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Abstract

This article revisits the classical work of Puu (1991) on duopoly dynamics by gathering

two distinct aspects of the functioning of markets: production of goods requires time and

is subject to some gestation lags, but trading takes place continuously. Dynamics are

characterised by a two-dimensional system of delay differential equations. The main aim

of this work is to show that regular and non-regular fluctuations may emerge endogenously

because of the existence of heterogeneous interacting agents that choose production period

by period in a myopic way. Chaotic dynamics in the discrete-time model of Puu (1991)

appear to be close enough to the origin of axes. In contrast, in our continuous-time version

of the model with discrete delays, the dynamic system is more suitable of generating

complex dynamics far enough from the origin when marginal costs vary. This is because

of the role played by time delays and inertia. From a mathematical point of view, we

show the existence of Hopf bifurcations and detect how time delays and inertia affect

the stability of the system by using the recent techniques of stability crossing curves

introduced by Gu et al. (2005) and generalized by Lin and Wang (2012). The article

also provides some findings about global bifurcations and chaotic dynamics by combining

analytical studies and simulation exercises.
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1 Introduction

As part of the economic dynamics literature, the work of Puu (1991) represents one of the first

attempts to mimic realistic behaviors of production dynamics by focusing on the interaction

between economic agents (firms) in a deterministic (quantity-setting) duopoly without exoge-

nous external shocks. The contribution of Puu was to provide a tractable special case (with

unit-elastic market demand and constant marginal costs) of the Cournot model in which a sim-

ple adjustment rule can produce complex dynamics, as Rand (1978) foresaw. Even at the time

of writing, and despite some simplifying assumptions on market knowledge and expectations

formation mechanisms of each competitor, the model of Puu is still a base where comparing

research on nonlinear oligopolies. For instance, Cánovas et al. (2008) provided an important

extension of Puu by taking into account non-negativity constraints on prices, quantities and

profits.

The model of Puu and its subsequent extensions have been developed in a discrete-time

set up. However, in recent years, a burgeoning body of research has focused on the study and

formalization of nonlinear oligopolies described by hybrid dynamic systems, that is systems that

exhibit both continuous and discrete time dynamic behaviors (Matsumoto and Szidarovszky,

2010a, 2010b, 2015; Matsumoto et al., 2011; Gori et al., 2015a). The use of hybrid dynamic

systems is actually receiving in depth attention in several disciplines, ranging from the analysis

of problems concerning the diffusion of infectious diseases (Monica and Pitchaimani, 2016) to

questions related to predator-prey models (Chen and Chen, 2011), reaction-diffusion systems

(Chen and Shi, 2013) and cobweb models (Gori et al., 2015b). By turning on to the analysis

of economic models with imperfect competition and time delays, Matsumoto and Szidarovszky

(2010a) provide a study of a duopoly with small information delays in the reaction curves of

firms. That work has been generalized byMatsumoto and Szidarovszky (2010b) andMatsumoto

et al. (2011). In the former model, the authors study the case in which the dynamics of the

economy are characterized by arbitrary values of time delays in the reaction curves of firms,

whereas, in the latter, it is assumed that each firm has an information lag even in comparison

with its own production. More recently, Matsumoto and Szidarovszky (2015) recounted the

issue studied by Matsumoto et al. (2011) and introduced an adjustment mechanism (based

on marginal profits) similar to the one proposed in discrete-time by Bischi et al. (1998).

Finally, Gori et al. (2015a) have proposed a different way in which time delays can affect

duopoly dynamics. In particular, by following Berezowski (2001), the authors have shown that

the existence of frictions in production adjustments and the assumption of markets in which

trading takes place continuously induces a sharp change in the structure of the dynamic system

of a duopoly à la Bischi et al. (1998).

The present article adopts the approach proposed by Berezowski (2001) in nonlinear duopolies

where the adjustment mechanism is based on best reply dynamics or adaptive dynamics. In

comparison with the companion article of Gori et al. (2015a), this work introduces the recent
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techniques developed by Gu et al. (2005) and Lin and Wang (2012), useful to characterize

the local stability properties of a dynamic system. It also provides some findings about global

bifurcations and chaotic dynamics by using both analytical results and simulation exercises.

The rest of the article proceeds as follows. Section 2 briefly sets up the basic (static) model.

Section 3 describes the best reply dynamic setting in a continuous time framework with discrete

delays. Section 4 extends the model to the case of adaptive dynamics and applies some recent

techniques (stability crossing curves) proposed by Gu et al. (2005) and Lin and Wang (2012).

Section 5 outlines the conclusions and briefly discusses future research.

2 The static model

By following Puu (1991), we posit the reaction functions

x =

�
y

a
− y, (1)

and

y =

�
x

b
− x, (2)

which can be derived from a market in which two quantity-setting (profit-maximizing) firms

(namely, firm x and firm y) produce a homogeneous good with constant marginal costs of pro-

duction a > 0 and b > 0, respectively, facing a unit elastic demand curve p = 1/Q, where

Q = x + y (x and y are non-negative quantities) is the total supply and p > 0 is the mar-

ginal willingness to pay of consumers. This market has a unique locally stable Cournot-Nash

equilibrium, that is:

x∗ =
b

(a+ b)2
and y∗ =

a

(a+ b)2
. (3)

3 Best reply dynamics

One of the most important characteristics in the approach proposed by Puu (1991)1 is the

no simultaneous occurrence between production decisions and their implementation (time to

build assumption) in situations that do not necessarily start from the Cournot equilibrium.

These kind of models have an important limitation as they all consider that trading takes place

based on the same time schedule of production. However, this becomes an unlikely assumption

in the cases in which the technology requires a long time to bring production to completion.

In other words, this hypothesis implies that, within each time interval between two different

productions, new products are not brought to the market. To overcome this problem, a good

1This approach is also used in other works with different assumptions about the degree of knowledge of

economic agents (Bischi et al., 1998).
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compromise is to build on a model including some characteristics of discrete-time models (time

lags) together with characteristics of continuous-time models (i.e., new production activities

begin - and trading takes place - continuously). There exist several ways to translate a model

originally expressed in a discrete time set up in a continuous time framework (with delays)

by preserving some assumptions characterizing discrete time models, such as, for instance, the

non-coexistence between the benchmark economic processes (e.g., production, trading and so

on). To this purpose, in the rest of the article we will use the approach proposed by Berezowski

(2001), formerly adopted to describe a "physical process of defined inertia" (Berezowski, 2001,

p. 84) and applied to economic models by Matsumoto and Szidarovszky (2014) and Gori et al.

