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Abstract This paper introduces the concept of unintentional bequests in a closed 
economy à la Chakraborty (2004) with overlapping generations. We show that scarce public 
investments in health can lead to poverty traps depending on the relative size of the output 
elasticity of capital. More importantly, the existence of unintentional bequests, rather than a 
market for annuities, means that health tax rates play a prominent role in determining the 
stability of the long-run equilibrium in rich economies. In fact, Neimark-Sacker bifurcations 
and endogenous fluctuations occur depending on the size of the public health system. 
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1. Introduction 
 
Demography (fertility and longevity) has been recognised as playing a prominent role in 
economic growth and development (see, amongst many others, Becker and Barro, 1988; 
Mason, 1988; Barro and Becker, 1989; Fogel, 1994, 2004, de la Croix and Licandro, 1999; 
Galor and Weil, 1999, 2000; Galor and Moav, 2002; de la Croix and Doepke, 2003, 2004; Barro 
and Sala-i-Martin, 2004; Moav, 2005; Kraay and Raddatz, 2007). The economic causes and 
consequences of the reduction in both birth and mortality rates, observed in several 
developed countries in the recent decades (Livi-Bacci, 2006), have led economists to carry out 
thorough investigations regarding the interrelationships between demographic and 
macroeconomic outcomes (Cervellati and Sunde, 2005, 2011; Galor, 2005, 2010; Lorentzen et 
al., 2008). One reason for this is the tremendous impact on policies that the steadily declining 
number of young (active) people in total population as well as the steadily increasing number 
of elderly may have in the near future.1 The burgeoning macroeconomic theoretical literature 
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that has focused on growth models with overlapping generations (OLG) and endogenous 
lifetime, has tried to shed light on the nature and causes of economic development by 
assuming either exogenous fertility or endogenous fertility. 
    With regard to the former class of models, Chakraborty (2004) introduces endogenous 
lifetime into the standard two-period OLG model by Diamond (1965) and considers a market 
for annuities. He assumes that the probability of surviving from the first period of life (youth) 
to the next (old age) depends on an individual’s health status, which is improved through 
financing public investments in health. The main result provided by Chakraborty (2004) is 
that poverty traps can result from scarce health investments, because a shorter life span acts 
as a disincentive to save and accumulate capital further on. Chakraborty and Das (2005) build 
on a model with human capital, private health expenditure and intentional bequests (i.e., inter 
vivos transfers) to study the reasons why inequality persists between rich and poor countries. 
Bhattacharya and Qiao (2007) assume that an individual’s lifetime is dependent on his/her 
health status which is, in turn, improved by private health investments accompanied by a tax-
financed public health program. They show that the economy is exposed to endogenous 
fluctuations when the private and public inputs in the longevity function are complementary. 
Leung and Wang (2010) studied a model with a private system of health care services and 
found that saving and health complement each other. From a normative point of view, de la 
Croix and Ponthière (2010) show that the steady-state Golden Rule of capital accumulation in 
an economy with endogenous lifetime is lower than the standard Diamond’s (1965). Finally, 
Fanti and Gori (2012b) introduce endogenous lifetime in an OLG small open economy with a 
perfect market for annuities and show that an increase in public health investment can 
actually reduce savings because of the counterbalancing forces at work. In fact, a rise in the 
labour income tax rate: (i) increases life expectancy, so that savings increase, and (ii) reduces 
the disposable income of the young workers, so that savings are reduced. They also show that 
the public health policy can represent an  –Pareto improvement (see Golosov et al., 2007 for 
the concept of  –efficiency  and –efficiency). 
    With regard to the latter class of models, i.e. those with endogenous lifetime and 
endogenous fertility, Blackburn and Cipriani (2002) show that there are regimes of 
development: the former characterised by low income, high fertility and a short life span, the 
latter by high income, low fertility and a long life span. Their model is in agreement with the 
empirical evidence of the Demographic Transition. Fanti and Gori (2010) extend 
Chakraborty’s model (2004) to endogenous fertility under the hypothesis of a weak form of 
altruism towards children (see Zhang and Zhang, 1998), and show that (i) low and high 
regimes of development can co-exist, and (ii) an adequate child tax policy can effectively help 
people to permanently escape from poverty and maximise long-term welfare. Indeed, 
Varvarigos and Zakaria (2012) find that tax-financed public expenditure that complements 
private health investments provides an additional explanation for the decline in fertility 
throughout economic growth. 
    The distinctive feature of the introduction of longevity in the basic OLG model by Diamond 
(1965) is the treatment of the savings of the deceased people. There are two polar cases, 
which obviously also include intermediate cases: (i) perfect annuities markets, i.e., savings are 
fully annuitized. Old survivors benefit not only from their own past savings plus interest, but 
also from savings plus the interest of those who have deceased, and the savings are 
intermediated through mutual funds; (ii) no annuities markets, as in Abel (1985), i.e., the 
savings of the deceased become accidental or unintentional bequests2 to their own offspring. 

