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The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of
residential segregation when two groups of people are involved. The payoff functions of agents are the
individual preferences for integration which are empirically grounded. Differently from Schelling’s model,
where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit
from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is
qualitatively similar to the one of the classical Schelling’s model: segregation is always a stable equilibrium
while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic
stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors
can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional
piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed
for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium
exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth and border
collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to
maximize integration through social policies that manipulate people’s preferences for integration.
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Residential segregation is observed in many
metropolitan areas of the western society despite
people express their preferences for integration.
The dynamic models proposed by Schelling, see,
e.g., Schelling (1969) and Schelling (1971), pro-
vide a theoretical explanation for the discrepan-
cies between macro patterns of segregation and
individual preferences for integration. Schelling’s
models are based on tolerances and on the thresh-
old behavior according to which people change
the residential location if the racial composition
of the district cross the threshold level of toler-
ance and enter otherwise.

In the current paper, we propose an evolution-
ary version of the Schelling’s neighborhood tip-
ping model where agents decide their residential
location according to their individual distribu-
tions of preferences which represent their pay-
off functions. Agents’ location decision is mod-
eled by a replicator dynamics according to which
agents chase the best relative performance. De-
spite the differences with the Schelling’s models,
our evolutionary game shows patterns of segrega-
tion that are similar to the segregation dynamics
of the Schelling’s models. In fact, it shows that
segregation, despite being a suboptimal equilib-
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rium of the game, is stable and a racially diverse
neighborhood is possible only for peculiar config-
urations of the distributions of preferences and,
even when it exists, it is highly sensitive to pa-
rameter variations and initial conditions. Then,
our analysis provides an evolutionary justification
to the segregation dynamics observed in reality,
showing that segregation can arise also through
the so-called spiteful behaviors, see, e.g., Hamil-
ton (1970), according to which segregation dam-
ages all agents but it takes place because it offers
a comparative advantage to one of the two ethnic
groups.

Compared to the two-dimensional dynami-
cal Schelling’s neighborhood-tipping model, see,
e.g., Bischi and Merlone (2011), the evolutionary
game that we propose leads to a one-dimensional
map. Thus, it is easier to study, although it is a
continuous and piecewise smooth map with two
kink points which highly influence the observed
dynamics.

We investigate the existence of the possible
fixed points (equilibria of segregation and of non
segregation) of the map and their local/global sta-
bility, as well as robustness both in the phase
space and in the parameter space determined by
two kink points of the map. We show that only
one equilibrium of non segregation can be sta-
ble. However, also when all the equilibria of non
segregation are repelling, interesting integrated
dynamics may exist, consisting in attracting pe-
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riodic orbits or bounded aperiodic dynamics in a
specified interval. We describe the relevant bi-
furcations depending on two kink points of the
map, both smooth and non smooth, that is, tran-
sitions related to border collision bifurcations. By
using the properties of the bimodal model we
show relevant global bifurcations related to the
fixed points, which may be also homoclinic bifur-
cations. Moreover, we show contact bifurcations
which are related to disconnected basins of at-
traction, as well as to the final bifurcation (lead-
ing to no attracting integrated dynamics). Some
new bifurcation structures due to the interplay
between smooth bifurcations and border collision
bifurcations are evidenced.

I. INTRODUCTION

Residential segregation between whites and blacks in
the U.S. urban areas is an example of mismatch be-
tween macrobehavior and individual preferences, see,
e.g., Schelling (1978). Survey data show that both
whites and blacks prefer to live in integrated neighbor-
hoods. The empirical investigations conducted in last
thirty years underline that the majority of black people
choose ”half-black, half-white” as the favorite neighbor-
hood racial composition, see, e.g., Clark (1991); Davis
and Smith (1994); Krysan and Farley (2002). The same
investigations reveal that whites have preferences for in-
tegrated neighborhoods where they are the strict major-
ity and only a small minority of them indicate a segre-
gated neighborhood as the favorite one, see, e.g., Clark
(1991); Schuman et al. (1997). In contrast with this re-
vealed system of individual preferences, residential seg-
regation between blacks and whites can be observed in
many U.S. metropolitan areas despite the latest, albeit
mild, steps toward integration, see, e.g., Clark (1991);
Massey and Denton (1993); Zhang (2004); Glaeser and
Vigdor (2001); Logan, Stults, and Farley (2004).

A first explanation to this counter-intuitive phe-
nomenon of segregation was provided by Schelling.
In seminal contributions, see Schelling (1969, 1971),
Schelling proposed two theoretical models that show the
emergence and persistence of residential segregation in
a framework in which blacks and whites have a strict
preference for integration. The first model proposed by
Schelling is a spacial proximity model since then known
also as Schelling’s checkerboard model. This microeco-
nomic model represents one of the first examples of what
nowadays are known as agent-based models, see, e.g., Ep-
stein and Axtell (1996). According to this model, there
are two types of agents, each of which does not tolerate
more than a certain fraction of the other type of agents
living in his/her neighborhood. Unsatisfied agents get
the chance to move to a more desirable position. The
process reaches its stationary state when everybody is

satisfied with his/her allocation choice. Schelling’s most
striking finding is that moderate preferences for same-
color neighbors at the individual level can be amplified
into complete residential segregation at the macro level.
The reasons can be found in the logical constraints origi-
nated by individual preferences for integration. The clas-
sical example is the presence of two groups of people all
agents of which want to live in a neighborhood with a
strict majority of same-color neighbors. Then, residen-
tial segregation is the only configuration that satisfies
both populations. This multiple-neighborhood model has
been studied and developed in many ways since its intro-
duction, see, e.g., Fagiolo, Valente, and Vriend (2007);
Zhang (2011). All the follow-up contributions reveal in-
sightful aspects of segregation, like recent studies that
show the robustness of Schelling’s findings by proving
that residential segregation occurs even when agents have
a strict preference for perfect integration, see, e.g., Pancs
and Vriend (91). However, due to its complicated struc-
ture, a rigorous analysis of the model requires sophisti-
cated mathematical tools, see Zhang (2004).

The second model proposed by Schelling is a low-
dimensional one better known as neighborhood tipping
model and it is purely analytical. It includes two groups
of agents, one of whites and one of blacks. Agents in
each group choose between residing in a (possibly) mixed
neighborhood or living segregated. Each agent’s prefer-
ences are used to compute threshold levels indicating the
maximum tolerated number of non-co-ethnic neighbors.
The distribution of tolerances differs between blacks and
whites and individuals enter the district if the number
of opposite-color neighbors does not exceed the tolerance
level and exit otherwise. This driving force of the en-
try/exit dynamics is known as threshold behavior and
generates a segregation pattern as the so-called neighbor-
hood tipping process. The neighborhood tipping occurs
when in an all-white neighborhood, after some blacks
move in, whites start to move out because of their lim-
ited level of preference for integration and blacks, who
have a higher level of tolerance, start to move in. Sud-
denly, the process of evolving into an all-black neighbor-
hood begins. Similarly, an all-black neighborhood may
be tipped into an all-white neighborhood and a mixed-
race neighborhood can be tipped into a segregated one.
The model was developed in the form of a Bayesian game
with best-reply dynamics in Dokumaci and Sandholm
(2006), where it takes the form of a two-dimensional dy-
namical system in continuous time. This setting was fur-
ther developed in Bischi and Merlone (2011), where a
discrete-time version, with adaptive dynamics and en-
try limitations, of the game in Dokumaci and Sandholm
(2006) was proposed. A detailed and rigorous analysis
of the latter model can be found in Radi, Gardini, and
Avrutin (2014b,a), while its generalization to the case
of heterogeneous distributions of tolerances is proposed
in Bischi and Merlone (2011) and investigated in Radi
and Gardini (2015).

The scope of the current paper is to study the evolu-
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tionary stability of the segregation patterns underlined
in the Schelling’s neighborhood tipping model. To this
aim, an evolutionary game, in the form of a replicator
dynamics (see Hofbauer and Sigmund (2003) and refer-
ences therein), is proposed, where agents’ payoff func-
tions take into account the distributions of preferences
empirically detected through a telephone survey and re-
ported in Clark (1991). As in the Schelling’s neigh-
borhood tipping model, in our evolutionary game there
are two populations of agents, one of whites and one
of blacks, and a single neighborhood. The composi-
tion of the neighborhood evolves over time according to
a replicator dynamics, with the fraction of whites that
increases whenever whites’ satisfaction for the current
composition of the neighborhood is higher than blacks’
one and decreases in the opposite case. The equilibria
of the model are segregation and the ethnic composition
of the neighborhood for which whites’ satisfaction equals
blacks’ one. There are two main differences with respect
to the classical tipping model by Schelling. First of all, in
building this evolutionary game we model peoples’ pref-
erences for integration instead of tolerances for unlike
neighbors. Secondly, agents reside in the neighborhood
as long as their level of satisfaction is higher than the
one of the members of the other population, despite their
tolerance level may be exceeded. Then, in the classical
Schelling model it is the more tolerant population that
can penetrate and tip the composition of the neighbor-
hood. Differently, in the current model people adopt a
social-learning scheme, see, e.g., Bossan, Jann, and Ham-
merstein (2015), and to reside in a neighborhood it is not
only a matter of single-agent attitudes towards integra-
tion but it is a matter of being more satisfied with the
current ethnic composition of the neighborhood, than the
other ones are. Therefore, in our evolutionary setup it is
the population that has a higher level of satisfaction that
can penetrate and tip the composition of the neighbor-
hood.

