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We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market
comprised of homogeneous producers that operate as adapters by taking the (expected) profit-maximising quantity as a target
to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the
economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1) if the elasticity of
market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2) if the elasticity of market
demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle) is
high enough.

1. Introduction

Time series of prices of nonstorable goods are observed on
a daily basis and are subject to strong fluctuations, while
production of such commodities requires a longer time
period (for instance, from sowing to harvest with regard to
agricultural ones). The cobweb model, originally developed
byKaldor [1] with linear supply and demand, (see also Ezekiel
[2].) has been extensively investigated in a discrete time
deterministic context (e.g., [3–8]). (For a stochastic version
of a discrete time cobweb model see Brianzoni et al. [9].)
It essentially served to explain the reasons why prices of
commodities in the agricultural sector fluctuate over time.
According to that model, farmers operate in a market where
production must be chosen before prices are observed (i.e.,
there exists a time lag in supply). Producers’ choices, there-
fore, depend on prices they expect to prevail at harvest time.
By assuming that farmers take the current price as an estimate
of the expected price (static expectations), stability of the
market equilibrium is shown to depend on relative elasticities
of supply and demand. Assume that farmers plant wheat and
corn at a certain date, and they are forced to sell their entire
production. If they expect that the price of wheat will be high
and that of corn low, theywill plant a large amount of wheat in
the future. Nevertheless, it is possible thatmarket interactions

between supply and demand (or, alternatively, other reasons
related, for instance, to unexpected weather events and so on;
see [9]) do cause a price for wheat lower than the expected
one. As a consequence, producers’ decisions will be modified
accordingly giving rise to price fluctuations. The traditional
cobweb model with static expectations, therefore, represents
a very useful tool for the analysis of price dynamics. However,
only three different kinds of phenomena can be observed
if supply and demand are linear: convergence towards the
steady-state equilibrium, cycle of period two, and unbounded
fluctuations.

The interest in the study of price dynamics has led
Hommes [3] to extend the discrete time cobweb model
by introducing adaptive expectations (Adaptive expectations
have been introduced in the original cobweb model by
Nerlove [10].) and nonlinear supply and demand curves. In
his work, he showed that chaotic behaviours in prices can
occur even if supply and demand are monotonic. (Artstein
[11] and Jensen and Urban [12] found that chaotic price
dynamics can arise also in the model with static expectations
if either the supply curve or demand curve is nonmonotonic.)
Subsequently, Gallas and Nusse [13] have deepened some
mathematical properties of that model with adaptive expec-
tations, while Mammana and Michetti [14, 15] have analysed
the role of memory and expectations in such a context.
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By considering quantity instead of price as the main
variable, Onozaki et al. [4, 5] provided examples of the impor-
tance of behaviours other than rational expectations as
a source of complex dynamics in the cobweb model. In
particular, the former paper takes into account adaptive
adjustments on the quantity produced instead of adaptive
expectations on prices (as in [3]). With this behavioural rule,
farmers partially adjust production in the direction of the
best response (represented by the quantity that maximises
expected profits). By assuming a nonlinear (monotonic)
market demand, they showed—by using the Homoclinic
PointTheorem—that topological chaos can occur in a model
whose dynamics is characterised by a one-dimensional map.
From an economic point of view, chaos occursmore likely the
faster suppliers adjust production and the more inelastic the
market demand is.The latter paper extends the former one by
introducing behavioural heterogeneity of producers.

To capture in a better way the functioning of a market
whose price fluctuations are observed on a daily basis, this
paper extendsOnozaki et al.’s [4] by considering a continuous
time cobweb model with discrete time delays. The time delay
is introduced to describe a specific aspect of agricultural
commodity markets: the production cycle of nonstorable
goods, in fact, is elapsed from sowing time to harvest time
(see [16], for an analysis of a continuous time cobweb model
with time delays). In this paper, we consider an economywith
consumers whose marginal willingness to pay is determined
by an isoelastic demand, and homogeneous farmers that face
quadratic costs. Producers behave as adapters and take into
account the profit maximising quantity as a target to adjust
production.The dynamics of the economy is characterised by
a single delay differential equation. In this context, we show
that (1) if the elasticity of market demand is sufficiently high,
the steady-state equilibrium is locally asymptotically stable
(prices adequately react to clear the market) and (2) if the
elasticity of market demand is sufficiently low, quasiperiodic
oscillations emerge when the time lag (that represents the
length of production cycle) is high enough.