                                                                                                                                                            
economists to find appropriate ways to reform the social security system (e.g., Boeri et al., 2001, 2002; Cigno, 
2007; Cigno and Werding, 2007) because of concerns regarding population ageing. 
2 Other major bequest motives are altruism and exchange. While there is no consensus on which motive 
dominates (see, e.g., Altonji et al., 1997), Hurd (1997) argues that bequests are largely accidental. 
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While Chakraborty (2004) assumes the former hypothesis, in this paper we focus on the 
latter. This introduces an important new factor: the delayed levels of longevity rate also 
matter, so that the dynamics of the economy are characterised by a two-dimensional non-
linear system instead of the one-dimensional system that describes the dynamics in 
Chakraborty’s model (2004). 
    The main purpose of this paper is to study how public investments in health affect economic 
growth and stability of the steady state equilibria in an OLG economy à la Chakraborty (2004) 
by assuming unintentional bequests rather than a market for annuities. While in Chakraborty 
(2004), both the lowest and highest steady-state equilibria are always locally asymptotically 
stable with monotonic trajectories, we show that the existence of unintentional bequests left 
by the deceased to their offspring makes the financing of health care services responsible for 
the existence of non-monotonic (local) dynamics. Neimark-Sacker bifurcations and 
endogenous fluctuations occur when there are threshold effects of health investments on 
longevity. Moreover, global analysis reveals that increasing the health tax rate too much can 
have the undesirable effect of permanently entrapping an economy in poverty. This is because 
when two locally stable attractors coexist, trajectories can converge towards the origin even 
when starting from initial conditions that are in fact closer to strictly positive steady state. 
    The rest of the paper is organised as follows. Section 2 presents the model. Section 3 
analyses the dynamics, and the local and global stability properties of an OLG model with 
endogenous lifetime, public health investments and unintentional bequests. Section 4 outlines 
the conclusions. 
 
2. The model 
 
2.1. Individuals 
 
Consider a general equilibrium OLG closed economy populated by perfectly rational and 
identical two-period-lived individuals. Life is divided between youth and old age (as in 
Diamond, 1965). The former is a work period fixed with certainty, the latter is a retirement 
period, whose length is uncertain. Population is fixed and constant at N . We assume that the 
typical agent within every generation is either dead or alive at the beginning of the retirement 
period with probability 1  and  , respectively. When he or she is young, the individual 
representative of generation t  is endowed with one unit of labour inelastically supplied to 
firms, while receiving wage income tw  per unit of labour (used for consumption and saving 
purposes). In addition, the government collects wage income taxes at a constant rate 10   
to finance public health expenditure with a balanced budget. Since agents do not know when 
they will die, additional unintentional bequests can occur.3 If the typical agent of generation t  
dies at the onset of old age (with probability t1 ), his/her accumulated savings are in full 
bequeathed to his/her heirs. To keep the representative agent formulation tractable, the 
bequests 
 t

e
ttt sRb 11 )1(    , (1) 

where ts  is saving and e
t

e
t rR 11 1:    represents the expected gross interest factor accrued 

from time t  to time 1t  (with e
tr 1  being the expected interest rate), are assumed to be 

equally divided amongst all the young people in every generation. This means that the 
bequest dependent wealth distribution is uniform, as in Hubbard and Judd (1987). This 

                                                
3 Note that, unlike Chakraborty (2004), our model is developed by assuming unintentional bequests without a 
market for annuities. 
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assumption enables us to conduct a representative agent analysis and to specifically focus on 
the effects of changes in longevity.4 
    The work period budget constraint and the retirement period budget constraint of an 
individual that belongs to generation t  read, respectively, as: 
 tttt bwsc  )1(,1  , (2.1) 

 t
e
tt sRc 11,2   , (2.2) 

where tc ,1  and 1,2 tc  are young-age consumption and old-age consumption. Eq. (2.1) implies 

that bequests are equally allocated across all members within a certain generation. By taking 
factor prices and bequests as given, the individual representative of generation t  chooses how 
much to save out of his/her disposable income to maximise the expected lifetime utility 
function 
 )ln()ln( 1,2,1  tttt ccU  , (3) 

subject to Eqs. (2.1) and (2.2), where the death contingent utility index is normalised to zero.5 
The first order conditions for an interior solution of the problem are given by: 

 e
t

tt

t R
c

c
1

,1

1,2 1


 


