This Is the author's version of an article that has been published In the Proc. of 2014 Euro Mec
Telco Conference (EMTC) . Changes were made to this version by the publisher prior to
publication. The final version of record is available at

http://dx.doi.org/10.1109/EMTC.2014.6996630

Web-enabled processing of smart things resources
for WoT applications

Dino Giuli
dept. of Information Engineering
University of Florence
Florence, Italy 50139
Email: dino.giuli@unifi.it

Stefano Turchi
dept. of Information Engineering
University of Florence
Florence, Italy 50139
Email: stefano.turchi@unifi.it

Federica Paganelli
National Interuniversity Consortium
for Telecommunications
University of Florence
Florence, Italy 50139
Email: federica.paganelli@unifi.it

Abstract—The Web of Things is an active research field which
aims at promoting Web standards and technologies adoption for
handling smart things digital representations. In this context,
many studies acknowledge that REST paradigm plays a decisive
role, and this has prompted the emergence of systems for Web
representation and management of real-world objects. However,
objects exposure is only a first step. In fact, it is very likely that
a client that exploits these representations to retrieve data from
objects, also needs to process them. Typically, this processing is
performed by an application which, in addition, has the burden
of results exposure. In a data reuse perspective, these results are
valuable: will they be re-exposed? If so, will they be exposed in a
way enabling easy reuse? In this paper we present a graph model
for RESTful publishing of Web resources in a WoT scenario and
its implementation through the InterDataNet middleware. This
graph model supports the definition of scriptable vertexes for
processing other resources information. In this way, the paradigm
is subverted: there is no need to set up an application to process
smart objects information since the processing is externalized in a
vertex of the resource model. Consequently, the RESTful exposure
of results is utterly borne by the middleware. We also introduce
an extension of the model to support event-driven capabilities.

Keywords—web of things, internet of things, smart city, web,
Representational State Transfer, web services, sensors, smart things.

I. INTRODUCTION

Thanks to the dramatic reduction of technology costs,
common use devices are getting increasingly smarter and more
connected. This trend motivates the Internet of Things (IoT)
concept that is a transformation of the Internet from a network
of computers to a network of heterogeneous devices [1]. Sim-
ilarly to what happened to computer networks, an application
oriented drift is taking hold: the research community is starting
to think about how existing technologies and standards includ-
ing HTTP, URIs, etc. could be used to expose these smart
objects on the Web, paving the way towards the Web of Things
(WoT) vision. The WoT is deemed to simplify the access to
smart things and foster the conception of novel, value added
applications relying on the combination of conventional Web
resources with those representing objects from the physical
world (smartphones, appliances, street lighting, etc.) [2]. This
has the big advantage of allowing the integration of smart
things with the impressive amount of information resources
and services already available on the Web while exploiting
established technologies and best practices. In this context,

the Representational State Transfer (REST) architectural style
[3] is considered a reference paradigm for bringing sensors,
and more generally smart things, into the Web [4]-[6]. Indeed,
REST style defines a set of principles for designing distributed
hypermedia applications by fulfilling scalability, simplicity and
loosely-coupling requirements.

Unfortunately, although REST is considered much easier
to use and suited for Web mashups than other paradigms
(e.g., WS-#*) [6], [7], most services claimed to be RESTful
are not designed so diligently and neglect to abide by its
principles [8]. Indeed, we face a systematic and widespread
misunderstanding of REST basics [9] which complicates the
road towards the effective realization of the WoT. Nevertheless,
RESTful Web exposure of physical objects is just a first step.
Objects are exposed to make their representations accessible
to clients which, in all probability, are willing to do something
with them. For instance, one could be interested in estimating
the temperature in a location from some sensors displaced in
an area, or rating different city zones depending on parking
availability. Both use cases have as a prerequisite the expo-
sure of smart objects, but the next step is data processing.
Typically, this is performed by an ad hoc application, but this
solution has some drawbacks. First, implementing a dedicated
application is costly and second, if computation results can
be published, it is highly desirable they are exposed following
the aforementioned REST principles. And this delicate, yet non
domain-specific operation is responsibility of the application.

In this work we present an approach for enabling the
processing of Web resources and subsequent results exposure
by a scriptable vertex, called Activity Node, defined for a
RESTHful, graph-based, information model. We also present an
extension of the same information model for enabling event-
driven capabilities. The application context is the WoT, but
the model is general and Web resources are not limited to
smart objects representations. This graph-based information
model is part of InterDataNet [10]-[12], a framework for
handling graphs of individually addressable information units
with navigation, query, and composition support.