The rest of the paper is organised as follows. Section 2
sets up the cobweb model with homogeneous producers
that operate as adapters. Section 3 characterises local stability
properties and local bifurcations of equilibria of the result-
ing one-dimensional delay differential equation. Section 4
studies stability properties and the direction of the Hopf
bifurcation. Section 5 provides some numerical experiments
to validate the theoretical results established in previous
sections. Section 6 outlines the conclusions.

2. The Model

We consider a continuous time version with discrete time
delays of the model developed by Onozaki et al. [4]. There
exist 𝑛 > 0 identical and competitive firms that operate
in the agricultural sector. We assume that the technology
of production requires a period of time 𝜏 to bring the
production process to completion and get products to the
market. The quantity that maximises the expected profit at

time 𝑡 is solution of the following problem referred at time
𝑡 − 𝜏:

max
{𝑞(𝑡)≥0}

Π
𝑒
(𝑡) = max

{𝑞(𝑡)≥0}

{𝑝
𝑒
(𝑡) 𝑞 (𝑡) −

𝑏

2

[𝑞 (𝑡)]
2
} , (1)

where 𝑏 > 0 is a constant parameter and 𝑝
𝑒
(𝑡), 𝑞(𝑡), and

𝑏[𝑞(𝑡)]
2
/2 are the price expected at time 𝑡, the quantity of the

agricultural good, and the quadratic cost function referred at
time 𝑡, respectively. It is important to note that expectations
on prices do appear in (1). This is because the price that will
prevail at time 𝑡 is not known at the time the maximisation
problem of expected profits is referred; that is, 𝑡 − 𝜏. Assume
now that producers have static expectations on prices; that is,
𝑝
𝑒
(𝑡) = 𝑝(𝑡 − 𝜏). Then, maximisation programme (1) gives

𝑞 (𝑡) =

𝑝 (𝑡 − 𝜏)

𝑏

. (2)

Let firms be (expected) profit maximisers and use the
quantity that corresponds tomaximum expected profits, 𝑞(𝑡),
as a target to adjust production choices. In particular, if the
quantity produced at time 𝑡 is smaller (resp., greater) than
𝑞(𝑡), farmers will increase (resp., reduce) production. Then,
we assume the following behavioural rule for production
decisions of each single farmer:

̇𝑞 (𝑡) = 𝛼 [𝑞 (𝑡) − 𝑞 (𝑡)] , (3)

where 0 < 𝛼 < 1 is the speed of adjustment. This rule can be
interpreted as a precautionary behaviour with respect to the
evolution of the market price. (See Brock and Hommes [17],
Bischi et al. [18, 19], Chiarella et al. [20], and Fanti et al. [21]
for different behavioural rules of economic agents without
rational expectations.)

Since there are 𝑛 homogeneous firms, aggregate supply
can easily be determined as follows:

𝑥 (𝑡) = 𝑛𝑞 (𝑡) . (4)

With regard to consumers’ side, by following Fanti et al.
[22], we assume the existence of a continuum of identical
consumers whose preferences towards both the agricultural
commodity 𝑦 (whose price is 𝑝) and numeraire good 𝑤

(whose price is normalised to one without loss of generality),
produced by competitive firms, are represented by the follow-
ing quasilinear utility function:

𝑉 (𝑦, 𝑤) = 𝑈 (𝑦) + 𝑤, (5)

with

𝑈(𝑦) =

{
{

{
{

{

𝑐𝑦
1−𝛽

1 − 𝛽

, if 𝛽 > 0,

cln (𝑦) , if 𝛽 = 1.

(6)

Here, 1/𝛽 is the constant demand elasticity and 𝑐 > 0 rep-
resents the extent of market demand. The representative
consumer maximises utility function (6) subject to budget
constraint 𝑝𝑦 + 𝑤 = 𝑀, where 𝑀 > 0 is the exogenous
nominal income of the consumer (𝑀 is assumed to be
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sufficiently high to avoid the existence of corner solutions).
This maximisation programme implies that the isoelastic
inverse demand of good 𝑦 is determined as follows:

𝑝 = {

𝑐𝑦
−𝛽
, if 𝛽 > 0,

𝑐𝑦
−1
, if 𝛽 = 1.