. (4.1) 

Eq. (4.1) equates the marginal rate of substitution between consumption when young and 
when old with the interest factor determined on the capital market. From Eq. (4.1) it is clear 
that in an economy with accidental bequests, individuals take into account the effects of 
longevity on the inter-temporal substitution between consumption when young and 
consumption when old, that is they internalise the social benefits of an increase in individual 
longevity due to a rise in health spending. An increase in longevity makes it convenient to 
postpone consumption to the future. This represents the first difference between an economy 
with accidental bequests and an economy with a perfect market for annuities. Indeed, in the 
latter, each individual does not take into account the (social) benefits of an increase in public 
healthcare investments on (individual) health and longevity, because when a person dies at 
the onset of old-age, his/her savings are divided amongst all the members of a generation (the 
size of which being contingent on average longevity), so that the benefits of an increased life 
span on savings are too small to be taken into account by each individual in the market (see 
Fanti and Gori, 2012b), and the first order condition Eq. (4.1) would be modified to become 

e
t

t

t R
c

c
1

,1

1,2


  . In contrast, in an economy with unintentional bequests, the savings of a deceased 

person are equally bequeathed in full to his/her own descendants. Indeed, unlike an economy 
with unintentional bequests, when a (perfect) market for annuities exists, old survivors 
benefit not only from their own past savings plus interest, but also from the savings plus 
interest of those who have died. Savings are then allocated to mutual funds and invested in 
order to guarantee a gross return that depends on mortality rates of the surviving old agents 
(which are all annuitized).6 
    Combining Eqs. (2.1), (2.2) and (4.1), we obtain the following saving function: 

                                                
4 This can indeed be assumed in a context of exogenous fertility. Things would be different if fertility was 
endogenous. 
5 See, e.g., Abel (1985), Chakraborty (2004), Chakraborty and Das (2005), Pestieau et al. (2008), Chakraborty et 
al. (2010), Fanti and Gori (2012b) for similar formulations of expected utility functions. 
6 Every annuitant deposits his/her savings with a mutual fund. Savings are then invested by the fund to get a 
return factor (independent of longevity). Then: (i) if an annuitant is alive, he/she gets savings plus the return 
factor divided by the longevity rate; (ii) if an annuitant dies at the onset of old age, the contract with the fund 
ends and his/her savings are distributed between all the survived annuitants. The situation is different with 
accidental bequests, as savings of deceased are directly bequeathed to his/her descendants. 



Endogenous lifetime, accidental bequests and economic growth 

 5

 ])1([
1 tt

t

t
t bws 


 




, (4.2) 

where tb  is determined by the one-period backward Eq. (1). As expected, the existence of 
accidental bequests positively affects savings. 
 
2.2. Firms 
 
Identical firms act competitively on the market. At time t , the homogeneous output tY  is 

produced by combining capital ( tK ) and labour ( NLt   in equilibrium) through the constant 

returns to scale Cobb-Douglas technology   1
ttt LAKY , where 0A  is a scale parameter in 

the production function and 10   the output elasticity of capital. Since capital totally 
depreciates at the end of every period and output is sold at the unit price, profit maximisation 
implies that the interest factor and wage equal the marginal products of capital and labour, 
respectively, that is: 
 1  tt AkR , (5) 

  tt Akw )1(  , (6) 

where NKk tt /:  is the stock of capital per young person. 
 
2.3. The public health system and endogenous lifetime 
 
We follow Chakraborty (2004) and assume that at time t , health investments Nht , where th  
is the health investment per young person, are financed at a balanced budget with a labour 
income tax levied by the government at the (constant) rate 10  , so that the tax receipts 
are Nwt . The health budget per young person can then be written as: 

 tt wh  . (7) 

    In addition, the survival probability at the end of youth of an individual born at time t , t , is 
assumed to positively depend on the individual’s health status, which is in turn increased by 
health investments per young person th , so that  tt h  . Following Blackburn and Cipriani 
(2002) and de la Croix and Ponthière (2010), we specialise this relationship with the 
following function: 

 


t

t
tt

h

h
h





1

)( , (8) 

where 0,  , 10   , 0)(  h , 1)(lim   hh , 0)(  h  if 1  and 0)(

 h  for any 






1

)1(

1
: 
