II. RELATED WORK

In this section we briefly introduce the principles of REST
architectural style and we analyze state of the art solutions
about middleware for the Web of Things.

paganelli
Font monospazio
 This is the author's version of an article that has been published in the Proc. of 2014 Euro Med Telco Conference (EMTC) . Changes were made to this version by the publisher prior to publication. The final version of record is available at
http://dx.doi.org/10.1109/EMTC.2014.6996630

A. REpresentational State Transfer

REST was proposed by R. Fielding [13] as an architectural
style for building large-scale distributed hypermedia systems.
By the REST vision, objects handled by client-server applica-
tion logic are modeled as resources. Key principles are:

1) URIs as resource identifiers. URIS are used by
servers to expose resources. Since URIs belong to
a global addressing space, resources identified with
URIs have a global scope;

2) Uniform interface. The interaction with the resource
is fully expressed with four primitives, i.e., create,
read, update and delete; These operations can be
mapped onto HTTP verbs as follows: GET reads
the resource state; PUT updates the resource state;
DELETE deletes a resource; POST extends a re-
source by creating a child resource;

3) Self-descriptive messages. Each message contains the
information required for its management;

4) Stateless interactions. Each request must contain the
sufficient information for fully understanding it, re-
gardless of any previous request;

5) Hypermedia As the Engine Of Application State (HA-
TEOAS). In a hypermedia system participants transfer
resource representations containing links which are
used by clients to progress the interaction. [14].

Several studies indicate REST as an appropriate architec-
tural pattern for Web of Things applications [4], [6], [15].
Guinard et al. [6] present a study based on both qualitative
feedback and quantitative results from 69 developers who were
asked to write IoT applications adopting REST and WS-*.
Authors report that “participants almost unanimously found
RESTful Web services easier to learn, more intuitive and more
suitable for programming IoT applications than WS-*. The
main advantages of REST are intuitiveness, flexibility, and the
fact that it is more lightweight”. In addition, a considerable
number of volunteers agreed that REST was more suited for
Web applications requiring to integrate Web contents.

B. Middleware for the Web of Things

The Web of Things is an active research area that, within
the broader scope of the Internet of Things (IoT), focuses on
the specific challenge of making smart things accessible and
interoperable through open Web standards.

Guinard et al. provide a pioneering work contribution [16]
by defining a set of RESTful services that expose sensor nodes
as Web resources and link them together, hierarchically. In a
later work, this approach is used in the AutoWoT project [17],
a toolkit for the Web integration of smart devices that leverages
i) a hierarchical resource model and ii) a tool for building
Web servers that expose these devices. Upon Web resource
modification, AutoWoT can semi-automatically regenerate the
server logic. Our work shows some similarities with AutoWoT,
such as the adoption of a general model and the Web exposure
of smart devices. However, significant differences exist. First,
our model defines two types of structural relations among Web
resources (i.e., aggregation and reference), while the AutoWoT
model relies only on a hierarchical one. We argue that a mere
hierarchical relation is not fully compliant with the REST
hypermedia constraint (i.e. reference links among resources

drive the application state evolution and shall be advertised by
the server at each interaction step). Second, the middleware
can handle every type of resource that is compliant with our
modeling primitives. In addition, unlike AutoWoT, our model
offers both a scriptable Node for exposing processing results
based on other Nodes contents, and a Node for managing
event-driven activities (see section III).

Significant efforts are ongoing to develop a Semantic
Sensor Web [18] and integrate it with Linked Open Data.
SemSense [19] is a system that collects data from physi-
cal sensors and publishes them on the Web using semantic
annotations. SPITFIRE [20] is an infrastructure that offers
semi-automatic generation of semantic sensor descriptions as
well as efficient search based on current sensors states. As
discussed in section III-B, our model defines how information
can be accessed and navigated, and does not aim at providing
unambiguous specifications of concepts. However, we are
aware that the use of semantic-based technologies can enable
reasoning, efficient search, discovery and dynamic composition
capabilities. To this purpose, future work will be devoted to
build adapter components capable of interacting with existing
semantic sensor Web implementations [20].