(7)

Therefore, the market demand of the agricultural commodity
at time 𝑡 is the following:

𝑝 (𝑡) =

𝑐

[𝑦 (𝑡)]
𝛽
. (8)

Market equilibrium, therefore, implies that aggregate
demand equals aggregate supply, that is, 𝑥(𝑡) = 𝑦(𝑡) for any 𝑡.
Then, by using (2)–(8) we find the following delay differential
equation that characterises the dynamics of the model: (See
Haldane [23] for a pioneering contribution on the use of delay
differential equations applied to a model of price dynamics.)

𝑥̇ = −𝛼𝑥 + 𝛼c𝑛𝑏−1𝑥−𝛽
𝑑
, (9)

where 𝑥𝑑 := 𝑥(𝑡 − 𝜏).

3. Existence of Equilibria and Local
Bifurcations

The steady-state equilibrium of (9) satisfies 𝑥𝑑 = 𝑥 = 𝑥∗

for all 𝑡 so that the time derivative vanishes identically. It
is immediate that equilibria of (9) coincide with those for
𝜏 = 0. Direct calculations show the existence of a unique
positive equilibrium 𝑥∗ such that 𝑏𝑥𝛽+1

∗
= 𝑐𝑛. Linearization

of (9) in the neighbourhood of this equilibrium produces the
following equation:

𝑥̇ = −𝛼 (𝑥 − 𝑥∗) − 𝛼𝛽 (𝑥𝑑 − 𝑥∗) . (10)

The corresponding characteristic equation therefore is

𝑃 (𝜆, 𝜏) = 𝜆 + 𝛼 + 𝛼𝛽𝑒
−𝜆𝜏

= 0. (11)

When there is no delay, that is, 𝜏 = 0 in (11), the characteristic
equation becomes 𝑃(𝜆, 0) = 𝜆 + 𝛼 + 𝛼𝛽 = 0. Hence, 𝑥∗ is
locally asymptotically stable since 𝜆 = −𝛼(1 + 𝛽) < 0.

Assumenow that 𝜏 > 0 in (11).Wewill investigate location
of the roots of the transcendental equation. First, we examine
when this equation has zero or pure imaginary roots. Now, it
is immediate that the former cannot occur.

Lemma 1. Let 𝛽 > 1. The characteristic equation (11)
associated with (9) has a pair of purely imaginary roots 𝜆 =

±𝑖𝜔0 at a sequence of critical values 𝜏𝑗, where

𝜔0 = 𝛼√𝛽
2
− 1, (12)

𝜏𝑗 =

1

𝜔0

[arctan(−√𝛽2 − 1) + (2𝑗 + 1) 𝜋] ,

𝑗 = 0, 1, 2, . . . .

(13)

Proof. Let 𝜆 = 𝑖𝜔 be a root of the characteristic equation
(11) where 𝜔 > 0. Substituting this in (11), separating real
and imaginary parts of the resulting equation, we obtain the
solution of (11) as follows:

𝜔 = 𝛼𝛽 sin𝜔𝜏, 𝛼 = −𝛼𝛽 cos𝜔𝜏. (14)

This leads to

𝜔
2
= 𝛼
2
(𝛽
2
− 1) . (15)

It is immediate to see that if 𝛽 > 1 holds, then (15) has
only one positive root. Next, from (14) one obtains the critical
values 𝜏𝑗 by noting that −𝜔0/𝛼 < 0.

Lemma 2. 𝜆 = 𝑖𝜔0 is a simple purely imaginary root of
the characteristic equation (11) and all the other roots 𝜆 ̸= 𝑖𝜔0

satisfy 𝜆 ̸= 𝑖𝑚𝜔0 for any integer𝑚.

Proof. If 𝜆 = 𝑖𝜔0 were not simple, that is, 𝑃(𝑖𝜔0, 𝜏𝑗) =

𝑃
󸀠
(𝑖𝜔0, 𝜏𝑗) = 0, then we would have 1 + 𝛼𝜏𝑗 + 𝑖𝜔0𝜏𝑗 = 0,

which is a contradiction. In order to establish the last part
of the lemma, let us suppose there exists a root 𝜆𝑚 such that
𝑃(𝜆𝑚, 𝜏0) = 0 and 𝜆𝑚 = 𝑖𝑚𝜔0, for some 𝑚 ̸= 0, ±1. From
(14), we get 𝑚2𝜔2

0
= 𝛼
2
(𝛽
2
− 1) = 𝜔

2

0
, namely, 𝑚2 = 1. This

completes the proof.