The analysis reveals that integration is possible only
for certain configurations of the individual preferences.
It occurs when blacks’ satisfaction for living in an inte-
grated neighborhood where the whites are a large ma-
jority is higher than whites’ one. The composition of a
racially mixed neighborhood can be stable over time, it
is the case of an equilibrium of integration, or not, which
is the case of a periodic or aperiodic attractor of integra-
tion. Notwithstanding the existence of an equilibrium
representing an integrated neighborhood, the risk of seg-
regation always persists and the occurrence of global bi-
furcations can substantially reduce the set of initial con-
ditions from which a pattern of integration originates.
In fact, an all-white neighborhood represents a stable
equilibrium for any configuration of the distributions of
preferences consistent with the empirical observations il-
lustrated in Clark (1991). This occurs because whites,
unlike blacks, have positive preferences for living segre-
gated. On the contrary, an all-black neighborhood is a
stable equilibrium only when blacks have higher prefer-

ences than whites for neighborhoods with a large major-
ity of blacks. Another distinctive feature of our model
is the equilibrium composition of the integrated district
which, when it exists and is stable, includes a larger ma-
jority of whites. This seems to be consistent with the
empirical data provided by the U.S. Census Bureau.1

The segregation patterns and the global dynamics
of our evolutionary game are similar to the ones of
the Schelling’s neighborhood tipping model. As in the
Schelling’s model, the risk of segregation cannot be elim-
inated, integrated residential patterns are inherently sen-
sitive to small variations in the distributions of prefer-
ences and in the initial composition of the neighborhood
and segregation is attainable despite being highly unde-
sirable at the individual level. In fact, the distributions
of preferences of our evolutionary game underline that an
equilibrium of residential integration can be at the same
time the social optimum and unstable. On the contrary,
an equilibrium of segregation can be at the same time the
least-optimal one and stable. In this case, the segregation
pattern is driven by the so-called spiteful behaviors, see,
e.g., Hamilton (1970), which occurs when a player under-
takes an action because it damages the others more than
it damages himself. Together with the threshold behav-
ior introduced by Schelling, this spiteful behavior, typi-
cal of the evolutionary games, provides a game-theoretic
justification on individual grounds for the patterns of res-
idential segregation that are empirically observed.

A social planner that wants to maximize integration
can benefit from the global analysis of our model. The
normative relevance is mainly focused on how to shape
the distribution of preferences of the populations to
achieve integration. Social events, education for inte-
gration and many other initiatives or social policies can
change people’s preferences for living in an integrated or
segregated district. Our analysis provides indications of
the effectiveness of these activities, how they should be
tuned and their possible achievements. A further nor-
mative issue concerns how to calibrate and when to stop
a reward scheme aimed to incentivize people to move to
live in an integrated neighborhood.

As already remarked, the evolutionary game here pro-
posed takes the form of a continuous and piecewise
smooth one-dimensional map, with two kink points which
highly influence the system dynamics. We shall perform
a detailed analysis of the possible fixed points of non seg-
regation, and the related local/global stability, showing
that only one equilibrium of integration can be attract-
ing. Moreover, when the equilibrium is repelling, inter-
esting integrated dynamics may exist, and we describe
some relevant bifurcations depending on two parameters
(the two kink points of the map).

Since the map is piecewise smooth, standard smooth
bifurcations may occur besides the border collision bifur-

1 See, http://www.census.gov/mycd/.
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cations (BCBs for short henceforth)2. In particular we
prove that the appearance of equilibria of non segregation
can occur only via fold BCBs and only one of them can
be asymptotically stable. It may lose stability through a
smooth flip bifurcation (also s-flip for short) and compli-
cated integrated dynamics can occur.

The bifurcations occurring in maps of this kind, uni-
modal or bimodal, are different from those occurring in
smooth systems, and are characterized by an interplay
between standard smooth bifurcations and border colli-
sions (as we shall also see in our dynamic model). For
example, a cycle which undergoes a border collision may
lead to a cycle of the same period (in which case we call
it persistent BC) or to an attracting cycle of different
period or directly to a chaotic attractor (in which case
we have a BCB), and we shall see several occurrences of
this kind, investigating the dynamics associated with a
two-dimensional parameter plane.

A further characteristic of piecewise smooth systems is
that a chaotic attractor (which in one-dimensional con-
tinuous maps is given by an interval or k−cyclical in-
tervals, see for example Avrutin, Sushko, and Gardini
(2014)) may be persistent under parameter variations.
Following the terminology adopted in Banerjee, Yorke,
and Grebogi (1998), this phenomenon is called robust
chaos and it cannot occur in smooth systems. Our sys-
tem is piecewise smooth and the numerical investigation
shows robustness of the complex dynamics. Also the ap-
pearance of repelling equilibria via fold BCBs may lead
directly to bounded, but periodic or aperiodic, robust
integrated dynamics.

Recall that the investigation of the dynamic result of
a BC of a fixed point or of a k−cycle of a map can take
advantage of the skew-tent map as a normal form. In
short, the relevant information is the slope of the func-
tion that defines the dynamic model on the left and right
sides of the fixed point which undergoes collision with
one kink point. Similarly holds for the BC of a k−cycle,
considering the k−th iterate of the map in the involved
kink point (for which it corresponds to a BC of a fixed
point). The result of a BC in this case can be described
by using the two slopes, see Maistrenko, Maistrenko, and
Vikul (1998), the survey Sushko, Avrutin, and Gardini
(2016) and references therein. The skew-tent map as a
normal form is also useful in a bimodal system, as shown
for the bimodal piecewise linear case in Panchuk et al.
(2013).

The remainder of the paper is organized as follows.
Section II constructs the evolutionary model of segrega-
tion starting from empirical data. Section III presents the
analytical results about the equilibria of the model with
special emphasis on the role of the distributions of pref-
erences. The system can have at most three equilibria of
integration, and at most one can be attracting and may

2 Following the term introduced by Nusse and Yorke, see Nusse
and Yorke (1995).

become repelling via smooth flip bifurcation. The global
scenarios that can occur are classified in four different
types, for each of which we determine the characteristics.
The more interesting (and difficult one) is Scenario 4 re-
lated to three equilibria of non segregation. This scenario
is investigated in Section IV, where we present a global
analysis of the dynamics that underlines the sensitivity of
the integration patterns to both parameters and initial
conditions. We investigate the local/global stability of
the relevant equilibrium of non segregation, or different
bounded integrated dynamics, describing the structure of
the basins of attraction of the attracting sets. We show
that disconnected basins of attraction appear via global
bifurcations. That is, through a transition which is not
related to the eigenvalues of the cycles, but to the global
character of the map via the kink points and their im-
ages (also called critical points), mainly when they merge
with a periodic point. Section V concludes.

II. MODEL SETUP

The residential mobility of whites and blacks is driven
by the presence of like-color neighbors. Some white peo-
ple like to live in a district where 10% of the population
is black, others in a district where 20% of the population
is black and so on. The same occurs for the black people.
A telephone survey conducted in the USA, and reported
in Clark (1991), aims to describe these preferences. The
survey is based on the simple question ”What mixture of
people would you prefer? Would you prefer a neighbor-
hood that is... (combinations of 100% white, 90% white
and 10% black, and so on through 100% black were read
to respondents)”. Answering this question a citizen of
a city specifies his/her ideal composition of a neighbor-
hood. This information is used to obtain two distribu-
tions of preferences, one for whites and one for blacks,
for the ethnic composition of the neighborhood. The em-
pirical investigation reveals that blacks and whites have
heterogeneous preferences for integration.

These distributions of preferences are used as a proxy
to obtain two continuous functions which depend on the
fraction of blacks in the neighborhood that we denote
by x ∈ [0, 1] and represent agents’ satisfaction. The one
of whites is a bimodal function. It has a first peak in
x equal to zero, which means that whites have positive
preferences for living in a district populated by like-color
neighbors only, a second peak in x = dR, where dR is a
positive value less than 0.5, which indicates that whites
like to live in a district in which they are the strict ma-
jority, it has a relative minimum point in x = dL, with
dL < dR, and it values zero in correspondence of a neigh-
borhood populated by blacks only, i.e. whites do not like
leaving in districts populated entirely by blacks. Con-
cerning blacks, the empirical distribution of preferences
for integration is a unimodal function. It has a peak
in x = d1, where d1 ≈ 0.5, and it values zero in corre-
spondence of segregated neighborhoods. This means that
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blacks like to live in an half-white, half-black district.
As the level of integration is only one of the many fac-

tors that influence the residential mobility of agents, we
follow Zhang (2004) and we assume that an agent’s pay-
off (utility) has two parts: an endogenous term, W (·) for
whites and B (·) for blacks, that depends on how many
like-color neighbors he/she has in the neighborhood, and
an exogenous term δ that captures the value of other rel-
evant characteristics of the neighborhood.3 The param-
eter δ is assumed to be independent across agents, i.e. it
is the same for whites and blacks.4 Let us point out that
W (·) and B (·) reflect at the same time the distributions
of preferences for other-color neighbors and the weight
that these distributions have on the residential choice of
whites and blacks, respectively. In accordance to the
empirical observations in Clark (1991), we assume that
W (·) is a non-negative piecewise linear bimodal function
of x given by

W (x) =

 WL (x) = aLx+ µL; 0 ≤ x ≤ dL
WM (x) = aMx+ µM ; dL ≤ x ≤ dR
WR (x) = aRx+ µR; dR ≤ x ≤ 1

(1)

and

aL < 0, 0 < µL, 0 < dL < dR < 0.5,

aR < 0, µR = −aR, aLdL + µL > 0 (2)

while the other two parameters of the middle branch
WM (x) are imposed in order to ensure the continuity
condition of W (x) at the kink points dL and dR. This
leads to

aM =
µR − µL + aRdR − aLdL

dR − dL

µM =
(aR − aL) dLdR + µLdR − µRdL

dR − dL
(3)

These assumptions ensure that W (x) is downward slop-
ing in (0, dL) and (dR, 1), while it is upward sloping in
(dL, dR), W (1) = 0 and W (x) is non negative in [0, 1].
Instead, following again the empirical evidences in Clark
(1991), we assume that B (·) is a piecewise linear uni-
modal function of x given by

B (x) =

{
BL (x) = ax; x ≤ d1
BR (x) = ad1

1−d1 (1− x) ; x > d1
(4)

where

a > 0, d1 = 0.5. (5)

3 Many other neighborhood characteristics beyond race and
ethnicity influence the residential choice of individuals, see,
e.g., Harris (1999).