Finally, it is worth to mention the CityScripts experiment
[21] carried out within the SmartSantander EU Project [22].
CityScripts is a Web application that offers the access to a
personal workspace where users can compose public data from
city sensors with public online data sources and personal data
from social networks. Through the application palette, a user
can create simple scripts defining basic workflows to connect
available resources (for instance, an output of the sensor is
passed as input to a social network service).

III. A RESOURCE MODEL FOR THE WEB OF THINGS

In this section we briefly present the InterDatNet informa-
tion model and middleware (more details are available in pre-
vious works [10]-[12]) and discuss design and implementation
of both resource-processing and event-driven capabilities.

A. The InterDataNet Middleware

InterDataNet Middleware (IDN) is a system conceived for
RESTful Web exposure of information resources represented
as graphs of individually addressable information units. More
graphs can be browsed, queried and interlinked to create a
growing structure of related information. IDN core modules are
Virtual Resource, Information History and Storage Interface.

Virtual Resource exposes REST uniform APIs (IDN-APIs)
used by applications to access and manage smart things Web
representations called Web Resources. IDN-APIs is the only
part of IDN that is visible to applications. As shown in Fig. 1,
different Virtual Resource instances dialog as peers to realize a
distributed graph of interconnected Nodes. Information History
provides optional versioning capabilities. This is useful for
tracking the history of a resource, supporting cooperation by
providing branching and merging, and enforcing provenance
by allowing thorough inspection of previous states. Storage
Interface provides data and metadata persistence capabilities.
IDN-specific Metadata (that determine Nodes relations and
properties) are always persisted on the middleware side, while
data can be native or external. Native data are the ones

! VR: Virtual Resource

! IH: Information History
: SI: Storage Interface

: ADPT: Adapter

~
H | \
SI 1
ADPT

.

.\"—exlemal N b i s E “ R
T v source

Fig. 1. The overall view of the InterDataNet architecture.

created under the middleware domain and are persisted in
own repositories. External data are hosted outside the IDN
boundaries instead, and require the Adapter component to be
handled as native resources by the middleware.

Adapters are components that support the interworking of
IDN with external data-sources (e.g. smart devices). Thus, an
adapter contains custom intermediation logic for exposing data
and services provided by legacy systems and devices according
to our graph-based model. In this way, properties enabled
by the IDN resource model can be applied to information
originating from outer sources. Adapter is made of four com-
ponents: 1) a Notification Manager, which enables a push/pull
notification service and manages the Adapter subscription to a
data-source; 2) a Transformer, which refines data served by the
outer source (e.g., de-multiplexing the information to achieve
a more granular representation); 3) a Web Resource Manager,
which assembles the outer information in a graph structure; 4)
a Translator, which translates requests coming from the IDN-
APIs in a format supported by the data-source.

B. The InterDataNet Information Model

The InterDataNet Information Model (IDN-IM) is the set
of rules that drives the representation of entities in IDN. Web
Resource is the first class entity and is defined as a graph
of uniquely URI-addressed information pieces, called Nodes.
Nodes have a content and a set of properties such as privacy,
licensing, provenance, etc. From Nodes may depart structural
(Aggregation and Reference) and non-structural (Active and
Notification) edges. Within a graph, every subset of vertexes
connected via Aggregation edges is a Web Resource. Differ-
ent Web Resources can be combined to form a richer Web
Resource. More precise definitions are given in the following.

Definition 1. A Node is a tuple N = (C, P), where C
is the set of content elements (i.e., data) and P is the set of
properties (i.e., metadata) that characterize the content. A nice
URI [13] is used as a Node unique identifier.

Definition 2. An Aggregation link [4,,. € L, L being
the set of edges, is a directed edge between two Nodes that

http://.../poi/{id}

e-mail
phone

[1] type

battery level

../location

long.

lat. description ../data_production

[1..n]
——> Aggregation Link ../{physical_quantity}

------- » Reference Link

Fig. 2. Modeling of a Pol Web Resource referring to a number of different
sensors. Nodes are represented as circles while black pins represent content
data.

represents a transitive container-content relation. The conveyed
meaning is: the originating Node aggregates, therefore con-
tains, the destination Node. The Aggregation links are used
for intra-Web Resource relation.

Definition 3. A Reference link [r.; € L is a directed edge
between two Nodes that represents a pointer towards a referred
resource. To better understand the Reference link role, it could
be somehow compared with the HTML href attribute. The
Reference links are used for inter-Web Resource relation.