Lemma 3. The following transversality condition:

𝑑 (Re 𝜆)
𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏𝑗

> 0 (16)

is satisfied.

Proof. Let 𝜆(𝜏) = ](𝜏) + 𝑖𝜔(𝜏) denote the roots of (11) near
𝜏𝑗 satisfying the conditions ](𝜏𝑗) = 0 and 𝜔(𝜏𝑗) = 𝜔0.
Differentiating the characteristic equation (11) with respect to
𝜏, using (11), and solving for 𝑑𝜆/𝑑𝜏 term, we get

𝑑𝜆

𝑑𝜏

= −

(𝜆 + 𝛼) 𝜆

1 + (𝜆 + 𝛼) 𝜏

. (17)

This gives

(

𝑑𝜆

𝑑𝜏

)

−1

= −

1

𝜆 (𝜆 + 𝛼)

−

𝜏

𝜆

. (18)

Hence, we have

sign{ 𝑑 (Re 𝜆)
𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏𝑗

} = sign{Re(𝑑𝜆
𝑑𝜏

)

−1

𝜏=𝜏𝑗

}

= sign{ 1

𝜔
2

0
+ 𝛼
2
} > 0.

(19)

The previous lemma implies that the root of characteristic
equation (11) near 𝜏𝑗 crosses the imaginary axis from the left
to the right as 𝜏 continuously varies from a number less than
𝜏𝑗 to one greater than 𝜏𝑗 by Rouché’s theorem.
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Figure 1: Stability and instability regions in (𝛽, 𝜏) space are depicted
in green and blue, respectively. According to Theorem 5, on the left
of the dotted line the equilibrium is locally asymptotically stable for
any 𝜏. Parameter set: 𝛼 = 0.4, 𝑐 = 0.77, 𝑛 = 1, and 𝑏 = 0.3.

Proposition 4. If 𝜏 ∈ [0, 𝜏0), all roots of (11) have negative real
parts. If 𝜏 = 𝜏0, all roots of (11) except 𝜆 = ±𝑖𝜔0 have negative
real parts. If 𝜏 ∈ (𝜏𝑗, 𝜏𝑗+1), for 𝑗 = 0, 1, 2, . . ., (11) has 2(𝑗 + 1)

roots with positive real parts.

Summing up, we can state the following results (see
Figure 1).

Theorem 5. Let 𝜔0 and 𝜏𝑗 be defined as in (12) and (13),
respectively. For (9), the following statements are true.

(1) If 𝛽 ≤ 1, the positive equilibrium 𝑥∗ is locally asymp-
totically stable for all 𝜏 ≥ 0.

(2) If 𝛽 > 1, the positive equilibrium 𝑥∗ is locally asymp-
totically stable for 𝜏 ∈ [0, 𝜏0) and unstable for 𝜏 > 𝜏0.

(3) If𝛽 > 1, (9)undergoes aHopf bifurcation at the positive
equilibrium 𝑥∗ when 𝜏 = 𝜏𝑗, 𝑗 = 0, 1, 2, . . ..

4. Stability and Direction of the
Hopf Bifurcation

In the previous section we have obtained conditions for Hopf
bifurcation to occur when 𝜏 = 𝜏𝑗, 𝑗 = 0, 1, 2, . . .. In this
section we will study direction, local stability, and period of
these periodic solutions bifurcating from equilibrium 𝑥∗ at
these critical values of 𝜏. The method used here is based on
the normal form and center manifold theory introduced by
Hassard et al. [24]. Without loss of generality, we will inves-
tigate the critical value 𝜏 = 𝜏0 at which (9) undergoes a Hopf
bifurcation from 𝑥∗. For convenience, let 𝜏 = 𝜏0 + 𝜇, 𝜇 ∈ R.
Then 𝜇 = 0 is the Hopf bifurcation value for (9). Setting

𝑢 = 𝑥 − 𝑥∗, then expanding (9) into first, second, third, and
other higher-order terms at the trivial equilibrium gives

𝑢̇ = −𝛼𝑢 − 𝛼𝛽𝑢𝑑 +

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝑢
2

𝑑

−

𝛼𝛽 (𝛽 + 1) (𝛽 + 2) 𝑥
−2

∗

6

𝑢
3

𝑑
+ ⋅ ⋅ ⋅ .