4 Zhang, see Zhang (2004), indicates that the agent’s payoff can
be interpreted as how much he/she likes to pay for a residential
location in a neighborhood.

These assumptions ensure that B (x) is upward sloping
in (0, 0.5), downward sloping in (0.5, 1), non negative in
[0, 1] and B (1) = B (0) = 0. The condition d1 = 0.5 is
justified by empirical evidences, nevertheless other values
of d1 would not change the results that follow as long as
the condition dL < dR < d1 is satisfied.

Following an evolutionary approach and considering a
single neighborhood, at each interval of time the num-
ber of whites that choose to leave in the neighborhood is
proportional to the previous-period payoff of those whites
who lived there. The same occurs for the blacks. Then,
the fraction of blacks in the neighborhood is updated
accordingly. In particular, considering a neighborhood
with a fraction of blacks at time t ∈ N equal to xt, we as-
sume that xt evolves over time according to the following
one-dimensional piecewise smooth map:

xt+1 = T (xt) , where

T (xt) := xt
B (xt) + δ

B (xt)xt + (1− xt)W (xt) + δ
(6)

The dynamic equation (6) is a so-called replicator dy-
namics (commonly adopted in evolutionary game theory
and population dynamics to describe the Darwinian se-
lection of species and in economics as a strategy selec-
tion mechanism, see, e.g., Hofbauer and Sigmund (2003)
and reference therein) according to which the fraction
of blacks in the neighborhood increases as long as their
payoff (satisfaction with the current composition of the
neighborhood), which is given byB (xt)+δ, is higher than
the payoff of the whites, which is given by W (xt) + δ,
and decreases in the opposite case. Then, the model de-
scribes the dynamics of integration/segregation in an evo-
lutionary fashion with blacks and whites who have het-
erogeneous preferences for integration. The role played
by these preferences can differ between blacks and whites
and it is possible to represent a different degree of impor-
tance of the ratio of color-like neighbors in the decision
process between the two groups of people by shaping the
two payoff functions in different ways, i.e. by tuning the
parameters of the function B (x) and W (x) in such a way
that one is much larger than the other in relation to δ
(without loss of generality, in all the figures of the paper
we have used δ = 0.1).

In Figure 1 and Figure 2 we show some of the pos-
sible shapes of functions W (x), B (x) and T (x) to be
commented in the following.

III. PROPERTIES OF THE MAP

Map T in (6) is to be considered in I = [0, 1]. Values of
x out of such interval are not of interest for the considered
application. Let us point out that B (x) ≥ 0 and W (x) ≥
0 ∀x ∈ [0, 1]. It follows that map T is invariant in I:
T (I) = I. Then, we are interested in the fixed points of
T (x) inside I. To this goal, we focus on the subspace
(0, d1) of I, in (d1, 1) there are not isolated fixed points
as we will see later, and we shall denote as left, middle
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FIG. 1. In the left column the two payoff functions: B (x) in black and W (x) in blue. In the right column the graph of map
T . In both columns red dots indicate the kink points dL, dR and d1. The black dots are the attracting fixed points and the
empty dots are the repelling fixed points. The blue interval is the basin of attraction of the equilibrium of segregation x∗1, the
orange interval is the basin of attraction of the equilibrium of segregation x∗0. First row, Scenario 1 in Theorem 2, parameters:
a = 0.7, aL = −0.3, aR = −0.8, µL = 0.4, dL = 0.2, dR = 0.4. Second row, Scenario 2 in Theorem 2, parameters: a = 0.9,
aL = −0.3, aR = −0.8, µL = 0.4, dL = 0.2, dR = 0.4.

and right branch of map T those defined in the intervals
JL = (0, dL), JM = (dL, dR) and JR = (dR, d1), in which
the piecewise smooth map T is smooth. That is, the
intervals separated by the kink points of T , as they will
turn to be the relevant ones in describing the dynamics
of the map.

From the definition of map T it is immediate to see
that x∗0 = 0 and x∗1 = 1 are fixed points (since by con-
struction T (0) = 0 and T (1) = 1), and clearly represent
equilibria5 of segregation (all whites in x∗0 and all blacks
in x∗1). While an internal fixed point x∗ satisfies the
equality B (x∗) = W (x∗) and represents an equilibrium
of non segregation (or equivalently an equilibrium of in-
tegration).6 It results that according to the shape of the

5 In this paper, we use equilibrium as synonymous of fixed point.
6 Thus the intersection points of the two functions B (x) and W (x)

in (0, 1) represent equilibria of non segregation.

distribution of preferences of the two populations, we can
or we cannot have fixed points in (0, 1). And in any case
they may be at most three, more properly, at most one
in each of the intervals separated by the kink points of
the map, as it is specified in the following Theorem.

Theorem 1 Given map T as defined in (6) and the pa-
rameter conditions (2), (3) and (5), x∗0 = 0 and x∗1 = 1
are always fixed points of the map. Moreover,

1. Each open interval in which map T is smooth, ei-
ther is filled with fixed points or at most one fixed
point of non segregation can exist. In particular,
the points

x∗ξ =
µξ

a− aξ
, for ξ ∈ {L,M,R} (7)

are fixed points of non segregation when x∗ξ ∈ Jξ.

2. If B (d1) > W (d1), then at least one fixed point of
T in (0, 1) exists. Specifically:
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FIG. 2. The notation is as in Figure 1. First row, Scenario 3 in Theorem 2, parameters: a = 0.7, aL = −0.3, aR = −1,
µL = 0.19, dL = 0.23, dR = 0.4, the green interval is the basin of attraction of the equilibrium of integration x∗M . Second row,
Scenario 4 in Theorem 2, parameters: a = 0.9, aL = −0.1, aR = −0.75, µL = 0.05, dL = 0.2, dR = 0.25, the red interval is the
basin of attraction of the inner attractor, here a chaotic interval.

(2a) If W (dL) > B (dL) and W (dR) > B (dR),
then x∗R = µR

a−aR ∈ (dR, d1) is the only fixed
point of non segregation;

(2b) If W (dL) > B (dL) and W (dR) < B (dR),
then x∗M = µM

a−aM ∈ (dL, dR) is the only fixed
point of non segregation;

(2c) If W (dL) < B (dL) and W (dR) > B (dR),
then the three fixed points of non segregation
in (7) exist;

(2d) If W (dL) < B (dL) and W (dR) < B (dR),
then x∗L = µL

a−aL ∈ (0, dL) is the only fixed
point of non segregation.

3. If W (d1) > B (d1), then the map has either no
fixed points of non segregation or two fixed points
of non segregation. Specifically:

(3a) If B (dL) < W (dL), then either no internal
fixed point exists or [d1, 1] is filled with fixed
points;

(3b) If B (dL) > W (dL), then map T has two
fixed points of non segregation given by x∗L =

µL
a−aL ∈ (0, dL) and x∗M = µM

a−aM ∈ (dL, dR).