Thh  if 1 . The demographic parameter   captures the intensity of the 

efficiency of health investments. A rise in   may be interpreted as exogenous medical 
advances. The parameters   and   determine both the turning point of )(h   and speed of 
convergence of the rate of longevity towards the saturating value  . In particular,   
measures how an additional unit of health investment is transformed into higher longevity 
through health technology. If 1 , )(h  is concave for any h  and, hence, no threshold effects 
exist, thus longevity increases less than proportionally from zero up to   as h  rises. If 1  
the longevity function is S-shaped and threshold effects exist: i.e., longevity increases more 
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(resp. less) than proportionally before (resp. after) the threshold Th . This means that the 
more intense threshold effects are (high values of  ), the slower an additional unit of health 
investment is transformed into a higher life span when h  is relatively low, while approaching 
the saturating value   more efficiently and rapidly as h  becomes larger (e.g. Martikainen et 
al., 2009 and Fioroni, 2010 for empirical evidence). In this case   measures the intensity of 
threshold effects of the accumulated health capital as an inducement to higher longevity. 
 
2.4. Equilibrium 
 
Given the government budget Eq. (7), equilibrium the capital market can be written as: 
 tt sk 1 . (9) 
    Combining Eqs. (4.2), the one-period backward Eqs. (1) and (9), equilibrium implies: 

 ])1()1([
1 11 tttt

t

t
t kRwk  


 




, (10) 

which is independent of expectations about future factor prices. This means that the dynamics 
of capital are not contingent on expectations, as will be seen later.7 
    Now, using the equilibrium conditions in the factor markets Eqs (5) and (6), and knowing 
that the longevity function Eq. (6) can be expressed as )(:))1(()( tt kAkh    by 
making use of Eqs. (7) and (8), capital accumulation is driven by the following second-order 
nonlinear difference equation: 

  )](1[)1)(1(
)(1

)(
11  




 tt
t

t
t kAk

k

k
k  , (11) 

which can also be written as follows: 

 
 






















 













11

11
2

1

1
1

1
)(1

)()1(1
)(

)()1(1

)(

t

t

t

t
t

kz

kz
z

kz

Akz
k , (12) 

where 0])1([:)(1   Az  and 0)1)(1(:)(2  z . Fixed points of the map defined 
in Eq. (12) are determined as kkkk ttt   11 . They are represented by the roots of the 
following function: 

 
 

0
)(1

)()1(1
)(

)()1(1

)(
)(

1

1
2

1

1
1 

















k
kz

kz
z

kz

Akz
k 













. (12.1) 

 
3. Existence and local stability of fixed points 
 
We now discuss the existence and stability of both the zero and positive steady states of Eq. 
(12), starting with the analysis of 0k . The qualitative results of the model are different 
depending on the mutual relationship between the parameters   and  . In addition, a crucial 
role for the health tax rate   on (local) stability is established (see Section 3.1). 
    From Eq. (12.1) it is clear that 0k  is a fixed point of the system described by Eq. (12). 
Non-zero equilibria are determined by interior solutions of the following equation: 
 )()( 21 kGkG  , (12.2) 

                                                
7 See Michel and de la Croix (2000) and de la Croix and Michel (2002) for a discussion about differences in 
dynamic outcomes under myopic foresight and perfect foresight in OLG growth models with capital 
accumulation and two-period lived individuals. 
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where 





kz

kz
zkG

)(1

)()1(1
)()(

1

1
21 


  and 

 

Az

kzk
kG

)(

])()1(1[
)(

1

1
11

2 
  




. The 

following proposition thus holds. 
 
Proposition 1. Let )1/(10    hold. Then, one and only one positive steady state, k , of the 
dynamic system Eq. (12) exists. 
 
Proof. Consider the functions )(1 kG  and )(2 kG , which are continuous for any 0k . Then, 

 
kkz

kz
kG 2

1

1
2

1 ])(1[

)(
)( 









 , (12.3) 

and 

 
)1(

1

1
2 )(

)()1)(1()1(1
)( 











Akz

kz
kG . (12.4) 

It is easy to verify that   )()0( 21 zG , )1()()(lim)( 211    zkGG k , where 

)()0(1  GG , and 0)(1  kG  for any 0k . If )1/(10   , then 0)0(2 G , 
  )(lim)( 22 kGG k  and 0)(2  kG  for any 0k . Therefore, )()( 21 kGkG   only once 

at 0k  for any 0k . Q.E.D. 
 

Proposition 2. Let 1)1/(1    hold. Then, if 1  and 1
)1)(1(

)1](1)1([








 , at 

most two positive steady states, 12 kk  , exist. 
 