Definition 4. A Web Resource is a digraph R(N, L agq)
where N is the set of Nodes (with [N| > 1) and Lagg, is
the set of Aggregation links. A Web Resource has a single
source vertex ng € N called Root Node, i.e. a vertex for
which degy,,,.(nr) = 0.

A Web Resource is exposed by a uniform interface sup-
porting CRUD operations mapped onto HTTP verbs: GET
reads the Web Resource state; PUT updates the state of an
existing Web Resource or creates it; DELETE deletes a Web
Resource. In our model, content negotiation is available for
Nodes (the implementation currently supports XML, JSON
and HTML), ETags [23] are used to prevent conflicts during
updates, and HATEOAS [13] is supported by including in
the representation links towards the next related resources,
provided with instructions for the following interaction. Fig. 2
shows the modeling of a Point of Interest (Pol) Web Resource
which refers to a number of different sensors.

C. Enabling in-resource smart things processing

As described so far, the IDN-IM serves the purpose of
representing smart objects as graph of individually addressable
Web resources. For this to be functional, representations need
to be used by clients and often this means being subjected
to a processing. Generally, this is performed by a purposely
implemented application that i) identifies the needed WoT
resources, ii) extracts the proper information from their rep-
resentations, iii) performs a processing with it, and possibly
iv) re-exposes the computation results. This approach has
two main drawbacks: first, implementing and maintaining a
dedicated Web application is costly; second, although it is
convenient that results are made available according to a
RESTful (and hopefully shared) model, this is very unlikely
to happen. In fact, custom applications tend to use ad hoc
strategies and formats, not bothering with broader issues such
as data reuse. To overcome these problems, we propose a

different strategy. We introduce a special type of vertex, called
Activity Node, which is provided with a script. When the Node
is served by the middleware, the script is executed behind
the scenes and the result is included as a Node content. This
procedure is completely transparent to clients which see only a
Node representing the result of the desired computation. Being
a Node, an Activity Node is accessed with the same uniform
REST interface and it can be requested, interlinked and shared
as a Web Resource as usual. Activity Nodes use Active links
to determine computation dependencies. We introduce Activity
Nodes by extending the Definition 1.

Definition 1.1. A Node is a tuple N = (C’, P) where
P has the same meaning given in Definition 1. and C’ =
C + s(ig, ... ,1;) is a set of contents that partially depends by
a script s having j + 1 inputs.

From now on, for the sake of simplicity, we call Activity
Nodes those Nodes for which s(i, ...,%;) # 0.

Definition 5. An Active link [4., € L defines a direction
in a processing flow. An Active link always starts from an
Activity Node and points to a Node (whether it is an Activity
Node or not), defining the dependencies to fulfill before
executing the script s.

To clarify, a typical application of the Activity Node is
presented. A major has invested in smart technologies by
installing different sensors in a city. Let’s assume that data
from these sensors are exposed as Web Resources. In order to
monitor the citizens’ quality of life (QoL), the major hires a
team of researchers who find a strong correlation of wellness
with pollution, noise and traffic. To define the intervention
strategy, the administration needs to monitor the QoL level
in different areas. By leveraging IDN, they decide to create
several QoL location-dependent sensors by using Activity
Nodes whose dependencies are near pollution, noise, and
traffic sensor Nodes. The script that compute the QoL value
could be a mean w(p, n,t,d), of pollution (p), noise (n) and
traffic (t) measurements, weighted with the distance (d) of the
QoL sensor from other sensors. When the QoL sensor resource
is requested, the corresponding Activity Node is inspected,
pollution, noise and traffic Nodes dependencies are resolved,
measurements are extracted and entered as inputs of the script.
The computation executes and the output o = w(p,n,t,d) is
used to fill the content section of the same Node. Finally, the
QoL sensor Node is returned with the computed value in place
as a Web Resource (see Fig. 3).

script = w(p,n,t,d)

+p,n,td Content

+ compute(p,n,t,d)

Fig. 3. The Quality of Life sensor implemented as an Activity Node.

1) Activity Node requirements and constraints: The first
problem to face while dealing with processing is inputs and
outputs definition. If they are not clearly defined, it will be
hard to provide the script with compatible data and properly
interpret its output. This is the reason why an Activity Node
supports strong typed input and output definitions borrowed
from XML Schema built-in data types [24], which is a the
well-accepted and mature standard. The externalization of the
script can be also envisioned to put it in a global space,
fostering information reuse. In this way, many different Ac-
tivity Nodes can import the same algorithm and apply own
inputs. This concept motivates the creation of a trusted source
providing stable and optimized code. Future works in this
direction are planned.