(2015a).

First of all, we now generalize the model of Puu. Firms x and y have a global knowledge

of the market (that is, they know the market demand) but they are naïve players. This

implies that, at every time t, each firm expects that rival’s production is equal to the quantity

produced in the last period. In a continuous time model, this implies that Πx(x(t), y
e(t)) =

Πx(x(t), y(t − τ 1)) and Πy(y(t), x
e(t)) = Πy(y(t), x(t − τ2)), where τ1 ≥ 0 and τ2 ≥ 0 are

discrete delays. These delays are assumed to be different to capture heterogeneities related to

the specific technology used by every firm (gestation lags). In this context, the model of Puu

with best replies becomes the following:




x(t) =

�
y(t− τ 1)

a
− y(t− τ1),

y(t) =

�
x(t− τ2)

b
− x(t− τ 2),

. (4)

By applying the method proposed by Berezowski (2001) to (4), the two-dimensional dynamic

system becomes the following:




σ1ẋ(t) + x(t) =

�
y(t− τ1)

a
− y(t− τ 1),

σ2ẏ(t) + y(t) =

�
x(t− τ 2)

b
− x(t− τ 2),

, (5)

where σ1 > 0 and σ2 > 0 are a measure of the inertia in the adjustment mechanism, ẋ(t) =

∂x/∂t and ẏ(t) = ∂y/∂t. Some clarifications about this method are now in order. From a

mathematical point of view, we note that for σ1 = σ2 = 0 and τ1 = τ 2 = 1 system (5)

replicates the two-dimensional discrete time map given by Eqs. (12) and (13) of Puu (1991).

This implies that, for values of σi (i = {1, 2}) close enough to zero, the dynamic properties of

(5) resemble the dynamic properties of the model of the discrete time model of Puu in the case

of best replies. In particular, at every time t − τ i (with τ i given) firm i plans the production

that will be available at time t by using the best reply rule with static expectations (that is, it

maximizes profits by assuming that the rival does not modify its production plan). At time t,

each firm is not able to realize perfectly the production plan arranged at time t−τ i (for instance,
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because of frictions due to the long time required for production).2 Specifically, we assume that,

in a phase of output growth, ẋ(t) > 0, firms are not able to realize a sufficiently large amount of

products, meaning that realized production is smaller than planned production. The opposite

holds in a phase of recession (ẋ(t) < 0).3 Consequently, each firm adjusts its quantity in the

direction of fixing mistakes with respect to the target. The reciprocals of σ1 and σ2 capture the

intensity of the instantaneous change in quantities of firm x and firm y, respectively, related to

the mismatch between planned and realized production, as is shown in the following system:4





ẋ(t) =
1

σ1

��
y(t− τ1)

a
− y(t− τ 1)− x(t)

�

ẏ(t) =
1

σ2

��
x(t− τ2)

b
− x(t− τ2)− y(t)

� a > 0, b > 0, σ1 > 0, σ2 > 0, (6)

3.1 Case τ 1 ≥ 0 and τ 2 ≥ 0

In this section and the next ones, we will concentrate on the study of the mathematical prop-

erties of the model described in the previous section.

Lemma 1 System (6) has a unique positive equilibrium (x∗, y∗), where

x∗ =
b

(a+ b)2
and y∗ =

a

(a+ b)2
.

Proof. Setting ẋ(t) = ẏ(t) = 0, x(t − τ 2) = x(t) = x∗ and y(t − τ 1) = y(t) = y∗ for all t, we

find that an equilibrium of system (6) coincides with the Nash equilibrium of the static game

defined in (3).

The linearization of (6) at (x∗, y∗) is




ẋ(t) = − 1

σ1
(x(t)− x∗) +

b− a
2aσ1

(y(t− τ 1)− y∗),

ẏ(t) = − 1

σ2
(y(t)− y∗) +

a− b
2bσ2

(x(t− τ2)− x∗) .
(7)

Thus, the characteristic equation associated with (7) is

λ2 +

�
σ1 + σ2
σ1σ2

	
λ+

1

σ1σ2
+

(a− b)2
4abσ1σ2

e−λ(τ1+τ2) = 0. (8)

2Notice that we are assuming that the model does not include problems about inventories.
3The existence of delays and mismatch between choices and their achievements is recognized to be a central

issue in management science (Harrison and van Hoek, 2008).
4We note that we are considering the simplifying assumption that changing the quantities produced do not

produce endogenous adjustment costs for firms. However, a sufficiently large value of σi (roughtly speaking,

this implies that ẋ(t) is close to zero) describes a situation in which there are strong frictions in production

adjustments. In this regard, it will be interesting to study models that incorporate non-constant adjustment

costs. See Bertola and Caballero (1990) for a general treatment on this issue.
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Let τ = τ 1 + τ 2. Then (8) can be written as

λ2 + k1λ+ k2 + k3e
−λτ = 0, (9)

where

k1 =
σ1 + σ2
σ1σ2

> 0, k2 =
1

σ1σ2
> 0, k3 =

(a− b)2
4abσ1σ2

≥ 0.

Lemma 2 Let τ = 0. Then the equilibrium point of system (6) is locally asymptotically stable.

Proof. In the absence of delay, Eq. (8) becomes

λ2 + k1λ+ k2 + k3 = 0.

Since both coefficients are positive, the real parts of the eigenvalues are negative. Hence, the

statement holds.

It is obvious that λ = 0 cannot be a root of Eq. (9). In order to understand the stability

switches of system (6), we need to determine the critical values of the time lag at which the

characteristic equation may have a pair of conjugate pure imaginary roots. If iω is a root of

the characteristic equation (9) for ω > 0 then

−ω2 + iωk1 + k2 + k3(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we have

ω2 − k2 = k3 cosωτ, k1ω = k3 sinωτ, (10)

which lead to

ω4 +


k21 − 2k2

�
ω2 + k22 − k23 = 0, (11)

where

k21 − 2k2 =
σ21 + σ

2
2

σ21σ
2
2

> 0 and k22 − k23 =
16a2b2 − (a− b)4

16a2b2σ21σ
2
2

.

It is clear that, if k22 − k23 ≥ 0, then Eq. (11) has no positive root. Thus, the characteristic

equation (9) does not have purely imaginary roots. Now, k22 − k23 ≥ 0 if b2− 6ab+ a2 ≤ 0, that

is if


3− 2

√
2
�
a ≤ b ≤



3 + 2

√
2
�
a. In particular, this holds true when a = b. On the other

hand, if k22 − k23 < 0, then Eq. (11) has only one positive root

ω+ =

��−k21 + 2k2 +
�

(k21 − 2k2)
2 − 4 (k22 − k23)

2
. (12)

Notice that a = b implies k3 = 0, so that k22−k23 < 0 needs a 
= b. In this case, the characteristic
equation (9) has purely imaginary roots when τ takes certain values. These critical values τ+j
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(j = 0, 1, 2, ...) of τ can be determined from (10). Since k1ω+/k3 > 0, we have sinω+τ > 0.