(20)

For 𝜑 ∈ 𝐶([−𝜏0, 0],R), let

𝐿𝜇 (𝜑) = −𝛼𝜑 (0) − 𝛼𝛽𝜑 (−𝜏) ,

𝑓 (𝜑, 𝜇) =

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝜑(−𝜏)
2

−

𝛼𝛽 (𝛽 + 1) (𝛽 + 2) 𝑥
−2

∗

6

𝜑(−𝜏)
3
+ ⋅ ⋅ ⋅ .

(21)

By the Riesz representation theorem, there is a bounded
variation function 𝜂(𝜃, 𝜇) in 𝜃 ∈ [−𝜏0, 0] such that

𝐿𝜇𝜑 = ∫

0

−𝜏0

𝑑𝜂 (𝜃, 𝜇) 𝜑 (𝜃) for 𝜑 ∈ 𝐶 ([−𝜏0, 0] ,R) . (22)

In fact, we can choose

𝜂 (𝜃, 𝜇) = −𝛼𝛿 (𝜃 + 𝜏) − 𝛼𝛽𝛿 (𝜃 + 𝜏) , (23)

where 𝛿 is the Dirac delta function. For 𝜑 ∈ 𝐶([−𝜏0, 0],R),
we set

𝐴 (𝜇) (𝜑) =

{
{
{
{

{
{
{
{

{

𝑑𝜑 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−𝜏0, 0) ,

∫

0

−𝜏0

𝑑𝜂 (𝑟, 𝜇) 𝜑 (𝑟) , 𝜃 = 0,

𝑅 (𝜇) (𝜑) = {

0, 𝜃 ∈ [−𝜏0, 0) ,

𝑓 (𝜇, 𝜑) , 𝜃 = 0.

(24)

Then (20) can be rewritten as

𝑢̇𝑡 = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡, (25)

where 𝑢𝑡 = 𝑢(𝑡 + 𝜃), for 𝜃 ∈ [−𝜏0, 0]. For 𝜓 ∈ 𝐶([0, 𝜏0],R),
define

𝐴
∗
(𝜇) 𝜓 (𝑟) =

{
{
{
{

{
{
{
{

{

−

𝑑𝜓 (𝑟)

𝑑𝑟

, 𝑟 ∈ (0, 𝜏0] ,

∫

0

−𝜏0

𝑑𝜂 (𝑟, 𝜇) 𝜓 (−𝑟) , 𝑟 = 0.

(26)

For 𝜑 ∈ 𝐶([−𝜏0, 0],R) and 𝜓 ∈ 𝐶([0, 𝜏0],R), using the
bilinear form

⟨𝜓, 𝜑⟩ = 𝜓 (0) 𝜑 (0) − ∫

0

𝜃=−𝜏0

∫

𝜃

𝑟=0

𝜓 (𝑟 − 𝜃) 𝑑𝜂 (𝜃, 0) 𝜑 (𝑟) 𝑑𝑟,

(27)

we know that 𝐴∗ and 𝐴 = 𝐴(0) are adjoint operators. By the
discussion in Section 3, we know that ±𝑖𝜔0 are eigenvalues of
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𝐴. Thus, they are eigenvalues of 𝐴∗. Clearly, ℎ(𝜃) = 𝑒
𝑖𝜔0𝜃 is

an eigenvector of 𝐴 corresponding to the eigenvalue 𝑖𝜔0, and
ℎ
∗
(𝑠) = 𝐷𝑒

𝑖𝜔0𝑠 is an eigenvector of 𝐴∗ corresponding to the
eigenvalue −𝑖𝜔0, where

𝐷 =

1

1 − 𝛼𝛽𝜏0𝑒
𝑖𝜔0𝜏0

. (28)

Hence, we have ⟨ℎ∗, ℎ⟩ = 1 and ⟨ℎ∗, ℎ⟩ = 0.
Using the same notations as in Hassard et al. [24], we first

compute coordinates to describe the center manifold 𝐶0 at
𝜇 = 0. Let 𝑢𝑡 be the solution of (20) when 𝜇 = 0. Define

𝑧 (𝑡) = ⟨ℎ
∗
, 𝑢𝑡⟩ , 𝑊 (𝑡, 𝜃) = 𝑢𝑡 (𝜃) − 2Re {𝑧 (𝑡) ℎ (𝜃)} .