Proof. If 1)1/(1   , then   )(lim)0( 202 kGG k ,   )(lim)( 22 kGG k , while 

studying the sign of 2G  in (12.4), it is easily seen that 0)(2  kG  (resp. 0)(2  kG ) for any 

min0 kk   (resp. minkk  ), where 0
)()1)(1(

1)1(
:

1

1
min 


















z
k  is the unique critical point 

(global minimum) of )(2 kG . The second derivatives are: 

 
3

1
2

11
2

1 ])(1[

)]1()1)(([)(
)( 






kzk

kzkz
kG




 , (12.5) 

and 

 
 

2
1

1
)1(1

2 )(

)1)(1)((]1)1()[1(
)(

Akz

kzk
kG


  




. (12.6) 

If 1 , from the sign of 1G   in (12.5), we see that )(1 kG  has a unique inflection point 

0
)1)((

1
:

1

1



















z
k flex  and it is concave (resp. convex) for any flexkk 0  (resp. 

flexkk  ). Nothing can be said about the number of steady states if minkk flex  . From the sign 

2G   in (12.6), we see that )(2 kG  has a unique inflection point as well, which is always larger 
than mink , so that )(2 kG  turns out to be convex for min0 kk  . Thus, if 

1
)1)(1(

)1](1)1([
min 







kk flex ), then three cases are possible for values of k  such 

that min0 kk  , where )(2 kG  is convex while )(1 kG  is concave: 
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    Case 1: )(1 kG  and )(2 kG  have no intersections at all. Then the number of steady states must 
necessarily be zero because )()( min2min1 kGkG   and for minkk  , )(2 kG  starts increasing, so no 
intersections are possible; 
 
    Case 2: )(1 kG  and )(2 kG  has one intersection. Therefore, we must have that 

)()( min2min1 kGkG   and by considering that for minkk  , )(2 kG  is increasing and tends to 
infinity, the two curves must necessarily intersect one more time. So, we have two steady 
states; 
 
    Case 3: )(1 kG  and )(2 kG  have two intersections. This is the maximum number of 
intersection for two decreasing functions, one convex and the other concave. Similarly to Case 
1, we now have that )()( min2min1 kGkG  , and for the same argument, we cannot have further 
intersections. Q.E.D. 
 
Remark 1. For the remaining cases, it is not possible to analytically prove how many positive 
steady states can be founded. Nevertheless, a huge number of simulations permits us to be 
reasonably confident that scenarios with more than two positive steady states are unlikely to be 
observed. 
 
Propositions 1 and 2 and Remark 1 imply that for low values of the output elasticity of capital, 
the graphs of the maps 1G  and 2G  intersect only once at k , while when the output elasticity 
of capital becomes larger: (i) the graph of 2G  lies above the graph of 1G  for any 0k , and no 
positive steady state exists (this holds when the technological scale parameter A  in the Cobb-
Douglas production function is small), or (ii) the graph of 2G  intersects the graph of 1G  twice 

for any 0k , and two steady states 012  kk  exist (this holds when A  is sufficiently large).8 
The propositions and the remark emphasise the importance of the mutual relationship 
between the parameters in both the production function and longevity function in 
determining different scenarios. When   is small, a unique regime of development does in 
fact exist (Diamond, 1965). When   becomes larger, two regimes of development (low and 
high) may appear and then initial conditions are important to determine whether an economy 
can converge towards the low regime of development or the high regime of development. This 
result is in line with Chakraborty (2004) and Bunzel and Qiao (2005). Of course, larger values 
of A  work with the largest steady state because, everything else being equal, capital 
accumulation increases when the technological scale in the production function rises. Further, 
the higher   (which, we recall, captures how an additional unit of health investment is 
transformed into higher longevity through the health technology), the lower the threshold of 
  beyond which two development regimes exist depending on the size of A . 
    Now, in order to study the local stability properties of the fixed points we transform the 
system of a single second order difference equation (12) into a system of two first order 
difference equations (e.g. Azariadis, 1993 and Grandmont et al., 1998). Let 1:  tt kx  be a new 
supporting variable. Then Eq. (12) can be written as: 

 

 


































tt

t

t

t

t
t

kx

xz

xz
z

kz

Akz
k

1

1

1
2

1

1
1

1
)(1

)()1(1
)(

)()1(1

)(














. (13) 

                                                
8 This is shown by several numerical experiments not reported in the paper. 
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    The local stability of fixed points is studied by means of the linear approximation given by 
the Jacobian matrix of partial derivatives ( J ) evaluated at the generic steady state k , which 
for the system (13) is: 