Consequently,

τ+j =
1

ω+
cos−1

�
ω2+ − k2
k3

�
+

2jπ

ω+
. (13)

Furthermore, λ = iω+ is a simple root of (9). If it were not simple, then differentiating (9) with

respect to λ, and using (9), we would arrive to (2 + k1τ
+
j )ω+ = 0, which is a contradiction.

The above analysis can be summarized in the following result.

Lemma 3 1) If


3− 2

√
2
�
a ≤ b ≤



3 + 2

√
2
�
a holds, then all roots of equation (9) have

negative real parts for all τ ≥ 0. 2) If 0 < b <


3− 2

√
2
�
a or b >



3 + 2

√
2
�
a, together

with a 
= b hold, then Eq. (9) has a pair of simple purely imaginary roots ±iω+ at τ = τ+j ,

j = 0, 1, 2, ...

Let λ(τ) = ν(τ ) + iω(τ ) be the root of Eq. (9) satisfying ν(τ+j ) = 0 and ω(τ+j ) = ω+, with

ω+ and τ+j defined in (12) and (13), respectively. Substituting λ(τ) into (9) and taking the

derivative with respect to τ , we get

�
dλ

dτ

	−1
=

(2λ+ k1) e
λτ

λk3
− τ

λ
,

which, together with (9), leads to

sign

�
d (Reλ)

dτ

����
τ=τ+

j

�
= sign



Re

�
dλ

dτ

	−1�����
τ=τ+

j



 = sign

�
k21 − 2k2 + 2ω2+

�

= sign

��
(k21 − 2k2)

2 − 4 (k22 − k23)
�
> 0.

Hence, the crossing of the imaginary axis is from left to right as τ increases, thus resulting in

the loss of stability.

Then, we have the following results about stability of the positive equilibrium of system (6)

and Hopf bifurcations.

Theorem 4 Let τ+j (j = 0, 1, 2, ...) be defined as in (13) and τ = τ1 + τ2.

1) If


3− 2

√
2
�
a ≤ b ≤



3 + 2

√
2
�
a holds, then the positive equilibrium (x∗, y∗) of (6) is

locally asymptotically stable for all τ ≥ 0.

2) If 0 < b <


3− 2

√
2
�
a or b >



3 + 2

√
2
�
a, with a 
= b, hold, then the positive equilibrium

(x∗, y∗) of (6) is locally asymptotically stable when τ ∈ [0, τ+0 ) and unstable when τ > τ
+
0 .

Moreover, (6) undergoes Hopf bifurcations at (x∗, y∗) when τ = τ+j .
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The results of Theorem 4 are illustrated in Figure 1 that shows in (a, b) plane the configu-

rations of production costs such that the stationary equilibrium is locally asymptotically stable

(the region within the cone) or unstable (the region outside the cone). Therefore, a necessary

condition, such that the stationary equilibrium loses stability, is that production costs of the

two firms are sufficiently different. We also note that σ1 and σ2 play a stabilizing role in the

sense that given the same delays τ 1 and τ 2, an increase in σ1 or σ2 enlarges the region (a, b)

within the cone. From an economic point of view, a higher value of σi (i = {1, 2}) implies that
firm i turns out to be less responsive to the actions of its rival, so that the system more likely

approaches to stationary solutions.

Now, through simulations it is possible to analyze the behavior of the system for parameter

values far enough from the configuration that generates the Hopf bifurcation. Specifically, we

study the long-term effects of the system when τ1 (Figure 2(a)) or σ1 (Figure 3) changes via

bifurcation diagrams. The bifurcation diagrams plotted in Figures 2(a) and 3 are depicted by

taking into account a typical trajectory convergent towards the attractor of the system. The fig-

ures show (after a long enough transient) the local maximum and local minimum values when

the corresponding bifurcation parameter changes. For instance, when a bifurcation diagram

shows the existence of a unique line (as long as the bifurcation parameter varies), the system

is stable and converges to the Nash equilibrium. In the portion of the graph showing two lines,

a generic trajectory of the system (starting from close enough to the stationary equilibrium)

converges to a cycle born via a Hopf bifurcation. Instead, portions of the graph in which more

than two lines coexist describe situations in which the attractor projected in the pseudo phase

plane (x(t), y(t)) changes its shape and also self-intersections can be observed (Figure 2(b)).

Then the dynamics of the system are characterized by several local maximum and minimum

values. The existence of discontinuities in the bifurcation diagram, when the bifurcation pa-

rameter varies, is because some local maximum and minimum values are created far enough

away from the already existing ones. This is pointed out in Figures 2(c). Specifically, Figure

2(a) shows that τ1 plays a destabilizing role. In fact, for τ1 < τ
+
0 , the stationary equilibrium

is locally asymptotically stable, whereas for values of τ1 larger than but close enough to τ+0 ,

dynamics are oscillatory, showing a unique maximum value and a unique minimum value. By

considering values of τ1 larger than around 1.11, the typical trajectory convergent towards the

attractor is characterized by the existence of several maximum and minimum values. We note

that, for large enough values of τ 1 the ω-limit set of the system is a chaotic attractor, as is

shown in Figure 4(a), Figure 4(b) and Figure 4(c).

The parameter space for which the discrete-time model of Puu with best reply adjustment

generates chaotic dynamics is relatively small as compared with the values of a and b (marginal

costs) generating feasible trajectories (see Puu, 1991, Figure 3, p. 579). In addition, when

chaotic dynamics in Puu appear, they are close enough to the origin of axes (see Puu, 1991,

Figure 4, p. 579). From an economic point of view, this last point implies that trajectories are

characterized by terrific changes in the market price (i.e., there exist phases in which the price
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becomes very large).5 In contrast, in the present model the dynamic system is more suitable of

generating complex dynamics. In addition, an attractor far enough away from the origin can

capture these dynamics. This is because this version of the model is more general including 1)

heterogeneous parameters related to frictions in the adjustment mechanism of quantities, and

2) heterogeneous time delays. This result is pointed out in Figure 4(a) and Figure 4(b). The

former figure (with a relatively low degree of inertia) shows a chaotic attractor looking like the

chaotic attractor of Puu, which is close enough to the origin; the latter figure (with a relatively

high degree of inertia) shows an example in which a chaotic attractor is far enough away from

the origin.