(29)

On the center manifold 𝐶0, we have 𝑊(𝑡, 𝜃) = 𝑊(𝑧(𝑡),

𝑧(𝑡), 𝜃), where

𝑊(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = 𝑊20 (𝜃)

𝑧
2

2

+𝑊11 (𝜃) 𝑧𝑧

+𝑊02 (𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

(30)

where 𝑧 and 𝑧 are local coordinates for the center manifold
𝐶0 in the direction of ℎ∗ and ℎ

∗

, respectively. For solution
𝑢𝑡 ∈ 𝐶0 of (25), since 𝜇 = 0, we have

𝑧̇ (𝑡) = ⟨ℎ
∗
, 𝑢̇𝑡⟩ = 𝑖𝜔0𝑧 + ℎ

∗

(0) 𝑓0 (𝑧, 𝑧) ,
(31)

where

𝑓0 (𝑧, 𝑧) = 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 0) + 2Re {𝑧 (𝑡) ℎ (0)}) . (32)

Rewrite (31) as

𝑧̇ (𝑡) = 𝑖𝜔0𝑧 + 𝑔 (𝑧, 𝑧) , (33)

where

𝑔 (𝑧, 𝑧) = ℎ

∗

(0) 𝑓0 (𝑧, 𝑧)

= 𝑔20

𝑧
2

2

+ 𝑔11𝑧𝑧 + 𝑔02

𝑧
2

2

+ 𝑔21

𝑧
2
𝑧

2

+ ⋅ ⋅ ⋅ .

(34)

By (29) and (31) we have

𝑊̇ = 𝑢̇𝑡 − 𝑧̇ℎ −
̇
𝑧ℎ

=

{

{

{

𝐴𝑊 − 2Re {ℎ
∗

(0) 𝑓0ℎ (𝜃)} , 𝜃 ∈ [−𝜏0, 0) ,

𝐴𝑊 − 2Re {ℎ
∗

(0) 𝑓0ℎ (0)} + 𝑓0, 𝜃 = 0,

(35)

that is,

𝑊̇ = 𝐴𝑊 +𝐻(𝑧, 𝑧, 𝜃) , (36)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃)

𝑧
2

2

+ 𝐻11 (𝜃) 𝑧𝑧 + 𝐻02 (𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(37)

Note that 𝑢𝑡(𝜃) = 𝑊(𝑧, 𝑧, 𝜃) + 𝑧𝑒
𝑖𝜔0𝜃

+ 𝑧𝑒
−𝑖𝜔0𝜃. Therefore, we

get

𝑢𝑡 (0) = 𝑊 (𝑧, 𝑧, 0) + 𝑧 + 𝑧,

𝑢𝑡 (−𝜏0) = 𝑊(𝑧, 𝑧, −𝜏0) + 𝑧𝑒
−𝑖𝜔0𝜏0

+ 𝑧𝑒
𝑖𝜔0𝜏0

,

𝑓0 (𝑧, 𝑧) = −

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝑒
−2𝑖𝜔0𝜏0

𝑧
2

+ 𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑧𝑧

+

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝑒
2𝑖𝜔0𝜏0

𝑧
2

+ [𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑒
−𝑖𝜔0𝜏0

𝑊11 (−𝜏0)

+

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝑒
𝑖𝜔0𝜏0

𝑊20 (−𝜏0)

−

𝛼𝛽 (𝛽 + 1) (𝛽 + 2) 𝑥
−2

∗

2

𝑒
−𝑖𝜔0𝜏0

] 𝑧
2
𝑧

+ [𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑒
𝑖𝜔0𝜏0

𝑊11 (−𝜏0)

+

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝑒
−𝑖𝜔0𝜏0

𝑊02 (−𝜏0)

+ −

𝛼𝛽 (𝛽 + 1) (𝛽 + 2) 𝑥
−2

∗

2

𝑒
𝑖𝜔0𝜏0

] 𝑧𝑧
2
+ ⋅ ⋅ ⋅ .

(38)

From (34), using ℎ
∗

(0) = 𝐷 and comparing coefficients, we
obtain

𝑔20 = 𝐷𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑒
−2𝑖𝜔0𝜏0

,

𝑔11 = 𝐷𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
,

𝑔02 = 𝐷𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑒
2𝑖𝜔0𝜏0

,

𝑔21 = 2𝐷[𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑒
−𝑖𝜔0𝜏0

𝑊11 (−𝜏0)

+

𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗

2

𝑒
𝑖𝜔0𝜏0

𝑊20 (−𝜏0)

−

𝛼𝛽 (𝛽 + 1) (𝛽 + 2) 𝑥
−2

∗

2

𝑒
−𝑖𝜔0𝜏0

] .