 





















































kk
t

t
kk

t

t

kk
t

t
kk

t

t

xk

tt

tt

x

x

k

x
x

k

k

k
JJ

J
11

11

01
, (14) 

where 

 
 

0
)(1

)()1(1
)(

)()1(1
1

)()1(1

)(

1

1
2

11

11
1 












































kz

kz
z

kzkz

kAz
J k , (15) 

and 

 
 

0
])()1(1[])(1[

)]([

1
2

1

1212
1 














kzkz

kAz
J x . (16) 

The trace and determinant of (14) are 0)(:  kJJTrT  and 0)(:  xJJDetD , 
respectively, so that the characteristic polynomial is: 
 DT   2)( , (17) 

whose discriminant DTQ 4: 2   can either be positive or negative. Therefore, complex 
eigenvalues can exist. 
    Bifurcation theory describes the way the topological features of the system (such as the 
number of stationary points or their stability) vary as parameter values change. For a system 
in two dimensions, the stability conditions ensuring that both eigenvalues remain within the 
unit circle9 are: 

 













01:)(

01:)(

01:)(

DHiii

DTTCii

DTFi

. (18) 

    The violation of any single inequality in (18) leads to: (i) a flip bifurcation (a real eigenvalue 
that passes through 1 ) when 0F ; (ii) a fold or transcritical bifurcation (a real eigenvalue 
that passes through 1 ) when 0TC ; (iii) a Neimark-Sacker bifurcation (i.e., the modulus of 
a complex eigenvalue pair that passes through 1) when 0H , namely 1D , and 2T . 

    As regards the stability properties of the zero equilibrium, we have the following 
proposition. 
 
Proposition 3. (1) Let )1/(10    hold. Then, 0k  is locally unstable. (2) Let 

1)1/(1    hold. Then, 0k  is locally asymptotically stable. 
 
Proof. If )1/(10   , then as k  tends to 0  an eigenvalue of the Jacobian matrix tends to 
infinity, and the steady state results in an unstable fixed point. If 1)1/(1   , then both 
the eigenvalues are zero. Q.E.D. 
 
As Proposition 3 shows, the zero equilibrium of the dynamic system described by Eq. (12) can 
either be stable or unstable depending on the relative size of the output elasticity of capital. 
The existence (and the stability properties) either of a single positive fixed point or multiple 
                                                
9 If no eigenvalues of the linearised system around the fixed points of a first order discrete system lie on the unit 
circle, then such points are defined as being hyperbolic. Roughly speaking, at non-hyperbolic points topological 
features are not structurally stable. 
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positive fixed points strictly depends on whether 0k  is stable or unstable. Given 
Propositions 1 and 2 and Remark 1 regarding the existence of a unique fixed point or multiple 
fixed points, and Proposition 3 regarding the stability conditions of the zero equilibrium, in 
Subsection 3.1 we show through numerical simulations that the following results hold.10 
 
Result 1. If )1/(10   , then the dynamic system described by Eq. (12) admits two steady 

states  k,0 , where k0 , the former being locally unstable and the latter locally asymptotically 
stable. 
 
Result 2. If 1)1/(1   , then the dynamic system described by Eq. (12) reasonably admits 
either the stable zero steady state alone (if the technological scale parameter A  in the Cobb-
Douglas production function is sufficiently small), or three steady states  21,,0 kk  (if A  is 

sufficiently large), where 210 kk  , the first is locally asymptotically stable, the second is a 
saddle point and the third may be locally asymptotically stable or unstable. 
 
As is clear from Results 1 and 2, conditions regarding the stability of the largest steady state 
depend on the mutual relationship between technology parameters in both the production 
function ( ) and health technology ( ). The more health investments are “smoothly 
transformed” into better health and higher longevity (low values of  ), the higher the 
importance of the output elasticity of capital in determining how the increase in wages affects 
health investments which, in turn, increase life expectancy (low mortality rates). When   
becomes larger, threshold effects become important and the fraction of wages needed to make 
investments in health efficient, becomes larger so that the “impetus to capital accumulation” 
due to “large life expectancy gains” (Chakraborty, 2004, p. 124) requires higher values for the 
capital stock. In this case, if an economy starts out with low capital stock values, both the 
wages earned by the young and the expenditure on health are sufficiently small, and thus do 
not provide an adequate stimulus to life expectancy and economic growth. However, even if 
an economy starts out with sufficiently high initial conditions, higher values of   may mean 
that capital accumulation in the next period becomes lower than the current period, so that 
over-expenditure in health may actually reduce growth. 
 