Figure 1. The two blue half lines that exit the origin define the borders of the stability

region in (a, b) plane in the original model of Puu (1991), where τ 1 = τ2 = 1 and σ1 = σ2 = 0.

The stationary equilibrium is locally asymptotically stable for all the couples (a, b) within the

cone. The two black half lines that exit the origin define the borders of the stability region in

(a, b) plane in the model with time delays (τ1 = τ2 = 1), for a given positive value of the degree

of inertia (σ1 = σ2 = 1). The figure shows that given the same values of time delays, a positive

value of the degree of inertia tends to stabilize the stationary equilibrium.

5The authors thank an anonymous reviewer for pointing this out.
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(a)

(b)
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(c)

Figure 2. (a) Bifurcation diagram for τ 1. (b) Attractor of the system for τ 1 = 1.15. (c)

Time series for τ 1 = 1.22. The figure shows the birth of new local maximum and minimum

values not related to the already existing ones (see the arrows in the figure). Parameter values:

σ1 = 0.11, σ2 = 0.1, a = 1, b = 6.2 and τ 2 = 0.3.

Figure 3. Bifurcation diagram for σ1. Parameter values: σ2 = 0.1, a = 1, b = 6.24, τ 1 = 1

and τ2 = 1. The braided appearance in the lower branch almost at σ1 = 0.3 is due to numerical

approximations of maximum and minimum values.

11



(a)

(b)
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(c)

Figure 4. (a) Chaotic attractor in the pseudo phase plane (x(t), y(t)) with values of σi close

to 0 (σ1 = 0.015 and σ2 = 0.015).6 (b) Chaotic attractor in the pseudo phase plane (x(t), y(t))

with values of σi far enough away from 0 (σ1 = 0.11 and σ2 = 0.1). The dynamics are bounded

in a region far enough away from the origin. (c) Time series of production (σ1 = 0.11 and

σ2 = 0.1). Other parameter values: a = 1, b = 6.2, τ1 = 2 and τ2 = 0.3.

In the light of the results of Section 3, it is possible to infer some basic intuitions that are in

line with other works that study the role of frictions in economic adjustment mechanisms (Mat-

sumoto and Szidarovszky, 2014; Gori et al., 2015a). In particular, when inertia is introduced in

an adjustment rule it is possible that there exist some market characteristics such that delays

cannot destabilize the equilibrium. Instead, if other technological conditions are fulfilled, an

increase in the delay tends to destabilize the equilibrium and produce complex dynamics (see

Theorem 4 and Figures 2(a)-4(c)). Conversely, frictions work out in the opposite direction than

time delays letting the system moving back towards the equilibrium.

4 Adaptive dynamics

This section is devoted to the study of a continuous time version with delays of the model with

adaptive dynamics proposed by Puu in the second part of his work. Specifically, in addition to

6For values of σi much closer to zero, the dynamics of our delay-differential system become very similar to

ones of the discrete-time model of Puu (1991), and a cluster can be obserbed close to the origin.
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the best reply dynamics, Puu also proposes an adjustment mechanism of quantities with which

each competitor does not immediately jump to its new optimum at every step, but gradually

adjusts its own (previous) decision in the direction of the new optimum. A similar method of

production adjustment has been proposed by Onozaki et al. (2003) and Bischi and Cerboni

Baiardi (2015). We note that different from the model based on best replies of firms, the

techniques recently proposed by Gu et al. (2005) and Lin and Wang (2012) will be useful later

in this article to analyze the model with adaptive dynamics.

In a similar way to what was previously done in the present work, we now introduce the

analog version of the dynamic system (23) and (24) of Puu (1991, pp. 579-580) under the

assumption of time-to-build technology, existence of frictions in the ability of firms to adjust

production towards the target and trading that takes place continuously in the market. There-

fore, by applying the method proposed by Berezowski (2001) the adaptive dynamics model à

la Puu is described by the following system:




σ1ẋ(t) + x(t) = x(t− τ1)(1− θ) + θ
��

y(t− τ1)
a

− y(t− τ 1)
�

σ2ẏ(t) + y(t) = y(t− τ 2)(1− θ) + θ
��

x(t− τ2)
b

− x(t− τ2)
� , (14)

where 0 < θ < 1 captures the weight of the production adjustment of each firm towards the

new optimum.

Let us now rewrite system (14) as follows for mathematical convenience:




ẋ(t) = −x(t)
σ1

+
x(t− τ 1)(1− θ)

σ1
+
θ

σ1

��
y(t− τ1)

a
− y(t− τ 1)

�

ẏ(t) = −y(t)
σ2

+
y(t− τ2)(1− θ)

σ2
+
θ

σ2

��
x(t− τ 2)

b
− x(t− τ 2)

� . (15)

Then, we have the following lemma.

Lemma 5 There exists a unique positive equilibrium (x∗, y∗) for model (15), where

x∗ =
b

(a+ b)2
and y∗ =

a

(a+ b)2
. (16)

Proof. An equilibrium point for system (15) is obtained by setting ẋ(t) = ẏ(t) = 0, x(t−τ i) =
x(t) = x∗ and y(t − τ i) = y(t) = y∗ for all t, i = 1, 2. This means that the equilibrium point

solves the following equations: �
y∗
a

=

�
x∗
b

= x∗ + y∗.

The conclusion now follows by knowing that from the previous equation we may easily find

that

y∗ =
a

b
x∗ and x∗ =

(a+ b)2

b
x2
∗
.
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Next, we investigate the effect of time delays on the dynamics of (15). As is known, the

stability of an equilibrium point and local Hopf bifurcations involve the distribution of roots of

the corresponding characteristic equation. The linearization of system (15) at (x∗, y∗) is given

by





ẋ(t) = − 1

σ1
(x(t)− x∗) +

1− θ
σ1

(x(t− τ1)− x∗) +
θ(b− a)
2aσ1

(y(t− τ1)− y∗),

ẏ(t) = − 1

σ2
(y(t)− y∗) +

θ(a− b)
2bσ2

(x(t− τ 2)− x∗) +
1− θ
σ2

(y(t− τ2)− y∗).
(17)

The associated characteristic equation of system (17) takes the form

���������

− 1

σ1
− λ+ 1− θ

σ1
e−λτ1

θ(b− a)
2aσ1

e−λτ1

θ(a− b)
2bσ2

e−λτ2 − 1

σ2
− λ+ 1− θ

σ2
e−λτ2

���������

= 0,

namely

P0(λ) + P1(λ)e
−λτ1 + P2(λ)e

−λτ2 + P3(λ)e
−λ(τ1+τ2) = 0, (18)

where

P0(λ) := λ
2 + λ

�
σ1 + σ2
σ1σ2

	
+

1

σ1σ2
,

P1(λ) :=
−(1− θ) (1 + λσ2)

σ1σ2
,

P2(λ) :=
−(1− θ) (1 + λσ1)

σ1σ2
,

P3(λ) :=
(a2 + b2)θ2 + 2ab(θ2 − 4θ + 2)

4abσ1σ2
.