Proof. By construction x∗0 = 0 and x∗1 = 1 are two
fixed points of T , while for the internal fixed points let
us point out that T (x∗) = x∗, with x∗ ∈ (0, 1), implies
W (x∗) = B (x∗). From the linearity of B (x) and W (x)
in the intervals Jξ for ξ ∈ {L,M,R} and (d1, 1), it follows
that in each of them the map T has either one fixed point,
or no fixed point, or the fixed points fill the interval.
Solving for B (x) = W (x) the first point of the Theorem
follows and in particular we have:

-: In JL = (0, dL), x∗L = µL
a−aL ≥ 0 (since aL < 0 < a) is

a fixed point of map T if and only if x∗L ∈ [0, dL]
(square brackets are used thanks to the continuity
of B (x) and W (x) in [0, 1]), from which we ob-
tain the existence condition µL ≤ (a− aL) dL (or
equivalently B (dL) ≥W (dL));

-: In JM = (dL, dR), if aM 6= a then x∗M = µM
a−aM

is a fixed point of map T if and only if x∗M ∈
[dL, dR], from which we obtain the existence con-
dition dL <

µM
a−aM < dR. The inequalities are sat-



CHAOS 8

isfied in only two cases: either a > aM , µM > 0
and 0 < (a− aM ) dL < µM < dR (a− aM ) [equiv-
alently 0 < B (dL) < W (dL) < W (dR) < B (dR)],
or a < aM , µM < 0 and 0 > dL (a− aM ) > µM >
dR (a− aM ) [equivalently W (dR) > B (dR) >
B (dL) > W (dL) > 0]. Moreover, for µM = 0
and a = aM , we have B (x) = W (x) ∀x ∈ [dL, dR],
then the fixed points of T fill the segment [dL, dR];

-: In JR = (dR, d1), x∗R = µR
a−aR is a fixed point of map T

if and only if x∗R ∈ [dR, d1], from which we obtain
the existence conditions dR < µR

a−aR < d1, which,
since µR > 0 and aR < 0 < a, are satisfied in
only one case: (a− aR) dR < µR < d1 (a− aR)
(or equivalently B (dR) < W (dR) and W (d1) <
B (d1));

-: In [d1, 1], since B (1) = W (1), by linearity of B (x)
and W (x) in this interval we have that there are
no other intersection points (as it must hold either
B (x) < W (x) or B (x) > W (x) ∀x ∈ [d1, 1)), or
B (x) = W (x) ∀x ∈ [d1, 1], i.e. a continuum of
fixed points fills the interval.

Since W (d1) > B (d1) implies W (dR) > B (dR), points
2 and 3 of the Theorem follows.

Thus, the fixed points of non segregation, when ex-
isting and in finite number, can be three, two or one.
Moreover, they may represent stable configurations of the
population of the district where the number of blacks is
always less than half of the total population of the dis-
trict. Then, although blacks and whites can cohabit in
a district, we expect that the configuration of the pop-
ulation is such that the whites are the majority and the
blacks are the minority. The alternative is either seg-
regation, a district populated by either all whites or all
blacks, or bounded dynamics (such as periodic or aperi-
odic orbit) internal to (0, 1). In the latter case, despite
the absence of stable equilibria of non segregation, some
level of integration is achieved. However, it is the local
(and global) stability properties of these internal fixed
points and internal attractors that indicate the real pos-
sibility of integration between the two populations. The
following Theorem provides a general statement that de-
scribes some possible scenarios of integration/segregation
and indicates under which condition an equilibrium is lo-
cally stable.

Theorem 2 Given map T as defined in (6) and the pa-
rameter conditions (2),(3) and (5), the fixed point of seg-
regation x∗0 = 0 is always locally stable and the following
scenarios may occur.

- Scenario 1: If there are no internal fixed points,
then x∗0 is globally attracting and x∗1 is repelling;

- Scenario 2: If there is a unique internal fixed
point of non segregation x∗ξ =

µξ
a−aξ ∈ Jξ, for

ξ ∈ {L,M,R}, then it is necessarily repelling and
it separates the basins of attraction of the locally
attracting fixed points of segregation x∗0 and x∗1;

- Scenario 3: If there are two internal fixed points
of non segregation, i.e. x∗L and x∗M , then x∗L is
repelling, the fixed point of segregation x∗0 is lo-
cally attracting, the second fixed point of segrega-
tion x∗1 is repelling, while x∗M is locally stable for
T ′ (x∗M ) ≥ −1 and it may lose stability via a smooth
flip bifurcation (occurring when T ′ (x∗M ) = −1);

- Scenario 4: If there are three internal fixed points
of non segregation then x∗L and x∗R are repelling,
the fixed points of segregation x∗0 and x∗1 are lo-
cally attracting, while x∗M is locally attracting for
T ′ (x∗M ) ≥ −1 and it may lose stability via a smooth
flip bifurcation (occurring when T ′ (x∗M ) = −1).

Proof. By straightforward calculations we obtain

T ′(x∗0) =
δ

µL + δ
∈ (0, 1) (8)

so that x∗0 is always locally attracting. Moreover, from
Theorem 1 it follows that the number of internal fixed
points can be zero, as it is assumed in Scenario 1, one,
as it is assumed in Scenario 2, two, as it is assumed in
Scenario 3, and three, as it is assumed in Scenario 4.
Then, let us prove each single scenario.

For Scenario 1: let us consider the case of no internal
fixed points, which implies B (x) < W (x) for all x ∈
(0, 1). It follows that T (x) < x for all x ∈ (0, 1). Since
T is invariant in I = [0, 1], then x∗0 is globally attracting,
i.e. it attracts all the points in I\x∗1 and x∗1 is repelling.

For Scenario 2: let x∗ξ ∈ (0, 1) be the unique internal

fixed point of map T (x), given by x∗ξ =
µξ
a−aξ ∈ Jξ, for

ξ ∈ {L,M,R}. Then it must be B (x) < W (x) for all

x ∈
(

0, x∗ξ

)
and B (x) > W (x) for all x ∈

(
x∗ξ , 1

)
, which

implies that x∗ξ is a repelling fixed point, B (x∗0) =
[
0, x∗ξ

)
is the basin of attraction of x∗0, and B (x∗1) =

(
x∗ξ , 1

]
is

the basin of attraction of x∗1.
Before looking at Scenarios 3 and 4, let us consider

the stability properties of the three internal equilibria
x∗ξ , with ξ ∈ {L,M,R}. By straightforward calculations

we obtain (note that at any fixed point x∗ξ ∈ Jξ for ξ ∈
{L,M,R} it is B(x∗ξ) = W (x∗ξ)):

T ′
(
x∗ξ
)

= 1 + x∗ξ
(
1− x∗ξ

)B′
(
x∗ξ

)
−W ′

(
x∗ξ

)
B
(
x∗ξ

)
+ δ


= 1 + x∗ξ

(
1− x∗ξ

) a− aξ
ax∗ξ + δ

, ∀ξ ∈ {L,M,R}(9)

so that T ′ (x∗L) > 1 and T ′ (x∗R) > 1 always hold, i.e.
both x∗L and x∗R are repelling, when existing. Differently,
when W (x∗M ) = B (x∗M ) holds it must be a < aM , and
thus it is always T ′ (x∗M ) < 1, so that the fixed point
x∗M may be attracting (if T ′ (x∗M ) > −1) or repelling
(when T ′ (x∗M ) < −1). The stability condition for x∗M ,
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T ′ (x∗M ) > −1, holds for

(a− aM − µM )µM
aµM + δ (a− aM )

> −2 (10)

and clearly we have the condition at which a smooth flip
bifurcation of x∗M may occur (T ′ (x∗M ) = −1), given by

(a− aM − µM )µM
aµM + δ (a− aM )

= −2. (11)

Then let us discuss Scenarios 3 and 4. For Scenario 3:
let x∗L and x∗M be the only internal fixed points, which
occurs for W (d1) > B (d1) (from Theorem 1). Then,
by assumption no other fixed points in (x∗M , 1) can exist
and by continuity of W (x) and B (x) in I, it follows that
W (x) > B (x) for all x ∈ (x∗M , 1), i.e. T (x) < x, which
implies that x∗1 is repelling. The stability properties of
the other fixed points are already proved.

For Scenario 4: let us consider three internal fixed
points, which holds for B (d1) > W (d1) (from Theo-
rem 1). Then, since B (1) = W (1) and by linearity of
B (x) and W (x) in (d1, 1), we have B (x) > W (x) for
all x ∈ (dL, 1), i.e. T (x) > x. Since T is invariant in
I = [0, 1], the local stability of x∗1 follows. The stability
properties of the other fixed points are already proved.

Several examples of the dynamic scenarios listed in
Theorem 2 are shown in Figure 1 and Figure 2, as com-
mented below. This Theorem underlines that there is
only one equilibrium of non segregation, i.e. x∗M ∈
(dL, dR), which can be locally stable while the equilib-
rium of segregation x∗0 is always locally stable, which
means that the risk of segregation cannot be eliminated.
Such equilibrium of segregation can even be globally sta-
ble, which occurs (in Scenario 1) when there is an un-
balance distribution of preferences for integration be-
tween blacks and whites, with whites that have a higher
propensity for integration than blacks, i.e. W (x) > B (x)
∀x ∈ (0, 1), see e.g. Figure 1(first row). In this case the
willingness for integration of the whites is much higher
than the one of the blacks. This gap causes an incompat-
ibility of preferences between blacks and whites making
segregation the only possible outcome. Similar to what
observed by Shelling, see Schelling (1969) and Schelling
(1971), segregation occurs despite being a suboptimal
configuration of the population of the district, i.e. for
both blacks and whites the degree of satisfaction com-
ing from integration is higher than the one coming from
segregation. For example, according to Theorem 2, seg-
regation may occur for distributions of preferences such
that W (dR) > W (0) and B (dR) > B (0), i.e. when both
whites and blacks are better off in an integrated district.

This segregation dynamics, that sounds counter-
intuitive, can take the form of what in evolutionary
game theory is called spiteful behavior, see, e.g., Schaffer
(1989): the fraction of whites increases and the neigh-
borhood is tipped into a segregated one just because this
trend damages the blacks more than the whites them-
selves. In the end, it does not matter how large is the

level of satisfaction for integration of the two groups of
people, as long as whites have relative advantage over
blacks in terms of preferences for integration, the num-
ber of whites in the district will increase and the number
of blacks will decrease. This evolutionary dynamics of
segregation indicates that integration policies aimed at
increasing the degree of satisfaction of only one group of
people may not produce the desired effect. More effec-
tive are integration policies that aim to standardize the
desire of integration between the two populations.