The content of a Node can be any kind of information
object with any granularity level, according to publisher’s
prescriptions. When the Node referred by an Active link has
some unstructured data, the script is forced to process them
as a whole. Conversely, when they are structured, the script
can extract the inputs leveraging this underlying organization.
To this end, it is crucial to have a system for addressing
both Nodes and information grains contained in the data
structure and URIs and XPath technologies are naturally
fitted for the purpose. Since contents representation format
is not constrained to XML, a strategy for addressing generic
structured data is needed. To this end, we adopt a subset of
XPath deprived of XML-specific elements such as namespaces
or attributes. Nevertheless, if the data schema is unknown,
it won’t be possible to define the expression to target the
information grain(s). This consideration calls for the definition
of a Node content schema. It is not mandatory for the publisher
to declare such schema, but it is strongly advised since it is
an enabling factor for cooperation and reuse promotion.

Even though more Activity Nodes can be chained to
achieve complex computation flows, the processing of scripts
is kept completely isolated and independent. However, the
Activity Nodes chaining introduces the problem of the infi-
nite resolution. In other words, if there is any cycle in the
dependency relations, the retrieval procedure will never end.
This problem demands a cycle detection algorithm whose
requirements can be stated as follows: i) if a dependency cycle
exists, it will be detected, ii) if a dependency cycle is detected,
the system is put in a safe state, and iii) if more dependency
cycles exist, the detection of the first cycle should put the
system in a safe state (optimization requirement). Basically, the
rationale of the cycle detection algorithm consists in marking
retrieval requests with Node-specific tokens. The algorithm is
executed by a Virtual Resource instance that receives a request
for a Node. As this happens, the instance retrieves the token
list from the request and performs a lookup for the Node token.
If it is found, a cycle is detected. Fig. 4 shows the algorithm
pseudo-code.

More in detail, dependencies propagate through Active
links, so the guard at line 3 stops the detection if they are
missing. At this point, a token related to the requested Node
is deterministically generated (e.g. performing an MDS5 of the
Node URI) and checked against the tokenList (line 5). If the
token is found, the cycle is detected. Otherwise, no cycle is
detected and the token is added to the list before issuing a new
request (line 8).

node < the current node
tokenList < the list of tokens passed as an argument
if node is an Activity Node and has Active links then
token < a deterministically generated value
if tokenList contains token then
return true
end if
add token to tokenList and issue a new request for the
succeeding Active link, passing tokenList
9: end if
10: return false

IR

Fig. 4. The pseudo-code of the cycle detection algorithm used to prevent the
infinite resolution problem.

In addition, the implementation of the algorithm must
comply with the stateless interaction principle (see subsec-
tion II-A). This principle is critical to make the algorithm
lightweight and resource-saving. Indeed, if the server stores
the state of every request, as they increase, the system will
incur in a resource shortage and ultimately in a crash. In
our solution, the transfer of the token list is implemented
via a dedicated HTTP header (in compliance with the HTTP
standards) and token generation is executed on the fly by the
Virtual Resource instance authoritative for the requested Node.
Thus, the information critical for the algorithm execution is not
gathered server-side.

D. Notification and actuators

The Activity Node is a pull-based strategy for defining
virtual resources. However, in order to address real-world
requirements, push support is mandatory. Practically, it is
desirable to have a model able to support event-driven sce-
narios such as switching on the air conditioner when the
temperature in a room exceeds a threshold. To this end, we
extend Definition 1.1 and we introduce the Notification link.

Definition 1.2. A Node is a tuple N = (C’, P,t), where
C’ and P are the same as defined in Definition 1.1, while ¢
is a trigger function ¢(dy,...,d;) that executes when k + 1
conditions are satisfied.

Definition 6. A Notification link [y, € L is a directed
edge that defines a condition concerning the pointed Node to
be satisfied for the trigger function to be executed.

From now on, for the sake of simplicity, we call Notifying
Nodes those Nodes for which ¢(dp, . ..,d;) # 0.