By taking into account the results of Lemma 2 and knowing that θ is positive, it follows that:

Remark 6 The equilibrium point (x∗, y∗) for model (15) is locally asymptotically stable in the

absence of delays.

To consider the effects of the two time delays on the stability of model (15), we need to

analyze the boundary of the stability region determined by the equations λ = 0 and λ = iω

(ω > 0). We note that the case λ = 0 cannot occur since, in this case, we get the absurd

a+ b = 0 in (18). Therefore, only the case λ = iω (ω > 0) has to be analyzed.
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4.1 Case τ 1 = 0 and τ 2 > 0

In this section we analyze the case in which one of the two delays (τ1) is equal to zero, whereas

the other one (τ2) is positive. We will show some results about local stability of the stationary

equilibrium and the arising of the Hopf bifurcation.

Since τ 1 = 0, Eq. (18) becomes

λ2 +Aλ+B + (Cλ+D) e−λτ2 = 0. (19)

where

A =
σ1 + θσ2
σ1σ2

> 0, B =
θ

σ1σ2
> 0, C = −1− θ

σ2
< 0, D =

θ [−4ab+ θ(a+ b)2]
4abσ1σ2

. (20)

Assume that Eq. (19) has a purely imaginary solution of the form λ = iω (ω > 0). Substituting

it into (19) and separating the real and imaginary parts, we have

−ω2 + iAω +B + (iCω +D)e−iωτ2 = 0,

or equivalently

−ω2 +B = −D cosωτ2 − Cω sinωτ2, Aω = −Cω cosωτ 2 +D sinωτ 2. (21)

Squaring each equation in (21) and taking the sum, we obtain the following equation of ω2:

ω4 −


C2 + 2B −A2

�
ω2 +B2 −D2 = 0. (22)

From (20), we get

B2 −D2 =
(a+ b)2θ3 [8ab− θ(a+ b)2]

16a2b2σ21σ
2
2

and C2 + 2B − A2 = θ [(σ21 − σ22) θ − 2σ21]

σ21σ
2
2

. (23)

Lemma 7 Recall that 0 < θ < 1.

1) Let 0 < b < (3 −
√
2)a or b > (3 +

√
2)a. Then B2 − D2 = 0 if θ = 8ab/(a + b)2,

B2 −D2 > 0 if θ < 8ab/(a+ b)2, B2 −D2 < 0 if θ > 8ab/(a+ b)2.

2) Let (3−
√
2)a ≤ b ≤ (3 +

√
2)a. Then B2 −D2 > 0 for all θ.

Proof. From (23) one has sign (B2 −D2) = sign[8ab − θ(a + b)2]. The statement follows,

noting that 8ab/(a+b)2 < 1⇔ b2−6ab+a2 > 0, i.e. when 0 < b < (3−
√
2)a or b > (3+

√
2)a.

Lemma 8 C2 + 2B −A2 < 0.

16



Proof. From (23) we can see that sign (C2 + 2B −A2) = sign [(σ21 − σ22) θ − 2σ21]. If σ
2
1−σ22 ≤

0, then it is immediate that C2 + 2B − A < 0. If σ21 − σ22 > 0, then (σ21 − σ22) θ − 2σ21 <

(σ21 − σ22)− 2σ21 = −σ21 − σ22 < 0. The conclusion holds.

From (22) we find that if B2 − D2 ≥ 0 holds, then Eq. (22) has no positive solutions.

Thus, all the solutions of (19) have negative real parts when τ 2 ≥ 0. On the other hand, if

the conditions B2 −D2 < 0 hold, then Eq. (22) has a unique positive solution such that the

characteristic equation (19) has a pair of purely imaginary roots ±iω+ at τ2 = τ
+
2,j, where

ω± =

��C2 + 2B − A2 ±
�

(C2 + 2B − A2)2 − 4 (B2 −D2)2

2
. (24)

The critical values τ+2,j (j = 0, 1, 2, ...) of the delay τ2 corresponding to ω+ are obtained solving

equations in (21) for sin(ω+τ
+
2,j) and cos(ω+τ

+
2,j), and getting

sin(ω+τ
+
2,j) =

ω+


Cω2+ +AD −BC

�

C2ω2+ +D2
, cos(ω+τ

+
2,j) =

(D − AC)ω2+ −BD
C2ω2+ +D2

.

We have

τ+2,j =





1

ω+

�
2jπ + cos−1

�
(D − AC)ω2+ −BD

C2ω2+ +D2

��
, if Cω2+ +AD −BC > 0,

1

ω+

�
(2j + 1)π − cos−1

�
(D − AC)ω2+ −BD

C2ω2+ +D2

��
, if Cω2+ +AD −BC ≤ 0.

(25)

The next step is to determine the sign of the derivative of Re(λ) at the points where λ is

purely imaginary root of (19).

Proposition 9 Let λ (τ 2) be the root of (19) near τ2 = τ+2,j such that Re(λ(τ
+
2,j)) = 0 and

Im(λ(τ+2,j)) = ω+. Then �
dRe(λ)

dτ 2

�

τ2=τ
+

2,j
,ω=ω+

> 0.

Proof. Substituting λ(τ2) into the left hand side of (19), differentiating with respect to τ2, we

get
�
2λ+A+ [C − τ2 (Cλ+D)] e−λτ2

� dλ
dτ 2

= λ(Cλ+D)e−λτ2 . (26)

Hence,

�
dλ

dτ 2

	−1
=

2λ+A+ [C − τ2 (Cλ+D)] e−λτ2

λ(Cλ +D)e−λτ2
=

(2λ+A) eλτ2 + C

λ(Cλ+D)
− τ 2
λ
.

From (19), eλτ2 = − (Cλ+D) /(λ2 +Aλ+B), so that we obtain

�
dλ

dτ 2

	−1
= − 2λ+A

λ(λ2 +Aλ+B)
+

C

λ(Cλ+D)
− τ 2
λ
.
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Then �
dλ

dτ2

	−1

τ2=τ
+

2,j
,ω=ω+

= − 2iω+ +A

iω+(B − ω2+)− Aω2+
− C

Cω2+ − iDω+
−
τ+2,j
iω+

.