(39)

Since there are𝑊11(−𝜏0) and𝑊20(−𝜏0) in𝑔21, we still need
to compute them. From (36), we have

𝐻(𝑧, 𝑧, 𝜃) = −2Re {ℎ∗ (0) 𝑓0ℎ (𝜃)}

= −𝑔 (𝑧, 𝑧) ℎ (𝜃) − 𝑔 (𝑧, 𝑧) ℎ (𝜃)
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= −[𝑔20

𝑧
2

2

+ 𝑔11𝑧𝑧 + 𝑔02

𝑧
2

2

+ ⋅ ⋅ ⋅ ] ℎ (𝜃)

− [𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔02

𝑧
2

2

+ ⋅ ⋅ ⋅ ] ℎ (𝜃) .

(40)

Hence, we find

𝐻20 (𝜃) = −𝑔20ℎ (𝜃) − 𝑔02
ℎ (𝜃) ,

𝐻11 (𝜃) = −𝑔11ℎ (𝜃) − 𝑔11
ℎ (𝜃) .

(41)

On the other hand, on the center manifold,

𝑊̇ = 𝑊𝑧𝑧̇ + 𝑊𝑧
̇
𝑧. (42)

Next, using (30) and (33) we derive another expression for 𝑊̇.
Then a comparison with (36) leads to the equations:

(2𝑖𝜔0 − 𝐴)𝑊20 (𝜃) = 𝐻20 (𝜃) ,

−𝐴𝑊11 (𝜃) = 𝐻11 (𝜃) .

(43)

From (25) and (36), it follows that

𝑊̇20 (𝜃) = 2𝑖𝜔0𝑊20 (𝜃) + 𝑔20ℎ (𝜃) + 𝑔02
ℎ (𝜃) ,

𝑊̇11 (𝜃) = 𝑔11ℎ (𝜃) + 𝑔11
ℎ (𝜃) .

(44)

Hence,

𝑊20 (𝜃) = −

𝑔20

𝑖𝜔0

𝑒
𝑖𝜔0𝜃

−

𝑔
02

3𝑖𝜔0

𝑒
−𝑖𝜔0𝜃

+ 𝐸1𝑒
2𝑖𝜔0𝜃

,

𝑊11 (𝜃) =

𝑔11

𝑖𝜔0

𝑒
𝑖𝜔0𝜃

−

𝑔
11

𝑖𝜔0

𝑒
−𝑖𝜔0𝜃

+ 𝐸2,

(45)

where 𝐸1 and 𝐸2 are both real constants and can be deter-
mined by setting 𝜃 = 0 in𝐻(𝑧, 𝑧, 𝜃). In fact,

𝐻20 (0) = −𝑔20ℎ (0) − 𝑔20
ℎ (0)

+ 𝛼𝛽 (𝛽 + 1) 𝑥
−1

∗
𝑒
−2𝑖𝜔0𝜏0

,

𝐻11 (0) = −𝑔11ℎ (0) − 𝑔11
ℎ (0) + 𝛼𝛽 (𝛽 + 1) 𝑥

−1

∗
.

(46)

Now, (30) and (36) give

−𝛼𝛽𝑊20 (−𝜏0) = 2𝑖𝜔0𝜏0𝑊20 (0) − 𝐻20 (0) ,

−𝛼𝛽𝑊11 (−𝜏0) = −𝐻11 (0) .

(47)

Substituting (47) into (46), we can calculate 𝐸1 and 𝐸2.

Based on the above analysis, we can see that each 𝑔𝑖𝑗

in (39) is determined. Thus, we can compute the following
values:

𝐶1 (0) =

𝑖

2𝜔0

[𝑔11𝑔20 − 2
󵄨
󵄨
󵄨
󵄨
𝑔11

󵄨
󵄨
󵄨
󵄨

2
−

󵄨
󵄨
󵄨
󵄨
𝑔02

󵄨
󵄨
󵄨
󵄨

2

3

] +

𝑔21

2

, (48)

𝜇2 = −

Re {𝐶1 (0)}
Re {𝜆󸀠 (𝜏0)}

,

𝛽2 = 2Re {𝐶1 (0)} ,

𝑇2 = −

Im {𝐶1 (0)} + 𝜇2 Im {𝜆
󸀠
(𝜏0)}

𝜔0

.