Starting a comprehensive analysis of the possible pat-
terns of segregation, let us underline that the globally
stable equilibrium of segregation represents the first of
the four possible scenarios underlined in Theorem 2. The
second one occurs when W (x) > B (x) for all x ∈ (0, x∗ξ)

and W (x) < B (x) for all x ∈ (x∗ξ , 1), where x∗ξ , for

ξ ∈ {L,M,R}, is the unique fixed point of non seg-
regation, see an example in Figure 1(second row). In
terms of preferences for integration, the second scenario
describes a situation in which a district populated mainly
by whites is preferred by whites more than by blacks. On
the other way, a district populated by blacks is preferred
by blacks more than by whites. Theorem 2 specifies that
this configuration of preferences can only lead to seg-
regation. Depending on the initial configuration of the
population, segregation where either whites or blacks live
in the district is the final outcome of the residential pat-
terns.

So far, we have underlined that the individual prefer-
ences for integration are the main driving forces of seg-
regation. However, there are configurations of prefer-
ences, consistent with the empirical observations in Clark
(1991), that can admit forms of integration. It is the
case of Scenario 3 described in Theorem 2, where whites
have preferences higher than blacks for a district popu-
lated in large majority by blacks, W (x) > B (x) for all
x ∈ (x∗M , 1), while blacks prefer a district populated in
a certain measure by a mixture of the two populations
more than whites, W (x) < B (x) for all x ∈ (x∗L, x

∗
M ).

This configuration of preferences allows to have inte-
gration. Nevertheless, the empirically-observed positive
preferences of whites for living in a district populated
by color-like neighbors only and the zero preference that
blacks have for such a configuration, makes sure that a
district populated by whites is always a possibility (re-
call that x∗0 is always locally attracting) and the risk of
segregation cannot be eliminated, see e.g. Figure 2(first
row).

The fourth scenario in Theorem 2 is the more compli-
cated and uncertain one. In this case, blacks have a pref-
erence higher than whites for districts populated mainly
by blacks, while whites have a higher preference than
blacks for district mainly populated by whites. This con-
figuration guarantees that segregation, either all whites
or all blacks, can occur depending on the initial condi-
tions. Nevertheless, blacks have preferences higher than
whites for districts with a certain mixture of the two pop-
ulations, say B (x) > W (x) for all x ∈ (x∗L, x

∗
M ), and the
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situation is reversed when the percentage of blacks grows,
say W (x) > B (x) for all x ∈ (x∗M , x

∗
R). Depending on

the initial state, this configuration of preferences can al-
low to have an integration pattern. The attracting set
can take the form of a fixed point of non segregation, or
of periodic orbits (i.e. k-cycles with k > 1), or of a set
with complex behaviors. See e.g. Figure 2(second row)
and Figure 3(b). Let us point out that periodic orbits as
well as chaotic ones mean that in the long run the com-
position of the neighborhood is always changing, with
blacks as well as whites that continuously enter and exit
the neighborhood. Moving in and out is a costly activity
and it requires time, however this is not an issue as the
unit of time can be defined in accordance with the social
changes described by the model.

Theorem 2 provides useful insights of how different
configurations of the individual preferences for integra-
tion are responsible for the emergence of residential pat-
terns of integration/segregation. The information in-
cluded in this Theorem can be used to generate guidelines
indicating for which configurations of the distributions of
preferences, i.e. the third and the fourth scenarios, inte-
gration can occur. Nevertheless, in the third and fourth
scenarios the integration can be threatened by the con-
figuration of the basins of attraction, as well as by the
regions in the parameter space related to stability of the
non segregation fixed point x∗M and local or global bifur-
cations that make integration very sensitive to variations
in the initial conditions and in the parameter values of
the model. Moreover, map T can generate complicated
dynamics and unexpected results, which are however re-
lated to integration. In the following a global analysis of
the dynamics allows us to assess the fragility of the resi-
dential patterns of integration and a comparison with the
segregation dynamics of the Schelling’s model underlines
the robustness of our results.

IV. THE FRAGILE PATTERNS OF INTEGRATION:
BIFURCATION STRUCTURE AND GLOBAL DYNAMICS
OF THE MODEL

The two Theorems of the previous section determine
the conditions for the existence and local stability of the
equilibria of map T , but it is clearly of interest to inves-
tigate the dynamic behaviors and local as well as global
bifurcations that may occur, as some parameters of the
model are varied. Before analyzing the possible paths
and bifurcation diagrams let us describe the bifurcations
that regulate the transitions between the four scenarios
indicated in Theorem 2.

As we have seen from Theorem 1, a fixed point may
belong to any one of the intervals JL = (0, dL), JM =
(dL, dR) and JR = (dR, d1). The endpoints of the inter-
vals are the kink points and thus are considered as special
cases. That is, whenever a kink point is also fixed, re-
spectively periodic of any period, then a border collision
is occurring to the fixed point, respectively to the cycle.

First notice that from Scenario 1 without internal equi-
libria the appearance of the repelling fixed point x∗R can
occur only via a degenerate bifurcation of x∗1. That is,
a transition from repelling to attracting via a segment
of fixed points (case 3(a) in Theorem 1), occurring when
W (d1) = B (d1), that is, for

aL = − ad1
1− d1

(12)

which also implies W (x) = B (x) for any x ∈ [d1, 1].
While from point 1 in Theorem 1 it follows that the

appearance/disappearance of a pair of fixed points (x∗L
and x∗M or x∗M and x∗R) cannot occur via a smooth fold
bifurcation (since it would lead to a pair of equilibria in
one interval Jξ, for some ξ, which cannot occur), but
only via a fold BCB involving either the kink point dL,
occurring when W (dL) = B (dL) and related to the pair
of fixed points x∗L and x∗M , or involving the kink point
dR, occurring when W (dR) = B (dR) and related to the
pair of fixed points x∗M and x∗R. Summarizing, a fold
BCB can occur in two cases:

(i) Via a contact in dL when W (dL) = B (dL), at
which T (dL) = dL holds (i.e. dL(a − aL) = µL),
leading to the condition of fold BCB

F −BCBL : dL = dFB−L :=
µL

a− aL
(13)

at which the two equilibria of integration x∗L and
x∗M merge with dL and appear/disappear;

(ii) Via a contact in dR when W (dR) = B (dR), at
which T (dR) = dR holds (i.e. dR (a− aR) = −aR),
leading to the condition of fold BCB

F −BCBR : dR = dFB−R :=
−aR
a− aR

(14)

at which the two equilibria of integration x∗M and
x∗R merge with dR and appear/disappear.

As an example, we can see in Figure 3(a) a unique
internal fixed point x∗L ∈ JL which is repelling (from
Scenario 2 in Theorem 2). Here, reducing the parameter
dR a fold BCB occurs in the kink point dR, after which a
pair of new internal fixed points appear on the opposite
sides of dR, see Figure 3(b).

The bifurcation analysis so far conducted underlines
that when there is a unique equilibrium of non segrega-
tion (necessarily repelling, see again Scenario 2 in The-
orem 2), then a new pair of internal fixed points can
occur only via a fold BCB. As recalled in the Intro-
duction, it is also possible to detect the local stabil-
ity/instability of the fixed points related to a fold BCB.
In fact, by using the right and left slopes of the func-
tion T (x) at the kink point involved in the fold BCB, it
is possible to determine whether a fold BCB leads to a
pair of unstable internal fixed points or to an attracting
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x∗M (as the other equilibrium of integration is necessar-
ily repelling, see Theorem 2). In particular, in case (i)
where W (dL) = B (dL) and the border collision condi-
tion dL (a− aL) = µL holds, the right derivative of the
function T (x) in dL is

T ′+ (dL) = 1 + dL(1− dL)
a− aM
adL + δ

, where

aM =
−aR(1− dR)− adL

dR − dL
. (15)

Thus, for T ′+ (dL) > −1 (resp. T ′+ (dL) < −1) the fixed
point x∗M appears attracting (resp. repelling).

Similarly, in case (ii) where W (dR) = B (dR) and the
border collision condition dR (a− aR) = −aR holds, the
left derivative of function T (x) in dR is given by

T ′− (dR) = 1 + dR (1− dR)
a− aM
adR + δ

, where

aM =
adR − µL − aLdL

dR − dL
(16)

and for T ′− (dR) > −1 (resp. T ′− (dR) < −1) the fixed
point x∗M appears attracting (resp. repelling).

As specified in Theorem 2, the only equilibrium of in-
tegration that may be locally attracting is the fixed point
in the middle branch, x∗M . Despite its existence and sta-
bility, the real possibility to have integration depends on
the amplitude of its basin of attraction and on the am-
plitude of its existence/stability region in the parameter
space (that we shall consider below). In fact, coexist-
ing with at lest one stable equilibrium of segregation, the
amplitude of the basin of attraction of the equilibrium
of integration measures the real possibilities to observe
patterns of residential integration. Then, comparing the
four scenarios listed in Theorem 2, we conclude that the
chances of residential integration are greater in the case
of Scenario 3 where, considering for example the situa-
tion in Figure 2(first row), the basin of attraction of x∗M ,
i.e. B(x∗M ) = (x∗L, 1) with x∗L < 0.5, covers more than
half of the state space [0, 1].