Furthermore, we have

Re

�
dλ

dτ 2

	−1

τ2=τ
+

2,j
,ω=ω+

=
2ω2+ +A2 − 2B

(B − ω2+)2 +A2ω2+
− C2

C2ω2+ +D2

Notice that (22) yields C2ω2+ +D2 = (B − ω2+)2 +A2ω2+. Consequently,

Re

�
dλ

dτ2

	−1

τ2=τ
+

2,j
,ω=ω+

=
2ω2+ +A2 − 2B − C2

C2ω2+ +D2
.

Therefore using (24) we find

sign

�
d (Reλ)

dτ2

����
τ2=τ

+

2,j
,ω=ω+

�
= sign

�
Re

�
dλ

dτ

	−1

τ2=τ
+

2,j
,ω=ω+

�
= sign

�
2ω2+ +A2 − 2B − C2

�

= sign

��
(C2 + 2B − A2)2 − 4 (B2 −D2)2

�
.

This completes the proof.

Based on the above result, when λ = iω+, the only crossing of the imaginary axis is from

left to right as τ2 increases. Thus, the stability of the equilibrium point (x∗, y∗) can only be

lost and not regained.

Lemma 10 λ = iω+ is a simple root of the characteristic equation (19).

Proof. If we suppose by contradiction that λ = iω+ is a repeated root, then differentiating

(19) with respect to λ, and inserting λ = iω+, leads to

2iω+ +A+
�
C − τ+2,j(iCω+ +D)

�
e−iω+τ

+

2,j = 0

From (26) we get

iω+(iCω+ +D)e−iω+τ
+

2,j = 0.

Separating real and imaginary parts in the above equality, we have

D cosω+τ
+
2,j + Cω+ sinω+τ

+
2,j = 0, −Cω+ cosω+τ

+
2,j +D sinω+τ

+
2,j = 0,

so that, from (21), we derive that Aω = 0 and ω2
±
= B. Since A > 0 we have the statement.

Then, we can state the following results.

Theorem 11 Let τ+2,j (j = 0, 1, 2, ...) be defined as in (25).
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1) If (3 −
√
2)a ≤ b ≤ (3 +

√
2)a holds or if 0 < b < (3 −

√
2)a, b > (3 +

√
2)a and 0 <

θ ≤ 8ab/(a+ b)2 hold, then the equilibrium (x∗, y∗) of system (15) is locally asymptotically

stable for all τ2 ≥ 0.

2) If 0 < b < (3−
√
2)a or b > (3+

√
2)a holds, and 8ab/(a+b)2 < θ < 1, then the equilibrium

(x∗, y∗) of system (15) is locally asymptotically stable for τ 2 ∈ [0, τ+2,0) and unstable for

τ 2 ∈ (τ+2,0,+∞). System (15) undergoes a Hopf bifurcation at (x∗, y∗) for τ 2 = τ
+
2,0.

We note that, if θ = 0, the equilibrium (x∗, y∗) is marginally (not asymptotically) stable.

This may be verified by considering that every initial condition x = c1 and y = c2 for t ∈ [−τ , 0]
defines a stationary solution for every t ≥ 0. In contrast, for positive values of θ, firms should

mediate between stationary choices and choices driven by the mechanism described in the model

with best reply dynamics. The model with adaptive dynamics replicates the one with best reply

dynamics when θ = 1. The role of θ is highlighted in Figure 5. As can be seen by looking at the

figure, for low values of θ the stationary equilibrium (x∗, y∗) is asymptotically stable, whereas

when parameters are set to get an unstable stationary equilibrium of the model with best reply

dynamics, there exists a threshold value of θ beyond which the stationary equilibrium of the

model with adaptive dynamics is unstable and long-term dynamics are oscillatory. This result

is certainly expected and is in line with similar results obtained in a two-dimensional context by

Puu in a nonlinear duopoly and Onozaki et al. (2003) in a cobweb model with heterogeneous

producers.

Figure 5. Bifurcation diagram for θ. Parameter set: σ1 = 0.11, σ2 = 0.1, a = 1, b = 6.2,

τ 1 = 0 and τ2 = 2.2.
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4.2 Case τ 1 > 0 and τ 2 ∈ [0, τ+2,0)

In this section, we extend the results of previous sections to the case in which τ2 is fixed to a

value belonging to the stability region, that is τ2 ∈ [0, τ+2,0), and τ1 is positive. For convenience,

we now rewrite the characteristic equation (18) as follows:

P (λ, τ1, τ 2) := λ
2 +  Aλ+  B +

!
 C +  Dλ

"
e−λτ1 +

!
 C +  Eλ

"
e−λτ2 +  Fe−λ(τ1+τ2) = 0, (27)

where

 A =
σ1 + σ2
σ1σ2

> 0,  B =
1

σ1σ2
> 0,  C = −1− θ

σ1σ2
,  D = −1− θ

σ1
, (28)

 E = −1− θ
σ2

,  F =
(1− θ)2
σ1σ2

+
θ2(a− b)2
4abσ1σ2

≥ 0.

Now, consider P (λ, τ 1, τ2) = 0 with τ 2 in its stable interval, i.e. [0, τ+2,0), and regard τ 1 as

a parameter. Let λ = iω (ω > 0) be a root of P (λ, τ1, τ2) = 0. Then P (iω, τ 1, τ2) = 0 gives

−ω2 +  B +  C cosωτ2 +  Eω sinωτ2 = (  F sinωτ2 −  Dω) sinωτ1 − (  C +  F cosωτ 2) cosωτ 1 (29)

and

 Aω +  Eω cosωτ2 −  C sinωτ2 = (  C +  F cosωτ2) sinωτ1 + (  F sinωτ2 −  Dω) cosωτ1 (30)

Squaring and adding Eqs. (29) and (30), we get

g(ω) = 0, (31)

where

g(ω) = ω4 −
!
2  E sinωτ 2

"
ω3 +

#
 A2 +  E2 − 2  B −  D2 + 2

!
 A  E −  C

"
cosωτ2

$
ω2

+
#
2
!
 D  F −  A  C +  B  E

"
sinωτ 2

$
ω +  B2 −  F 2 + 2  C

!
 B −  F

"
cosωτ 2.

