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A new set of integrals of motion

to propagate the perturbed two-body problem

Giulio Baù, Claudio Bombardelli · Jesús

Peláez

Abstract A formulation of the perturbed two-body problem that relies on a new set

of orbital elements is presented. The proposed method represents a generalization of

the special perturbation method published by Peláez et al. in 2007 for the case of a

perturbing force that is partially or totally derivable from a potential. We accomplish

this result by employing a generalized Sundman time transformation in the framework

of the projective decomposition, which is a known approach for transforming the two-

body problem into a set of linear and regular differential equations of motion. Numerical

tests, carried out with examples extensively used in the literature, show the remarkable

improvement of the performance of the new method for different kinds of perturbations

and eccentricities. In particular, one notable result is that the quadratic dependence

of the position error on the time-like argument exhibited by Peláez’s method for near-

circular motion under the J2 perturbation is transformed into linear. Moreover, the
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method reveals to be competitive with two very popular element methods derived

from the Kustaanheimo-Stiefel and Sperling-Burdet regularizations.

Keywords Perturbed two-body problem · Regularization · Orbital elements · Orbit

propagation

1 Introduction

The most straightforward method for finding the solution of the perturbed two-body

problem is known in celestial mechanics as Cowell’s method ([Battin, R. H.(1999)], p.

447), which consists of a direct integration of the Newtonian equations of motion in

rectangular coordinates. Unfortunately, these differential equations suffer from a sin-

gularity when the distance between the two bodies, regarded as point masses, becomes

zero. Even if such a condition is unrealistic because bodies have a finite size, the nu-

merical method suffers from loss of accuracy in situations approaching the singular

case.

The elimination of singularities occurring in the equations of motion by properly se-

lected variables is called regularization and leads to a set of regular differential equations

([Szebehely, V.(1975)]). The first fundamental lines of research in this field were pur-

sued by Levi-Civita ([T. Levi-Civita(1924)]) and Sundman ([Sundman, K. F.(1907)];

[Sundman, K. F.(1912)]) on the regularization of the three-body problem.

A very desirable property that often accompanies regularization is linearization

([Deprit, A., Elipe, A., and Ferrer, S.(1994)]). When linearization is obtained the trans-

formed equations of motion of the perturbed two-body problem take the form of

perturbed harmonic oscillators with improved stability properties, and, as a result,

improved numerical propagation performance not only for the case of near-collision

orbits (like for instance highly eccentric ellipses), but in general of any kind of motion

([Arakida, H., and Fukushima, T.(2000)]). On the contrary, Cowell’s equations for the

two-body problem are nonlinear and the solution is Lyapunov-unstable ([Stiefel, E. L., and Scheifele, G.(1971)],

Section 16; [Bond, V. R.(1982)]).
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The natural way of obtaining regularization is to transform the independent and/or

dependent variables and to introduce integrals into the equations of motion ([Bond, V. R., and Allman, M. C.(1996)],

Chap. 9). The three most popular regularization schemes developed for the three-

dimensional perturbed two-body problem are known as the Kustaanheimo-Stiefel (K-S)

([Kustaanheimo, P., and Stiefel, E. L.(1965)]), the Sperling-Burdet (S-B) ([Sperling, H.(1961)];

[Burdet, C. A.(1967)]), and the Burdet-Ferrándiz (B-F) ([Burdet, C. A.(1969)]; [Ferrándiz, J. M.(1987/88)])

regularization.

As a first step towards regularization the above methods perform a change in

the independent variable from physical time to a different independent variable some-

times referred to as fictitious time. For the K-S and S-B methods the independent

variable has the dimension of an inverse velocity by virtue of a Sundman’s time trans-

formation, while the B-F method uses an angular variable that coincides with the

true anomaly in the unperturbed motion. Following this change of variable, each

of the schemes adopts its own approach towards full regularization. The K-S reg-

ularization extends in a four-dimensional parametric space the planar transforma-

tion of Levi-Civita ([Stiefel, E. L., and Scheifele, G.(1971)], Chap. 2). The S-B reg-

ularization is achieved by embedding the Laplace vector and the Keplerian energy

into the equations of motion written with respect to the new independent variable

([Bond, V. R., and Allman, M. C.(1996)], Section 9.3). The B-F regularization exploits

a projective decomposition of the equations of motion in which the dynamics of the or-

bital radius and the radial direction are considered separately ([Fukushima, T.(2007a)]),

an idea already known since the eighteenth century and codified by Laplace ([Deprit, A., Elipe, A., and Ferrer, S.(1994)]).