The basin B(x∗M ) of x∗M (assuming it is attracting)
is reduced in the case of Scenario 4, since at most it is
given by the interval B(x∗M ) = (x∗L, x

∗
R). Considering

for example the situation in Figure 3(b), the equilibrium
of integration x∗M is stable but its basin of attraction,
B (x∗M ) = (x∗L, x

∗
R), is smaller than half of the state space

[0, 1].
Let us further point out that in Scenarios 3 and 4 the

possibilities of integration may decrease because discon-
nected basins of attraction appear through global bifur-

cation which may occur when a critical point (image of
finite rank of a kink point) merges with a fixed point,
also called contact bifurcation. This kind of bifurcation
changes the structure of the involved basins of attrac-
tion. For example, considering the case shown in Fig-
ure 2(second row), we can see the basin B (x∗0) = [0, x∗L)
while [x∗L, x

∗
R] is an invariant interval (since T (dL) < x∗R

and T (dR) > x∗L) with non segregated dynamics inside.
If the parameters are changed so to get T (dR) = x∗L
(contact bifurcation) after which T (dR) < x∗L, then
the interval [x∗L, x

∗
R] is no longer invariant and B (x∗0)

expands including also infinitely many intervals inside
(x∗L, x

∗
R). One more example is shown in Figure 3. In

Figure 3(b) we can see the basins B (x∗0) = [0, x∗L),
B (x∗M ) = (x∗L, x

∗
R), which is an invariant interval (since

T (dL) < x∗R), and B (x∗1) = (x∗R, 1]. In Figure 3(c), as
a consequence of the contact bifurcation occurring for
T (dL) = x∗R, we have T (dL) > x∗R and the basin B (x∗1)
expands, including a sequence of infinitely many intervals
in [x∗L, x

∗
R] accumulating to x∗L, so that the set of initial

conditions ultimately leading to segregation increases.
The above examples refer to cases of Scenario 4, for

which there are three internal fixed points of non segre-
gation, x∗L (repelling), x∗M and x∗R (repelling), and both
contact bifurcations (with the local maximum T (dL) and
the local minimum T (dR)) can occur, also one after the
other, expanding both the basins of segregation (B (x∗0)
and B (x∗1)) and therefore reducing the possibility of in-
tegrated dynamics. Differently, in the case of Scenario 3
when there are two internal fixed points of non segre-
gation, x∗L (repelling) and x∗M , see an example in Fig-
ure 2(first row), we have only two basins of attraction:
B (x∗0) = [0, x∗L) and the basin of bounded dynamics
(x∗L, 1), which includes all the points having non segre-
gated behavior. In fact, the limit set of the trajecto-
ries in (x∗L, 1) can include cycles, that is periodic orbits,
as well as aperiodic ones, but always inside the interval
(x∗L, T (dL)) (since necessarily T (dL) > x∗M ). Thus, the
transition to disconnected basin may occur only via the
transition T (dR) ≷ x∗L.

The following Theorem indicates the conditions related
to the occurrence of the contact bifurcations T (dL) = x∗R
and T (dR) = x∗L associated with disconnected basins of
attraction.

Theorem 3 Consider map T as defined in (6) and the
parameter conditions (2), (3) and (5), then:

1. In the case of Scenario 3 in Theorem 2 the basins of
attraction are disconnected if T (dR) < x∗L. More-
over, T (dR) = x∗L occurs for dR = dCB−R, where

dCB−R =
δ (aL − a) + 2µLaR +

√
(δ (a− aL)− 2µLaR)

2
+ 4µL ((a− aL) a+ µL (aR − a)) (δ − aR)

2 ((a− aL) a+ µL (aR − a))
; (17)

2. In the case of Scenario 4 in Theorem 2 the basins of attraction are disconnected if at least one of the
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FIG. 3. Graph of map T at a = 0.9, aL = −0.1, aR = −0.75, µL = 0.05, dL = 0.3 with dR = 0.46 in Panel (a), dR = 0.44
in Panel (b) and dR = 0.4 in Panel (c). In all panels, black dots are the locally attracting fixed points, empty dots are the
repelling ones and red dots represent the kink points dL, dR and d1. Moreover, the green region is the basin of attraction of
the equilibrium of integration x∗M , the blue region is the basin of attraction of the equilibrium of segregation x∗1 and the orange
interval is the basin of attraction of the equilibrium of segregation x∗0.

two inequalities T (dR) < x∗L and T (dL) > x∗R holds. T (dR) = x∗L occurs for dR = dCB−R given in (17)
while T (dL) = x∗R occurs for dL = dCB−L where

dCB−L =
δ (aR − a)− aR (aL − µL) +

√
(δ (a− aR)− aR (µL − aL))

2 − 4aR (a2 − aRaL) (µL + δ)

2 (a2 − aRaL)
. (18)

Theorem 3 underlines that the structure of the basins
of attraction of map T may be not so simple as reported
in Figure 2(second row). In the example shown in Fig-
ure 3(c), where there are three internal fixed points of
non segregation, x∗M is attracting, but T (dL) > x∗R and
thus the basins B (x∗M ) and B (x∗1) are no longer con-
nected. They are given by infinitely many disjoint inter-
vals accumulating to x∗L. The immediate basin of x∗M is

now bounded by x∗R and its rank-1 preimage x∗,−1R , i.e.

is given by the interval (x∗,−1R , x∗R), and the total basin
B (x∗M ) consists in this interval and all its preimages of
any rank. Similarly, the basin B (x∗1) includes the inter-
val (x∗R, 1] as well as infinitely many disjoint intervals,
preimages of (x∗R, T (dL)] accumulating to x∗L.

Due to the disconnected basins of attraction the pos-
sibility of residential segregation increases and the pos-
sibility of integration can even reduce to zero. In the
cases of Scenario 4, bounded integrated dynamics cer-
tainly exist when the interval [T (dR) , T (dL)] is invari-
ant (and thus B (x∗0) = [0, x∗L) while B (x∗1) = (x∗R, 1])).
Clearly, the fixed point of non segregation x∗M may lose
stability through a smooth flip bifurcation, and different
attracting sets may appear inside the absorbing interval
[T (dR) , T (dL)] in which the restriction of the map has
a bimodal shape. As a function of the parameters, one
of the two contact bifurcations indicated in Theorem 3

may generate disconnected basins of attraction, but still
with some bounded attracting sets of integrated dynam-
ics. When also the second one occurs (i.e. when both
the two inequalities T (dR) < x∗L and T (dL) > x∗R hold),
then the second contact has the effect of a final bifurca-
tion since inside the interval [T (dR) , T (dL)] (no longer
absorbing) only unstable sets are left, i.e. periodic or
aperiodic repellors. Thus the invariant set of integration
has a stable set of zero measure.

As in the classical Schelling’s model, disconnected
basins of attraction occur when the heterogeneity in the
distributions of preferences for integration of the two
groups of people increases and this reduces the possibility
to have a pattern of integration.

The sensitivity of the model to parameter configura-
tions is another fundamental aspect that influences in-
tegration. The amplitude of the stability region for the
equilibrium of residential integration in the parameter
space of the model is a second index of the robustness
of dynamic patterns of residential integration. Bifurca-
tion diagrams are a useful tool to study this aspect, both
one-dimensional, showing the state xt as one parameter
is varied, and two-dimensional, showing the bifurcation
structure of the model as a function of two relevant pa-
rameters.

So, provided a short overview of the bifurcations that
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occur in piecewise smooth systems, we study the dynam-
ics of our model when the equilibrium of segregation x∗M
loses stability, which is essential to have a glimpse into
the segregation patterns and to understand the robust-
ness of the solution of integration. To investigate this
aspect, let us consider the example of Scenario 4 in Fig-
ure 3(b) in which x∗M is stable and there are three in-
ternal fixed points and let us vary the two kink points
dL and dR. The two-dimensional bifurcation diagram so
obtained is shown in Figure 4, where clearly only the
region below the main diagonal is to be considered, i.e.
the region {(dR, dL) |0.5 ≥ dR > dL ≥ 0.1}. In this re-
gion of the parameter space we can study the transition
from Scenario 4 to Scenario 2, or the vice versa, and
the bifurcations that occur in these two scenarios, while
Scenarios 1 and 3 cannot occur for these values of the
parameters.

In Figure 4 the yellow color represents points of the
vector (dR, dL) of parameters related to convergence to
the fixed point x∗1 while the blue color represents conver-
gence to the fixed point x∗0 which we know are always
coexisting attractors for the values of the parameters we
are considering. For this constellation of the parameters,
from (14) we have that the fold BCB occurs with the
kink point dR at the value dFB−R = 0.45 (see the verti-
cal line marked as F − BCBR in Figure 4). Decreasing
dR and crossing this line we have the appearance of two
internal fixed points x∗R and x∗M . As we know, the first
one is always repelling while x∗M may be either attracting
or repelling, depending on the value of the left derivative
in (16). We shall come back to the cases related to both
repelling fixed points below, let us first analyze the case
related to a stable fixed point of integration.