Fig. 5 shows the modeling of a Notifying Node: along
the edges basic events are defined such as on deletion or on
change, that can be further composed with logical connectives
to form a complex condition. When the condition is met, a
script is executed and an action is fired. Such action can be
directed to a different Web Resource (changing its state), to
the Node itself (changing own state) or to an external resource.

Notification is implemented using the publish/subscribe
pattern [25]. When a Notifying Node is created or updated,
it is inspected by the authoritative middleware instance to
retrieve: i) the URIs of the Nodes referred by Notification
links and ii) both simple and complex conditions. For each
URI, the middleware registers itself as a subscriber for the

Notifying Node
complex
condition a
simple condition2 \
. .p conditionl condition3
conditions

SHONS

Fig. 5. Modeling of Notifying Node. All the edges directed from the Root
Node to other Nodes are Notification links. The AND gates just represent
some configurable logical connectives.

event specified by the simple condition to the IDN instance
responsible for that Node. Fig. 6 clarifies the concept: A is a
Node under the authority of a middleware instance (A—IDN)
and has a Notification link to Node B which belongs to a
different one (B—IDN). During the creation/update phase of A,
A-IDN inspects it to find Notification links. When the link to
B is found, A—IDN subscribes A to B—IDN, for a modification
event occurred on B. If the fire condition is complex (like the
one depicted in Fig 5), a Complex Event Processing [26] (CEP)
service is used. When B changes, B—IDN sends a notification
to A-IDN that processes the event with a CEP configured
with the contingent complex condition. If the condition is
met, A—IDN retrieves A and executes the contained notification
script. In this case, the script causes the update of the external
Web Resource C, performed through an HTTP PUT request.
As this happens, the state modification of C is communicated
to an Adapter which, in turn, interprets it and performs the
actions required to turn the light on.

HTTP PUT

on change

v
A-IDN - R { B-IDN] [C-IDN] A

------ '

subj|obj| event

A | B | on change

Fig. 6. A light bulb is turned on as a consequence of the modification of
the B Node. A has a Notification link pointing to B, i.e. A-IDN is registered
as a subscriber to B—IDN, for the modification of B. As this occurs, A—IDN
receives a notification and executes the script contained in A which performs an
update of C. C is the Web Representation of a light bulb and its state transition
is mediated by the Adapter which sends the command to the physical object.

We make two considerations: first, Notification dependen-
cies can not be circular to avoid infinite triggering loops.
To this end, a cycle detection algorithm similar to the one
described in section III-C1 can be used. Second, notification
is available for all Nodes, including Activity Nodes, and
this brings some complexity. Indeed, an Activity Node state

depends on a computation based on inputs. Therefore, before
its execution, it is not possible to know the Node state that
may trigger some push activities. This means that when a No-
tification link is directed to an Activity Node, the middleware
must subscribe to all the Activity Node’s dependencies. When
one of these changes, the Activity script must be executed to
check whether the firing condition is met or not.

IV. CONCLUSION

A consistent number of researchers indicate REST as the
style for managing WoT resources but, unfortunately, the thor-
ough application of its principles is often disregarded by Web
developers. Starting from this “lesson learned”, we propose
an approach for simplifying RESTful Web exposure of smart
objects by designing a scriptable vertex for a graph-based Web
Resource representation offered by the InterDataNet system.
Indeed, given proper representations of smart objects, it is
very likely that their contents will be taken and processed to
get some valuable results. Typically, this is performed by an
ad hoc application which is also responsible for the proper
results re-exposure. However, applications are costly to design,
implement and maintain and developers tend not to bother
with broader scope problems such as data reuse, making the
proper exposure of computation results a very unlikely event.
To overcome these problems, we took the processing out
of the application by designing a scriptable vertex which is
automatically exposed by InterDataNet, according to REST
principles. Moreover, to cope with real world scenarios, we
introduced a methodology for extending the model with event-
driven capabilities based on dedicated Notification edges.

Future works include the externalization of scripts used by
Activity Nodes to promote high quality code reuse. Moreover,
a deeper study of scalability issues caused by the combination
of event-driven capabilities with scriptable Nodes and a more
refined strategy for defining events. In addition, an integration
of the Information Model with semantics is ongoing.

ACKNOWLEDGMENT

The authors would like to thank Mr. Ivan Zappia and Mr.
Giacomo Niccoli for fruitful discussions on the Activity Node
subject and Mr. Luca Capannesi for technical support.