Result 3. If 1)1/(1    and 1 , then the local dynamics (in the neighbourhood of the 

largest steady state 2k ) can be oscillatory. Additionally, depending on the size of the health tax 
rate  , Neimark-Sacker bifurcations and endogenous fluctuations occur. 
 
In addition, the following proposition holds: 
 
Proposition 4. A flip bifurcation can never occur. 
 
Proof. The proof is obvious as the sign of both the trace and determinant of J , evaluated at 
the generic steady state k , are 0T  and 0D . Therefore, 0F  always holds. Q.E.D. 
 
3.1. Stability of positive steady states and bifurcations 

                                                
10 Since the map is difficult to handle in a neat analytical form, the local stability analysis of the positive (largest) 
steady state is performed through computations (no closed-form expression of the fixed point exists). With 
regard to local and global analyses, given that the dynamic patterns are characterised by a possible rich set of 
complex scenarios, our aim is to describe some interesting outcomes regarding dynamics with no claim of 
generalisation. 
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3.1.1. Case )1/(10    
 
In this case the position of the eigenvalues of the Jacobian matrix J  relative to the unit circle, 
evaluated at the unique positive steady state k , are smaller than unity and the three 
conditions stated in (18) are fulfilled. This case is uninteresting from a dynamic point of view 
and thus we have not presented any numerical experiments.11 We refer the reader to the 
dynamic analyses developed by Chakraborty (2004) with exogenous fertility, and Fanti and 
Gori (2010) with endogenous fertility. 
 
3.1.2. Case 1)1/(1    
 
In this case the position of the eigenvalues of the matrix J  relative to the unit circle is unclear, 
and the positive steady state 2k  can either be stable or unstable. Since the three conditions in 
(18) cannot easily be treated in a neat analytical form when they are evaluated at the positive 
steady states 1k  and 2k . Consequently, in order to illustrate Results 2 and 3 above, we resort 
to numerical simulations to show that Neimark-Sacker bifurcations and endogenous 
fluctuations can actually occur when there are threshold effects of health investments on 
longevity. We thus chose the following parameter configuration: 99.0 , 1 , 20 , 

4.0  (which may be considered as an average value between the values of the output 
elasticity of capital in developed and developing countries, which, according to, for example, 
Kraay and Raddatz (2007), are 33.0  and 5.0 , respectively)12 and 5.4A . Figure 1 
represents the bifurcation diagram for   with respect to the steady state values of the 
variable k  for a simulation of system (13) starting from 100  xk . 
 

 
Figure 1. Bifurcation diagram for   ( 100  xk ): an enlarged view for 77.0473.0   and 

9.01.0  k . 

                                                
11 Numerical experiments are of course available upon request. 
12 See Gollin (2002) for estimates on the output elasticity of capital in developed countries. 
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Figure 1 reveals that there is a double Neimark-Sacker bifurcation when the health tax rate 
varies. In fact, when 4945.0  we get 09613.2 F , 00403.1 TC , 0H  and 9604.0T . 
A second Neimark-Sacker bifurcation occurs when 6859.0 , corresponding to which 

07186.2 F , 02827.1 TC , 0H  and 7179.0T . 
    Simulations (not reported for reasons of space) reveal that when 1  (i.e. no threshold 
effects of health investments on longevity exist), Results 1 and 2 resembles Point (i) of 
Proposition 1 by Chakraborty (2004, p. 126) in a model with a perfect market for annuities. 
This means that: (i) there is one locally asymptotically stable steady state (as in Diamond, 
1965) when 2/10  , and (ii) there are two locally asymptotically stable steady states 
 2,0 k  when 12/1   .13 
    If we slightly change the initial conditions from 100  xk  to 2.000  xk , Figures 2 
(bifurcation diagram) and 3 (the largest Lyapunov exponent, 1Le , plotted against the 
parameter  ) reveal that deterministic chaos occurs because there are ranges of values of the 
health tax rate for which the Lyapunov exponent is steadily positive when 7625.075.0  . 
 

 
Figure 2. Bifurcation diagram for   ( 2.000  xk ): an enlarged view for 77.068.0   and 

6.00  k . 
 

                                                
13 When   11/1    and 1  both the low and high steady states in the model by Chakraborty (2004) 
are locally asymptotically stable with monotonic trajectories. 
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Figure 3. Largest Lyapunov exponent plotted against   ( 76.075.0  ). 
 