Remark 12 Notice that lim
ω→+∞

g(ω) = +∞ and g(0) =  B2 −  F 2 + 2  C
!
 B −  F

"
. As a result,

g(0) < 0 when b < (3−2
√
2)a or b > (3+2

√
2)a. Hence, there is at least a positive ω satisfying

g(ω) = 0.

Assume that Eq. (31) has finitely many positive zeros denoted by ω1, ω2, ..., ωN . Then for

every fixed ωl, l = 1, 2, ..., N, there exists a sequence τ j1,l > 0 (j = 1, 2, ...) satisfying (31). Let

τ̃ 1 = min
�
τ j1,l, l = 1, 2, ...,N, j = 1, 2, ...

�
. (32)
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When τ 1 = τ̃1 the characteristic equation (27) has a pair of purely imaginary roots ±iω̃ for

τ 2 ∈ [0, τ+2,0). Let λ (τ1) be the root of (27) near τ 1 = τ̃1 satisfying Re(λ (τ̃1)) = 0 and

Im(λ (τ̃ 1)) = ω̃. To verify the transversality condition of Hopf bifurcation, we differentiate (27)

with respect to τ1, and get

#
2λ+  A+  De−λτ1 +  Ee−λτ2 −

!
 C +  Eλ

"
τ2e

−λτ2 −  F (τ1 + τ2) e
−λ(τ1+τ2) (33)

−τ 1
!
 C +  Dλ

"
e−λτ1

$� dλ
dτ1

	
= λ

#!
 C +  Dλ

"
e−λτ1 +  Fe−λ(τ1+τ2)

$
.

Then,

�
dλ

dτ1

	−1
=

2λ+  A+  De−λτ1 +  Ee−λτ2 −
!
 C +  Eλ

"
τ2e

−λτ2 −  Fτ 2e−λ(τ1+τ2)

λ
#!

 C +  Dλ
"
e−λτ1 +  Fe−λ(τ1+τ2)

$ − τ 1
λ
.

Plugging (27) into the above expression yields

�
dλ

dτ 1

	−1
= −

2λ+  A+  De−λτ1 +  Ee−λτ2 + τ2
#
λ2 +  Aλ+  B +

!
 C +  Dλ

"
e−λτ1

$

λ
#
λ2 +  Aλ+  B +

!
 C +  Eλ

"
e−λτ2

$ − τ 1
λ
.

After an elementary but somewhat tedious calculation, we can arrive at the following expression:

�
dλ

dτ1

	−1

τ1=τ̃1

=
a1 + ia2
ω̃ (b1 − ib2)

− τ̃1
iω̃
,

where

a1 =  A+  D cos ω̃τ̃1 +  E cos ω̃τ 2 + τ 2

!
−ω̃2 +  B +  C cos ω̃τ̃ 1 +  Dω̃ sin ω̃τ̃1

"
, (34)

a2 = 2ω̃ −  D sin ω̃τ̃1 −  E sin ω̃τ2 + τ2
!
 Aω̃ −  C sin ω̃τ̃ 1 +  Dω̃ cos ω̃τ̃1

"
,

b1 =  Aω̃ −  C sin ω̃τ 2 +  Eω̃ cos ω̃τ2,

b2 =  B − ω̃2 +  C cos ω̃τ2 +  Eω̃ sin ω̃τ 2.

Consequently,

sign

�
dRe(λ)

dτ 1

�

τ1=τ̃1

= sign

�
Re

�
dλ

dτ 1

	−1�

τ1=τ̃1

= sign (a1b1 − a2b2) , (35)
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where

a1b1 − a2b2 = ω̃
!
2ω̃2 +  A2 +  E2 − 2  B

"
+  A  Dω̃ cos ω̃τ̃ 1 +  D

!
 B −  Dω̃

"
sin ω̃τ̃ 1

+ 2ω̃
!
 A  E −  C

"
cos ω̃τ 2 +

#
−  A  C +  E

!
 B − 3ω̃2

"$
sin ω̃τ 2

+  D  Eω̃ cos ω̃(τ̃ 1 − τ 2) +  C  D sin ω̃(τ̃1 − τ2)

+ τ 2
%
ω̃
#
 A  C +  D

!
ω̃2 −  B

"$
cos ω̃τ̃ 1 +

#
 B  C + ω̃2

!
 A  D −  C

"$
sin ω̃τ̃1

+ ω̃
#
−  A  C +  E(  B − ω̃2)

$
cos ω̃τ 2 +

#
−  B  C + ω̃2

!
 C −  A  E

"$
sin ω̃τ2

+
!
 C2 +  D  E

"
sin ω̃(τ̃ 1 − τ 2) +  Cω̃

!
−  D +  E

"
cos ω̃(τ̃ 1 − τ 2)

&
.

From (35), we derive that if sign (a1b1 − a2b2) > 0, then each crossing of the real part of

characteristic roots at τ̃ 1 is from left to right; whereas sign (a1b1 − a2b2) < 0 indicates that the

real part of a pair of conjugate roots of Eq. (27) changes from positive value to negative value

when τ̃ 1 is crossed.

Theorem 13 Let τ̃ 1 and a1, b1, a2, b2 be defined as in (32) and (34), τ 2 ∈ [0, τ+2,0).

1) If g(ω) has no positive zero, then the equilibrium (x∗, y∗) of system (15) is locally asymp-

totically stable for τ 1 ≥ 0.

2) If g(ω) has at least a positive zero, then there exists τ̃1 > 0 such that equilibrium (x∗, y∗)

of system (15) is locally asymptotically stable for τ 1 ∈ [0, τ̃ 1) and unstable for τ 1 > τ̃ 1.

System (15) undergoes a Hopf bifurcation at the equilibrium (x∗, y∗) for τ1 = τ̃ 1 if the

corresponding root λ = iω̃ is simple and the expression a1b1 − a2b2 is positive.

Remark 14 Notice that if λ = iω̃ is a repeated root of (27), then dP (iω̃, τ̃1, τ 2)/dλ = 0. From

(33) we see that it must be  C +  Diω̃ +  Fe−iω̃τ2 = 0. Hence, we have  C +  F cos ω̃τ 2 = 0 and
 Dω̃ −  F sin ω̃τ 2 = 0, yielding  D2ω̃2 =  F 2 −  C2.

4.3 Stability crossing curves

In the previous section, we characterized analytically the dynamic properties of system (15).