For parameter points in the green colored region of Fig-
ure 4 the fixed point x∗M is attracting and it coexists with
the two stable equilibria of segregation x∗0 and x∗1 (as in
the situation shown in Figure 3(b)). The basins of attrac-
tion of these three equilibria may be simply connected or
not. As specified in Theorem 3, to have simply connected
basins the map must be invariant in the interval [x∗L, x

∗
R],

i.e. T ([x∗L, x
∗
R]) ⊆ [x∗L, x

∗
R], which implies dL < dCB−L

and dR < dCB−R. Thus, coming back to our example,
in the green region below the line dL = dCB−L (see the
line T (dL) = x∗R in Figure 4) the basins are connected,
and given by B (x∗M ) = (x∗L, x

∗
R), B (x∗0) = [0, x∗L) and

B (x∗1) = (x∗R, 1] while for dL > dCB−L in the green re-
gion the basins are given as in the example shown in Fig-
ure 3(c), i.e. B (x∗0) = (0, x∗L) while B (x∗M ) and B (x∗1)
consist of infinitely many disjoint intervals, which accu-
mulate to x∗L.

Starting in the green region and crossing its upper
boundary (see the curve ”s-flip x∗M” in Figure 4) the fixed
point x∗M becomes unstable via a smooth flip bifurcation.
Numerical investigations indicate that the bifurcation is
a supercritical flip, leading to an attracting cycle of pe-
riod 2, with periodic points in the middle branch, say
MM cycle, whose border collision with a kink point is
indicated by the line ”BC 2-cycle” in Figure 4, and will

be commented below.

To better illustrate the occurring bifurcations, let us
consider some one-dimensional bifurcation diagrams as
functions of dL. The one reported in Figure 5 illustrates
the asymptotic dynamics of the model when dL varies
along the red line in Figure 4, at dR = 0.25 fixed. The
ones in Figure 6 show the asymptotic dynamics of the
model when dL varies along the blue line in Figure 4, at
dR = 0.3 fixed, and along the dark green line in Figure 4,
at dR = 0.35 fixed.

These bifurcation diagrams underline that increasing
the parameter dL the fixed point x∗M becomes unsta-
ble via a supercritical smooth flip bifurcation, as stated
above, leading to an attracting 2-cycle with symbolic se-
quence MM , which in turn undergoes a border collision
due to the contact of the smallest periodic point with the
kink point dL. The effect of this border collision depends
on the two slopes of the second iterate T 2(x) at the kink
point dL, and can be deduced by using the skew-tent map
as a normal form. From Figure 4 we can see that when
the pink color persists, then the collision leads to a per-
sistent attracting 2-cycle with symbolic sequence LM , as
shown in Figure 5, otherwise the resulting attracting set
is different. In the two cases shown in Figure 6 the result
of the BCB of the 2-cycle is transition to 2-cyclic chaotic
intervals.

The bifurcation sequence observed in Figure 5 looks
similar to those observable in the skew-tent map, but
there are important differences due to the fact that here
the branches are smooth and not linear. The 2-cycle that
originates by supercritical flip bifurcation of x∗M under-
goes (increasing dL) a persistent BC (see also in Fig-
ure 7(a)), and (further increasing dL) a new pair of 2-
cycles having symbolic sequence LR and MR appear via
fold BCB, both repelling, as shown in Figure 7(b). As dL
increases, the stable 2-cycle undergoes a second smooth
flip bifurcation through which it loses stability and an at-
tracting 4-cycle with symbolic sequence LMLM appears,
see Figure 7(c), and this is something which cannot occur
in a piecewise linear map.

The attracting 4-cycle undergoes a BCB with the
largest periodic point merging with dR and this bifurca-
tion (shown in Figure 8(a)) leads to a chaotic attractor,
i.e. 4-cyclic chaotic intervals. In Figure 8(b) 4 chaotic
pieces can be seen which reduce to 2 chaotic pieces via
a merging bifurcation (see Sushko, Gardini, and Avrutin
(2016)) occurring at the homoclinic bifurcation of the un-
stable 2-cycle LM , as we can see in the enlargement of
Figure 5, and in Figure 8(c).

The 2-cyclic chaotic intervals persist up to an expan-
sion bifurcation (see Avrutin et al. (2014); Sushko, Gar-
dini, and Avrutin (2016)) which occurs when two critical
points on the boundary of the chaotic intervals merge
with the repelling 2-cycle with symbolic sequence LR, as
shown in the enlargement of Figure 5, and in Figure 9(a),
involving all the three branches below the kink point d1,
leading to a one-piece chaotic interval. The one-piece
chaotic interval persists up to the final bifurcation of the
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FIG. 4. Two-dimensional bifurcation diagram in the parameter plane {(dR, dL) |0.5 ≥ dR > dL ≥ 0.1} at a = 0.9, aL = −0.1,
µL = 0.05, aR = −0.75 fixed. In the blue (resp. yellow) the region in which the initial condition here used converges to x∗0
(resp. x∗1) (recall that the fixed points x∗0 and x∗1 are locally stable). In the green region x∗M is locally stable. The bifurcation
diagram has been obtained taking an initial condition close to the fixed point x∗M when existing (i.e. for dR < dFB−R = 0.45).

FIG. 5. One-dimensional bifurcation diagram along the red path in Figure 4, at dR = 0.25 and dL ∈ (0.1, 0.25), in Panel (a),
with enlargement, in Panel (b). The other parameters as in Figure 4.

chaotic attractor, see Figure 5(a) and Figure 9(b), which
here occurs at the contact bifurcation T (dL) = x∗R. This
final bifurcation breaks the invariance of T in the inter-
val [x∗L, x

∗
R], see Theorem 3, whose effect is here to de-

stroy the attracting set in the middle branch, leading to
a chaotic repellor (see Figure 9(c)). Thus, for larger val-
ues of dL an invariant set Λ with chaotic dynamics exists
in [x∗L, x

∗
R] and the two attracting sets are the equilib-

ria of segregation, with basins given by B (x∗0) = (0, x∗L)
and B (x∗1) = (x∗L, 1]\Λ which is thus characterized by a
fractal boundary.

The sequence of bifurcations through which the dy-
namics of integration change, underlines that integration
is quite an unstable outcome that is very sensitive to

the shapes of the distributions of preferences. Especially
the final bifurcation, through which the attracting pat-
tern of integration disappears, shows that distributions of
preferences for which three equilibria of integration exist,
namely Scenario 4 in Theorem 2, do not ensure the possi-
bility of an integrated neighborhood. Thus, a social plan-
ner that wants to maximize integration has to be aware
that people have to be educated to integration with-
out exacerbating people’s preferences for racially mixed
neighborhoods. In fact, extreme feelings are responsible
for overshooting dynamics, as disconnected basins of at-
traction, or final bifurcations, that increase the risk of
segregation.

To avoid segregation it is important to detect the ex-
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FIG. 6. One-dimensional bifurcation diagrams. In Panel (a) along the blue path in Figure 4, at dR = 0.3 and dL ∈ (0.1, 0.3).
In Panel (b) along the dark green path in Figure 4, at dR = 0.35 and dL ∈ (0.1, 0.35). The other parameters as in Figure 4.

FIG. 7. Graphs of map T in red and in black its second iterate T 2. Parameters as in Figure 5 and dL = 0.165 in Panel (a):
stable 2-cycle originated by smooth flip bifurcation of x∗M ; dL = 0.167 in Panel (b): example of fold BCB through which a pair
of 2-cycles appears, here both unstable; dL = 0.1675 in Panel (c): a stable 4-cycle originated via smooth flip bifurcation of the
2-cycle depicted in Panel (a).

act value at which a final bifurcation occurs (i.e. the
bifurcation leading only to segregation as attractors)
and it is not always coinciding with the contact bifur-
cation T (dL) = x∗R. For instance, the final bifurcation
of the chaotic attractor in the example shown in Fig-
ure 6(b) is of a different type with respect to the one
illustrated in Figure 6(a) and it occurs for larger val-
ues of dR. In fact, it occurs after the contact bifurca-
tion T (dL) = x∗R which breaks the invariance of T in
the interval [x∗L, x

∗
R] (and whose effect is to modify the

structure of the basins of the two attractors different
from x∗0). In Figure 10(a) we can see that (x∗,−1R , x∗R)
is the immediate basin of the one-piece chaotic attractor
[T (dR), T 2(dR)], and the final bifurcation occurs at the
contact T 2 (dR) = x∗R, here also homoclinic bifurcation
of x∗R, shown in Figure 10(b), where the chaotic interval

is [T (dR), T 2(dR)] = [x∗,−1R , x∗R]. After the bifurcation, a

chaotic repellor Λ of zero Lebesgue measure remains in
the interval [x∗,−1R , x∗R].

This second type of final bifurcation explains also the
difference between the white and the yellow region when
crossing the vertical line dR = dFB−R

(
= 0.45

)
in Fig-

ure 4, which is the fold BCB through which two more
internal fixed points x∗M and x∗R appear, and x∗M can
be either attracting or repelling. As already remarked,
crossing the vertical line dR = dFB−R and entering the
green region, the fixed point x∗M is attracting. Differ-
ently, crossing the same line entering in the white or yel-
low region (as in the points P1 and P2 of Figure 4) the
two new fixed points that appear at the fold BCB are
both repelling. The difference between the two transi-
tions (to the white or yellow region) is in the appearance
of a chaotic attractor or of a chaotic repellor, as shown in
Figure 11. In Figure 11(a), where T 2(dR) < x∗R, a chaotic
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FIG. 8. Graphs of map T in red and in black its second iterate T 2. Parameters as in Figure 5 and dL = 0.1686 in Panel (a):
BCB of the stable 4-cycle, leading to 4-cyclic chaotic intervals shown in Panel (b) where dL = 0.17; dL = 0.1715 in Panel (c):
merging bifurcation leading to two chaotic intervals, homoclinic bifurcation of the 2-cycle LM at which the 4 pieces of the
4-cyclic chaotic intervals shown in Panel (b) merge.