A new two-body regularization has been recently proposed by Fukushima ([Fukushima, T.(2007a)])

employing only eight dependent variables. The Sundman’s and Levi-Civita’s time and

space transformations respectively are combined to achieve regularization with respect

to a coordinate triad representing the orbital plane. The orientation of this plane is

given by integrals of the unperturbed motion, namely the components of the angular

momentum vector in a fixed reference frame.
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Following any of the the three regularization schemes described above a system of

linear and regular second order differential equations is obtained ([Fukushima, T.(2007a)]).

However, it is worth noting that only the B-F regularization relies on perturbed har-

monic oscillators for any admissible value of the total energy ([Chelnokov, Y. N.(1993)])

with the K-S and S-B regularizations exhibiting oscillator properties only in the case

of total energy strictly smaller than zero.

A further improvement in numerical propagation performance can be obtained by

applying the method of variation of parameters (VOP) ([Vallado, D. A.(2001)], Sec-

tion 9.3) whereby the dependent variables are transformed into orbital elements, which

are held constant in the case of pure Keplerian motion. Because no discretization

error affects the elements propagation in the unperturbed motion methods that em-

ploy elements are especially suited to the propagation of celestial bodies as well as

artificial satellites subject to relatively weak perturbations. VOP formulations have

been developed for the K-S, S-B and B-F regularizations. In the framework of the K-

S regularization, the first set of elements was derived for perturbed elliptic motion

by Stiefel in 1967 ([Stiefel, E., Rössler, M., Waldvogel, J., and Burdet, C. A.(1967)];

[Arakida, H., and Fukushima, T.(2001)]) and subsequently modified by Stiefel and Scheifele

([Stiefel, E. L., and Scheifele, G.(1971)], Section 19), who also presented ([Stiefel, E. L., and Scheifele, G.(1971)],

Section 40) K-S elements valid in any kind of orbit but only when the perturbing

force arises from a potential. This limitation motivated Bond ([Bond, V. R.(1974)]) to

find the solution of the K-S transformed perturbed two-body problem in terms of a

uniform set of elements working for perturbations both derivable and not derivable

from a potential. Arakida and Fukushima ([Arakida, H., and Fukushima, T.(2001)])

have shown that the use of elements under the K-S regularization significantly re-

duces the error propagation in the numerical integration of the differential equations

of motion. In the S-B scheme, Burdet ([Burdet, C. A.(1967)]; [Burdet, C. A.(1968)])

applied the VOP technique to Sperling’s regularization to obtain the differential equa-

tions of the elements which appeared in Sperling’s solution. Burdet’s approach was
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then modified by Bond and Fraietta who introduced spatial and temporal elements

([Bond, V. R., and Allman, M. C.(1996)], Chap. 9).

As regards the B-F regularization, a VOP method has been recently developed

by Peláez et al. ([Peláez, J., Hedo, J. M., and de Andrés, P. R.(2007)]). The method,

which was presented for the first time in 2005 ([Peláez, J., Hedo, J. M., and de Andrés, P. R.(2005)]),

is often referred to as Dromo1 and is characterized by eight dependent variables:

the physical time, the inverse of the angular momentum, two elements related to

the dynamics along the radial direction and the four components of a unit quater-

nion describing the attitude of a slowly moving frame. Such a frame is known after

Hansen ([Hansen, P. A.(1857)]) as an ideal frame, and it was also exploited by De-

prit ([Deprit, A.(1975)]) for determining a set of ideal elements which show a strong

analogy with Peláez’s elements. When compared to other propagation schemes Dromo

has been shown to offer a number of important advantages: non-degenerate quater-

nion differential equations, compact form of the equations of motion with perturbing

accelerations appearing directly in a local-vertical local-horizontal orbiting frame, a

reduced number of equations to be integrated (a total of eight variables is employed,

two less than the K-S formulation), a unique formulation for the three types of per-

turbed conics with no need for embedding Stumpff functions. Furthermore, the method

has been used to derive the first complete asymptotic solution (i.e. including secular

and periodic terms) of the two-body problem perturbed by constant tangential thrust

([Bombardelli, C., Baù, G., and Peláez, J.(2011)]).