In this section, we will apply the techniques developed by Gu et al. (2005) and Lin and Wang

(2012) with the aim at showing the properties of the adaptive dynamic system directly in

the (τ 1, τ 2) plane. This geometric approach will allow us to get findings more readable for a

non-specialist audience and to have clear economic insights. Our analysis begins by noting that

hypotheses (i)−(iv) of Lin and Wang (2012, p. 521) hold in the present set up, as the following

basic assumptions are fulfilled.
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(i) Finite number of characteristic roots on C+ = {λ ∈ C : Re(λ) > 0} under the condition

deg(P0(λ)) = 2 ≥ max {deg(P1(λ)),deg(P2(λ)), deg(P3(λ))} = 1.

(ii) P0(0) + P1(0) + P2(0) + P3(0) =
θ2(a+b)2

4abσ1σ2

= 0.

(iii) P0(λ), P1(λ), P2(λ) and P3(λ) are coprime polynomials.

(iv)

lim
λ→∞

�����
P1(λ)

P0(λ)

����+
����
P2(λ)

P0(λ)

����+
����
P3(λ)

P0(λ)

����
	

= 0 < 1.

The next step allows us to identify the set Ω of the values of ω that satisfy conditions such

that complex conjugate roots do exist. To this end, we introduce the function

Z(ω) :=


|P0(iω)|2 + |P1(iω)|2 − |P2(iω)|2 − |P3(iω)|2

�2 − 4


L1(ω)

2 + L2(ω)
2
�
,

defined on W := {ω ∈ R : ω > 0}, where

L1(ω) := Re(P2(iω)P3(iω))− Re(P0(iω)P1(iω)),

and

L2(ω) := Re(P1(iω)P3(iω))− Re(P0(iω)P2(iω)).

In order to have stability switchings, there must exist intervals such that Z(ω) is negative,

where, in our case,

Z(ω) := ω8 + z6ω
6 + z4ω

4 + z2ω
2 + z0,

z6 :=
2θ(2− θ)(σ21 + σ22)

σ21σ
2
2

> 0,

z4 :=
−θ2

8a2b2σ41σ
4
2

×
�
θ2σ21σ

2
2(a

4 + b4)− 12abσ21σ
2
2

��
θ2 − 4

3
θ +

2

3

	
(a2 + b2)+

+
2

3
ab

�
(θ − 2)2 (σ41 + σ

4
2) +

5

4
σ21σ

2
2

�
θ2 − 48

5
θ +

56

5

	��	
,

z2 := −
θ3(σ21 + σ

2
2)[(a+ b)

2θ − 8ab][(a+ b)2θ2 + 2(a2 + 6ab+ b2)(1− θ)]
8a2b2σ41σ

4
2

,

z0 :=
θ4(a+ b)2[a2θ + 2b(θ − 4)a+ b2θ]2[θ2(a2 + b2) + 2ab(θ2 − 8θ + 8)]

256a4b4σ41σ
4
2

> 0.
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In order to study the roots of polynomial Z(ω) it is convenient to introduce the change of

variable X := ω2 and analyze the behavior of the polynomial:

Z(X) = X4 + z6X
3 + z4X

2 + z2X + z0 (36)

in the domain Y := {X ∈ R : X > 0}. In fact, we note that, for any positive root X1 of Z(X),

there exists a corresponding positive root
√
X1 of Z(ω) and vice versa. By considering the

second derivative of Z(X), we have

Z
′′

(X) = 12X2 + 6z6X + 2z4. (37)

From the Cartesian rule it follows that there exists at most a change of concavity of Z(X)

in Y . Thus, there exists at most one minimum for Z(ω), that is, ωmin, in W . Knowing that

limX→0+ Z(X) > 0 and limX→+∞Z(X) > 0 we have that there exist at most two positive roots

of Z(X) and then of Z(ω).

The previous results lead to the following theorem.

Theorem 15 If z4 > 0 then no stability switching exists and the stationary state is locally

asymptotically stable for any τ 1 > 0 and τ 2 > 0. If z4 < 0 and Z(ωmin) < 0 then there exist ω1

and ω2 with ω1 < ω2 such that Z(ω) < 0 for any ω ∈ Ω = (ω1, ω2).

For the numerical simulations plotted in Figures 6 and 7 we will use the parameter values:

σ1 = 0.6, σ2 = 1.7, θ = 0.68, a = 2 and b = 0.12. Figure 6 displays function Z(ω), whereas

Figure 7 represents the stability crossing curves for the parameter set specified above. We note

that this configuration of crossing curves has been found for every numerical simulation run.

The grey area in Figure 7 is the stability region. It shows that for sufficiently large values of

τ 1 and τ 2, the stationary equilibrium of the system is locally unstable. We note that, different

from other economic models (Gori et al., 2015c), in this case there exists neither a corridor

stability nor the possibility of having several stability switchings by changing one of the two

delays. In this case of adaptive dynamics, we limit ourselves to the local analysis as for values of

θ far enough from 1 the dynamics of the model when feasible trajectories exist are qualitatively

similar for every couple of values of τ1 and τ 2 in the instability region (i.e., an attracting cycle

describes the long-term dynamics of the system, as shown in Figure 8).
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Figure 6. Graph of Z(ω). In this case, Ω = (0.3990553017, 0.5062414795).
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Figure 7. Some crossing curves in (τ1, τ 2) plane. The grey area describes the stability

region of the system.

Figure 8. Limit cycle for σ1 = 0.6, σ2 = 1.7, θ = 0.7, a = 2, b = 0.17, τ1 = 1.31 and

τ 2 = 2.2.

5 Conclusions

This article revisited the discrete-time dynamic duopoly of Puu (1991), which is one of the

seminal works in nonlinear oligopoly theory, by using a continuous-time framework with delays

in both cases of best reply dynamics and adaptive dynamics. The dynamics of the model are

characterized by a hybrid system of delay differential (instead of difference) equations. The

main aim of the work is to apply and study some recent mathematical techniques related to

hybrid systems, such as, for instance, the stability crossing curves developed by Gu et al. (2005)

and Lin and Wang (2012), to analyze the local and global properties of a Cournot duopoly with

homogeneous product.

As the debate on nonlinear oligopoly theory is still high in the economic literature and

there do not exist several economically coherent models described by hybrid systems (delay

differential equations), transforming a discrete time model in a hybrid model may shed light in

the analysis of some mathematical aspects, which will be of importance to understanding the

functioning of an economic model. In addition, applying the stability crossing curves techniques

may help scholars to explain better some economic phenomena in which the mixture between
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continuous time and discrete time is such that the use of differential equations or difference

equations alone cannot capture adequately (i.e., production, trading and so on).

Some extensions of the present work can be considered by taking into account, for instance,

the Cournot-like triopoly of Puu (1998) or the Cournot-like model with n competitors developed

by Lampart (2012).
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