REFERENCES

[11 L. Atzori, A. lera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787-2805, 2010.

[2] E. Wilde, E. C. Kansa, and R. Yee, “Web services for recovery. gov,”
School of Information, 2009.

[3] R.T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115-150, 2002.

[4] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in Internet of Things (I0T), 2010. IEEE, 2010,
pp. 1-8.

[5] C. Pautasso and E. Wilde, “Why is the web loosely coupled?: a multi-
faceted metric for service design,” in Proc. of the 18th international
conference on World wide web. ACM, 2009, pp. 911-920.

[6] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things
service architecture: Rest or ws-*? a developers perspective,” in Mo-
bile and Ubiquitous Systems: Computing, Networking, and Services.
Springer, 2012, pp. 326-337.

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. big’web services: making the right architectural decision,” in Pro-
ceedings of the 17th international conference on World Wide Web.
ACM, 2008, pp. 805-814.

P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Hafiz, “Rest and web
services: In theory and in practice,” in REST: from research to practice.
Springer, 2011, pp. 35-57.

1. Zuzak, I. Budiselic, and G. Delac, “A finite-state machine approach

for modeling and analyzing restful systems,” Journal of Web Engineer-
ing, vol. 10, no. 4, pp. 353-390, 2011.

F. Paganelli, S. Turchi, L. Bianchi, L. Ciofi, M. C. Pettenati, F. Pirri,
and D. Giuli, “An information-centric and rest-based approach for epc
information services.” Journal of Communications Software & Systems,
vol. 9, no. 1, 2013.

L. Bianchi, F. Paganelli, M. Pettenati, S. Turchi, L. Ciofi, E. Iadanza,
and D. Giuli, “Design of a restful web information system for drug
prescription and administration,” Journal of Biomedical and Health
Informatics, 2013.

S. Turchi, L. Bianchi, F. Paganelli, F. Pirri, and D. Giuli, “Towards
a web of sensors built with linked data and rest,” in World of Wire-
less, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th
International Symposium and Workshops on a. 1EEE, 2013, pp. 1-6.

R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000.

L. Richardson and S. Ruby, RESTful web services. O’Reilly, 2008.

V. Trifa, D. Guinard, and S. Mayer, “Leveraging the web for a
distributed location-aware infrastructure for the real world,” in REST:
From Research to Practice. Springer, 2011, pp. 381-400.

D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical
mashups in the web of things,” in Networked Sensing Systems (INSS),
2009 Sixth International Conference on. 1EEE, 2009, pp. 1-4.

S. Mayer, D. Guinard, and V. Trifa, “Facilitating the integration and
interaction of real-world services for the web of things,” in Urban
Internet of Things (UrbanlOT 2010); Workshop at the Internet of Things
2010 Conference (IoT 2010), Tokyo, Japan, 2010.
A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,” Internet
Computing, IEEE, vol. 12, no. 4, pp. 78-83, 2008.

A. Moraru, D. Mladenic, M. Vucnik, M. Porcius, C. Fortuna, and
M. Mohorcic, “Exposing real world information for the web of things,”
in Proceedings of the S8th International Workshop on Information
Integration on the Web: in conjunction with WWW 2011. ACM, 2011,
p. 6.

D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kroller, M. Pagel, M. Hauswirth et al., “Spitfire:
toward a semantic web of things,” Communications Magazine, IEEE,
vol. 49, no. 11, pp. 4048, 2011.

A. Badii, D. Carboni, A. Pintus, A. Piras, A. Serra, M. Tiemann, and
N. Viswanathan, “Cityscripts: Unifying web, iot and smart city services
in a smart citizen workspace,” Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, vol. 4, no. 3, pp.
58-78, 2013.

J. M. Hernandez-Mufioz and L. Muiloz, “The smartsantander project,”
in The Future Internet. Springer, 2013, pp. 361-362.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1,” RFC
2616 (Draft Standard), Internet Engineering Task Force, Jun. 1999,
updated by RFCs 2817, 5785, 6266, 6585. [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

P. V. Biron and A. Malhotra, “XML schema part 2: Datatypes
second edition,” W3C, W3C Recommendation, Oct. 2004,
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114-131, 2003.

D. C. Luckham and B. Frasca, “Complex event processing in distributed

systems,” Computer Systems Laboratory Technical Report CSL-TR-98-
754. Stanford University, Stanford, vol. 28, 1998.