(49)

It is well known that 𝜇2 determines the direction of the Hopf
bifurcation: if𝜇2 > 0 (resp.,𝜇2 < 0), then theHopf bifurcation
is supercritical (resp., subcritical) and the bifurcating periodic
solutions exist for 𝜏 > 𝜏0 (resp., 𝜏 < 𝜏0); 𝛽2 determines
the stability of bifurcating periodic solutions: the bifurcating
periodic solutions on the center manifold are stable (resp.,
unstable) if𝛽2 < 0 (resp.,𝛽2 > 0);𝑇2 determines the period of
the bifurcating periodic solutions: the period increases (resp.,
decreases) if 𝑇2 > 0 (resp., 𝑇2 < 0). From the discussion in
Section 3 we know that Re{𝜆󸀠(𝜏0)} > 0. Therefore, we have
the following result.

Theorem 6. Let Re{𝐶1(0)} be given in (48). The direction of
the Hopf bifurcation of (9) at equilibrium 𝑥∗ when 𝜏 = 𝜏0

is supercritical (resp., subcritical) and the bifurcating periodic
solutions on the center manifold are stable (resp., unstable) if
Re{𝐶1(0)} < 0 (resp., Re{𝐶1(0)} > 0).

5. Numerical Simulations

We now illustrate the theoretical results stated in previous
sections by performing some numerical simulations. For
this purpose, we fix the following parameter set: 𝛼 = 0.4,
𝛽 = 3, 𝑐 = 0.77, 𝑛 = 1, and 𝑏 = 0.3 and let 𝜏 vary.
With this parameter values, the steady-state equilibrium is
𝑥∗ ≃ 1.266 and the Hopf bifurcation occurs at 𝜏0 ≃ 1.689.
When 𝜏 < 𝜏0 (but sufficiently high), the dynamics of the
quantity produced by farmers are oscillatory and convergent
towards the equilibrium (as shown in Figure 2). Just after
the Hopf bifurcation value of 𝜏, there exists an attracting
closed invariant curve and then the dynamics of quantities
show persistent oscillations. To this purpose, Figure 3 shows
the dependency of the length of the diameter of the closed
invariant curve on the time lag 𝜏. In particular, the figure
depicts three different closed invariant curves for three
different values of 𝜏, that is, 𝜏 = 1.69 (blue curve), 𝜏 = 1.76

(red curve), and 𝜏 = 1.93 (black curve). It clearly shows
that the length of the diameter of the closed invariant curve
increases with 𝜏. This implies that when 𝜏 is sufficiently high
(i.e., the length of productive cycle is large), the amplitude of
fluctuations of quantities (and prices) may be relevant (see
Figure 4).
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Figure 2: Trajectory that converges to the steady-state equilibrium.
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Figure 3: Three different closed invariant curves for three values of
𝜏: 𝜏 = 1.69 (blue), 𝜏 = 1.76 (red), and 𝜏 = 1.93 (black).

6. Conclusions

This paper extended the discrete time cobweb model by
Onozaki et al. [4] with discrete time delays that characterise
the length of production cycle. The model economy con-
sists of homogeneous farmers that behave as adapters and
refer to the expected profit-maximising quantity (with static
expectations) as the target to which production is directed;
that is, producers partially adjust their output by moving
towards the best response. “Such adjustment is a behavioral
response to uncertainty and adjustment costs” [4, page 102].
In a discrete time framework, Onozaki et al. [4] showed that
the model can generate topological and observable chaos by
applying the Homoclinic Point Theorem. In a continuous
time version of that model, we found that the size of time
lag in production matters for the emergence of nonlinear
dynamics. In particular, by means of Hassard techniques we
characterise existence and stability properties of the Hopf

1.6
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1.4

1.3

1.2

1.1

1

x
(t
)

0 50 100 150 200 250

t

Figure 4: Trajectory that converges to the limit cycle.

bifurcation that occurs when the time delay is sufficiently
high. After the supercritical Hopf bifurcation, quasiperiodic
oscillations can be observed when time delay increases. In
addition, several numerical simulations (not reported in the
paper) seem to suggest that more complex phenomena (such
as high period cycles or chaotic attractors, shown by [4])
cannot occur in this context.

This model could be extended especially by considering
heterogeneous producers, to stress how small perturbations
can generate important changes in the structure of the
dynamic system and different dynamic behaviours thanwhen
firms are homogeneous.
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