3.2. Sketch of global analysis 
 
When two locally stable attractors coexist, trajectories may converge to one or the other, 
depending on the initial conditions. In our model, when the condition given in Result 2 holds, 
a low and a high valued attractors coexist and it is important to identify their basins of 
attraction (that is, the set of initial conditions leading to one attractor or to the other). The 
study of the basin configurations is called global analysis and differs from the local analysis 
because it does not consider the linearization of the map around a steady state, but considers 
the map in its original nonlinear formulation. Global analysis is a mix of analytical and 
numerical tools. This is quite important because, especially in discrete-time systems, it is not 
always true that initial conditions closer to one attractor characterize trajectories leading 
towards it. In our case this means that we are not sure whether or not when two locally stable 
attractors coexist, high (resp. low) initial values of the variables lead to convergence towards 
the high valued (resp. low valued) attractor. In fact, basins of attractions have either a simple 
or complicated structure. They can be connected (that is, only made up of a compact subset of 
the phase space containing the attractor itself) or disconnected (that is made up by the union 
of the subset of initial conditions around the attractor, called immediate basin, and by its 
disconnected preimages). We will show that even connected basins can have a complicated 
structure. 
    Given the complexity of our map, it is not possible to analytically detect global bifurcation 
values. It is still possible however to perform some computer-assisted simulations. Let us now 
consider a parameter configuration leading to coexistence of two locally stable attractors 
(Figure 4.a). This means that the condition given in Result 2 is fulfilled. In this case, besides 
the locally stable steady state  0  and the saddle point  1k , there is a locally attractive closed 
invariant curve14 originating from the Neimark-Sacker bifurcation of the largest steady state 

                                                
14 For a map G  defined on nU  , a subset US   is said to be invariant if SSGn )(  for any Zn . This 
invariant set can be a closed (i.e. containing all its accumulation points) curve and like any other invariant set can 
be locally stable. We refer the reader to Lorentz (1993) or Medio (1995), among others, for more formal and 
rigorous definitions. 
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 2k . This means that of the possible initial conditions, we can identify those that give rise to 
trajectories converging to a quasi-periodic attractor. They form the basin of attraction of the 
closed invariant curve. In Figure 4.a the two basins of attraction are denoted by different 
colours. They are separated by the stable manifold of the saddle point and are connected. If 
we increase the value of  , for instance, we can see that the basin configuration drastically 
changes and becomes more complicated. A basins structure, such as the one represented in 
Figure 4.b, is such that even starting from initial conditions closer to the closed invariant 
curve, (like initial conditions   or  ) trajectories converge towards the origin. We will leave 
a more thorough analysis of global bifurcation for a more technical paper. For now we only 
highlight once again that whenever two locally stable attractors coexist, it is not obvious to 
which one a generic trajectory converges, even when starting very close to one of them. 
 

 
Figure 4. Basin of attraction of the steady state  0  (pink) and of the closed invariant curve 

around  2k  (orange). Parameter set: 35.5A , 5.0 , 94.0 , 6 , and 9.0 . The 
health tax rate   is 7815.0  in (a) and 8.0  in (b). 
 
4. Conclusions 
 
We have studied the dynamic properties of a general equilibrium overlapping generations 
model with public health investments that affect the lifetime of people. We have shown that 
the existence of unintentional bequests, rather than a market for annuities, means that the 
dynamics of the economy is characterised by a two-dimensional discrete non-linear system, 
rather than the one-dimensional system in Chakraborty’s model (2004). This introduces the 
possibility of dynamics characterised by oscillations, Neimark-Sacker bifurcations and 
deterministic chaos in rich economies (the largest steady state) when the health tax rate 
changes and the threshold effect of health investments on longevity exist. Of course, the 
prevailing regime of development (a unique positive long-run equilibrium or two long-run 
equilibria, the former known as poverty trap) depends on whether the zero equilibrium is 
stable or unstable. Our global analysis revealed that two locally stable attractors coexist, so 
that it is not obvious to which one a generic trajectory converges, even when starting very 
close to one of them. We believe that our results thus also represent a policy warning 
regarding the destabilising effect of the financing of (public) health investments, because 
over-expenditure can reduce growth even for those economies with a large initial capital 
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stock. Differences in the initial conditions between countries, as well as the size of their public 
health programmes may help to explain the possible existence of poverty traps (Chakraborty, 
2004). However, even when the initial conditions of different economies are similar, they will 
end up “looking very different” (Azariadis, 1993, p. 106) as regards both the macroeconomic 
and demographic variables, because endogenous fluctuations are possible (Bhattacharya and 
Qiao, 2007). 
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