a−w − 2q2 − q1 = 0

zopt1 = zopt2 = 0
, if q1q2 < 2g. (55)

System in (54) has the unique solution

NADV :=

�
a−w −√2g

2
,
a−w

4

"
2

g
− 3
2
,
a−w −√2g

2
,
a−w

4

"
2

g
− 3
2

�
, (56)

which is feasible if and only if g ≤ (a−w)2
18 . In contrast, system in (55) has the unique solution:

NNOADV :=

�
a−w

3
, 0,

a−w

3
, 0

�
, (57)

which is feasible if and only if g > (a−w)2
18 .

Theorem 10 If g ≤ (a−w)2
18 then NADV is the Nash equilibrium of the game. If g > (a−w)2

18 then
NNOADV is the Nash equilibrium of the game.

22



Proof. By the study of the Hessian matrix of Π1(q1, z1, q∗, z∗) we have that (q1, z1) = (q∗, z∗) is
still a local maximum, that is firm 1 cannot be better off (improve profits) by shifting q1 and z1
quite slightly, where

q∗ =

	
a−w−√2g

2 , if g ≤ (a−w)2
18

a−w
3 , if g > (a−w)2

18

, (58)

and

z∗ =

	
a−w
4

�
2
g − 3

2 , if g ≤ (a−w)2
18

0, if g > (a−w)2
18

. (59)

In what follows we show that the local maximum is also a global maximum, that is there exist no

alternatives for firms with higher profits than those identified in (56) for g ≤ (a−w)2
18 and (57) for

g > (a−w)2
18 . Let us now consider

$Π1(q1, q∗, z∗), (60)

and verify that q = q∗ results to be the global optimum. The problem is solved by considering two
distinct cases.

a) Case g ≤ (a−w)2
18 (positive advertising investment). If q1 = q∗ (and then z1 = z∗ = zopt1 (q∗, q∗))

is not optimal for player 1 then there should be another maximum q1 = q∗∗ for (60), that is for the
function:

$Π1(q1, q∗, z∗) =
�
a− q1 −

�
1

2
�
1 + zopt1 (q1, q∗)

� + 1

2 (1 + z∗)

�
q∗2 −w

�
q1 − gzopt1 (q1, q

∗). (61)

We note that (61) is of class C1 with zopt1 (q1, q∗) = 0 for q1 < 2g/q∗. From Claim 8, Claim 9 and

the fact that q∗ is a local maximum for $Π1 then q∗∗ cannot belong to [2g/q∗, a−w]. In addition,

since limq1→(2g/q∗)−
∂�Π1(q1,q

∗,z∗)
∂q1

> 0 we have also that q∗∗ cannot belong to [0, 2g/q∗). Therefore,

q∗ is the optimal choice for firm 1 and given the symmetry of players quadruple (q∗, z∗, q∗, z∗) is a
Nash equilibrium.

b) Case g > (a−w)2
18 (no advertising investment). Since a maximum point does exist in the interval

[0, 2g/q∗),

lim
q1→(2g/q∗)+

∂$Π1(q1, q∗, z∗)
∂q1

< 0, (62)

and

sgn

	
∂$Π1(q1, q∗, z∗)

∂q1

%
= sgn


5(a−w)

√
q1 − 12q1

√
q1 −
�
6g (a−w)

�
, (63)

it can easily be concluded that ∂�Π1(q1,q
∗,z∗)

∂q1
< 0 for any q1 ∈ [2g/q∗, a − w]. Then, given the

symmetry of players it follows that quadruple (q∗, 0, q∗, 0) is a Nash equilibrium.
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