FIG. 9. Parameters as in Figure 5 and dL = 0.1777 in Panel (a): the attractor consists in one-piece chaotic interval appeared
through an expansion bifurcation at dL = 0.1776, homoclinic bifurcation of the 2-cycle LR after which the chaotic set expands
to [T (dR), T (dL)]; Panel (b) at dL = 0.245: final bifurcation at T (dL) = x∗R; dL = 0.246 in Panel (c): after the final bifurcation
almost all the trajectories in (x∗L, 1] are converging to the segregation equilibrium x∗ = 1 except for a chaotic repellor Λ of zero
measure.

interval [T (dR), T 2(dR)] exists in (x∗,−1R , x∗R) and it is at-
tracting, while in Figure 11(b), where T 2(dR) > x∗R, a

chaotic repellor exists in (x∗,−1R , x∗R).
The second contact bifurcation indicated in Theorem 3

occurs at dR = dCB−R, when T (dR) = x∗L, and it is
relevant at low values of dR, as it is evident from Fig-
ure 4. The bifurcation diagram in Figure 12(a) shows
this bifurcation. Here dL = 0.12 is fixed and dR varies in
the interval (dL, d1). For dR slightly larger than dCB−R,
a stable chaotic interval exists. This attracting chaotic
interval appears/disappears through the contact bifurca-
tion occurring at dR = dCB−R = 0.145. Decreasing dR
(starting with dR > dCB−R), the chaotic attractor be-
comes a chaotic repellor on the boundary of the equilib-
rium, so-called final bifurcation. Vice versa, increasing
dR, (starting with dR < dCB−R) a chaotic repellor be-

comes a chaotic attractor. After the contact (here homo-
clinic bifurcation of x∗L), for dR < 0.145, it is the basin
of attraction of x∗0 which becomes wider and with a frac-
tal boundary. In fact, after the contact an invariant set
Λ with chaotic dynamics exists in [x∗L, x

∗
R] and the two

attracting sets are the two equilibria of segregation, with
basins given by B (x∗0) = (0, x∗R) \Λ, which is thus char-
acterized by a fractal boundary, and B(x∗1) = (x∗R, 1).

Let us conclude the bifurcation analysis of the model
by underlining the complex interplay between smooth
bifurcations and BCBs which can be appreciated from
the case shown in Figure 12(b) with enlargement in Fig-
ure 12(c). Here, for dL = 0.18 fixed and varying dR
in the interval (dL, d1), it is shown that decreasing dR
the 2-cycle MM born at the smooth flip bifurcation of
the fixed point x∗M also undergoes a cascade of smooth
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FIG. 10. Parameters as in Figure 6 and dL = 0.26 in Panel (a): disconnected basins of two attractors consisting in one-piece
chaotic interval and x∗ = 1; Panel (b) at dL = 0.27: after the final bifurcation occurring when T 2 (dR) = x∗R, almost all the
trajectories in (x∗L, 1] are converging to the segregation equilibrium x∗ = 1 except for a chaotic repellor Λ of zero measure.

FIG. 11. Parameters as in Figure 4, dR = dFB−R = 0.45 and two values of the vector (dR, dL) given by P1 = (dFB−R, 0.39) and
P2 = (dFB−R, 0.41) which are indicated in the two-dimension bifurcation digram of Figure 4. Panel (a), the result of the fold
BCB in P1 leading to a one-piece chaotic attractor. Panel (b), the result of the fold BCB in P2 leading to a chaotic repellor.

bifurcations and BCBs. Worth mentioning is also the at-
tracting 2-cycle LM visible in Figure 12(b), which is here
born differently from the cases shown above, that is, via
a fold BCB of the second iterate T 2 at the kink point
d = dR leading to a pair of 2-cycles, LM attracting (vis-
ible in Figure 12(f)) and LR repelling, and this is typical
of a bimodal map. This repelling 2-cycle LR is also re-
sponsible of the expansion bifurcation of the two-pieces
chaotic attractor into a one-piece, as shown in the inset
at dR = 0.252.

The conducted investigation of the local and global dy-
namics of the model reveals the different ways in which
stable dynamics of integration appear and evolve. That
is, fixed points of integration appear, stable or unsta-
ble, and different forms of patterns of integration may
exist, showing the complicated dynamics related to an
integrated neighborhood. These aspects have normative
implications for a policy maker that wants to promote

integration. In this respect, one aspect deserves partic-
ular attention and it is the shape of the distributions of
preferences for integration. The bifurcation diagrams,
reported and described in this section, show that the
equilibrium of integration loses stability when dL and
dR get close. This implies that the distribution of prefer-
ences of whites has a minimum point close to a maximum
point, i.e. a sharp change in the degree of satisfaction for
neighborhoods with similar compositions of the popula-
tion. In this case the dynamics of the model can show a
fast convergence to segregation. A route to segregation
that is similar to the one of the threshold behavior of
the Schelling’s models. A more even distribution of pref-
erences for integration of whites may avoid such macro
pattern of segregation. A finding that is confirmed by
empirical evidences, see, e.g., Bruch and Mare (2006).
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FIG. 12. Bifurcation diagrams varying dR. Parameters as in Figure 4 and dL = 0.12 with dR ∈ (0.12, 0.5) in Panel (a),
dL = 0.18 with dR ∈ (0.18, 0.5) in Panel (b), with an enlargement in Panel (c) for dR ∈ (0.283, 0.286). Inset for Panel (a) at
dR = 0.145: final bifurcation. Insets for Panel (b) at dR = 0.252: expansion bifurcation of the two-pieces chaotic attractor into
a one-piece chaotic attractor, and at dR = 0.27: soon after the fold BCB related to a pair of 2-cycles, one attracting and one
repelling.

V. CONCLUSIONS

Residential segregation is observed in many metropoli-
tan areas of the western society despite people express
their preferences for integration. The dynamic models
proposed by Schelling, see e.g. Schelling (1969, 1971),
provide a theoretical explanation for the discrepancies
between macro patterns of segregation and individual
preferences for integration. Schelling’s models are based
on tolerances and on the threshold behavior according to
which people change the residential location if the racial
composition of the district crosses the threshold level of
tolerance and enter otherwise.

In the current paper, we propose an evolutionary ver-
sion of the Schelling’s model where agents decide their
residential location according to their individual distri-
butions of preferences which represent their payoff func-
tions. Agents’ location decision is modeled by a replica-
tor dynamics according to which agents chase the best
relative performance. Despite the differences, our evolu-
tionary game shows patterns of segregation that are simi-
lar to the segregation dynamics of the Schelling’s models.
In fact, it shows that segregation, despite being a sub-
optimal equilibrium of the game, is stable and a racially
diverse neighborhood is possible only for peculiar con-
figurations of the distributions of preferences and, even

when it exists, it is highly sensitive to parameter varia-
tions and initial conditions. Then, our analysis provides
an evolutionary justification to the segregation dynamics,
showing that segregation can arise through the so-called
spiteful behaviors, see, e.g., Massey and Denton (1987).

Compared to the Schelling’s neighborhood-tipping
model, which is a two-dimensional dynamical system, see,
e.g., Bischi and Merlone (2011), the evolutionary game
here proposed takes the form of a one-dimensional map.
It is continuous and piecewise smooth, with two kink
points which highly influence the observed dynamics.

We have performed the detailed analysis of the possible
fixed points of non segregation, and the related stability,
showing that only one equilibrium of integration can be
stable. Moreover, when the equilibrium is repelling, in-
teresting integrated dynamics may exist, and we have
described the relevant bifurcations depending on two pa-
rameters (the two kink points of the map). By using the
piecewise smooth character of the model some bifurca-
tions can be explained, such as the BCBs related to the
fixed points, which are global bifurcations or homoclinic
bifurcations related to disconnected basins of attraction;
the final bifurcation (since it leads to no attracting inte-
grated dynamics); as well as some new bifurcation struc-
tures still to be investigated in detail, since the interplay
between smooth bifurcations and border collision bifurca-
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tions is a new subject which deserve attention from the
Scholars.

Let us finally point out that our one-dimensional model
can be easily generalized by introducing for example a
third group of agents, such as the Asian or the Hispanic
population. This would be an interesting extension of
the current model that can help to shed some lights on
the reasons behind the high levels of segregation that
concern the blacks and the small levels of segregation
that involve the Hispanic or Asian population in the U.S.
metropolitan areas, see, e.g., Massey and Denton (1987).
Sociologists ascribe the higher level of integration of the
Hispanics to their distribution of preferences for integra-
tion that differs from the one of the blacks and is similar
to the one of the whites, see, e.g., Clark (1991). We leave
for future works the description and analysis of a model
with three groups of agents, such as blacks, whites and
Hispanics, which allows to verify this conjecture at least
at a theoretical level. At the same time, in future works
the agents’ decision mechanism can be modified to take
into account the costs of changing residence, such as find
a new flat to rent, modify habits, leave people and, even-
tually, this cost function can be described by an increas-
ing function with respect to the number of movements.
Alternatively, it would be interesting to consider that, af-
ter each movement, an agent revises her/his preference,
for instance by becoming more tolerant instead of moving
again.
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