Although the Dromo formulation has been shown to offer an excellent numeri-

cal propagation performance, its computational speed and/or propagation accuracy

can still be improved. In its current formulation, for instance, the method cannot

benefit from the performance increase that is normally achievable when the perturb-

ing force is partially or fully derivable from a potential. In fact, both the K-S and

S-B formulations take advantage of this situation by introducing the total energy

([Stiefel, E. L., and Scheifele, G.(1971)] p. 30; Bond and Hanssen, 1973) or the Ja-

1 The word dromo is derived from the old Greek word δρόμος (dròmos) that means running.
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cobi integral (Bond and Gottlieb, 1989) instead of the Keplerian energy as depen-

dent variable. In such case, conservative potentials rather than their corresponding

perturbing forces should be inserted in the equations of motion whenever possible

([Stiefel, E. L., and Scheifele, G.(1971)], p. 117).

The aim of this paper is to generalize the Dromo propagation method to account for

disturbing potentials. This is done by adopting the generalized Sundman time transfor-

mation as it was presented by Sharaf et al. ([Sharaf, M. A., Awad, M. E., and Najmuldeen, S. A. A.(1992)])

for the particular case of order two, where the angular momentum is replaced by what

we call a “pseudo angular momentum”. The new set of generalized orbital elements

proposed here inherits all the benefits of Dromo elements, in particular they are non-

singular for all eccentricities and inclinations and provide a uniform solution of the

perturbed two-body problem, in the sense that the same solution is valid for all values

of the energy. In addition, and this is the main contribution of this work, they show a

much better numerical behavior when conservative potentials are considered.

In Section 2 we derive the regularized differential equations of the perturbed two-

body problem. In Section 3 we apply the VOP technique to such equations in order to

derive the new set of elements and their differential equations. In Section 4 we provide

a physical interpretation of the new elements by establishing relations with the classical

orbital elements as well as with the cartesian components of the position and velocity

vectors. Finally, we exploit some extensively used examples in the literature to compare

the performance of our method with respect to the classical version of Dromo and two

well known VOP methods belonging to the K-S and S-B regularization schemes.

2 Regularized equations of motion

Let us consider a particle of mass m orbiting around a primary of mass M at initial

radial position R0 measured from the center of the primary and angular position ν0

measured from the initial eccentricity vector (and hence corresponding to the initial

true anomaly). Let us employ, from now on, m as the unit of mass, R0 as the unit of

distance and 1/n0 as the unit of time where n0 is the angular rate of a circular orbit
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with radius equal to the initial radius R0:

n0 =

√
G (M +m)

R3
0

,

with G denoting the gravitational constant. In the following we will always refer to

non-dimensional quantities, unless otherwise stated.

The evolution of the particle m obeys the perturbed two-body problem equation

written here in the non-dimensional form:

d2r

dt2
= − 1

r3
r + f , (1)

where r is the position of the particle with respect to the primary and f is the perturbing

force applied to the particle. The latter can be written as the sum of two contributions:

f = P− ∂U (t, r, v)

∂r
,

with U denoting the perturbing potential energy, which, in general, is a scalar function

depending on time t, r and the velocity v of the particle, and P indicating the per-

turbing force that is not derived by a perturbing potential energy. Once Eq. (1) has

been double-integrated with the initial conditions r (0) and v (0) the position r (t) is

known at a generic time t.

In this paper the motion is obtained by considering separately the dynamics of

the inverse of the orbital distance 1/r and the radial direction r/r. Such a coordinate

transformation is applied together with a transformation of the independent variable

from the physical time t to a fictitious time φ, which is shown in Subsection 2.1. In

the new space and time variables Eq. (1) can be substituted by a set of linear (at least

when the motion is unperturbed) differential equations, as it is described in Subsection

2.2.
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2.1 Generalized Sundman time transformation

A Sundman time transformation, coinciding with the angular momentum variation

equation, is employed by the Dromo method ([Peláez, J., Hedo, J. M., and de Andrés, P. R.(2007)])

to relate the physical time t with a new independent variable σ:

dt

dσ
=
r2

h
, (2)

where r and h are the orbital radius and angular momentum of osculating Keplerian

motion, respectively. The latter quantity can always be written as:

h = r

√
v2 −

(
dr

dt

)2

= r

√
2

(
εK +

1

r

)
−
(

dr

dt

)2

, (3)

where:

εK =
v2

2
− 1

r
,

is the Keplerian energy, with v denoting the velocity magnitude.

Let us now introduce the pseudo angular momentum:

h̃ = r

√
2

(
ε+

1

r

)
−
(

dr

dt

)2

, (4)

where we formally added to the Keplerian energy the disturbing potential energy U to

obtain the total energy:

ε = εK + U .

By replacing h with h̃ in Eq. (2) we obtain the generalized Sundman transformation of

order two as defined by Sharaf et al. ([Sharaf, M. A., Awad, M. E., and Najmuldeen, S. A. A.(1992)]):

dt

dφ
=
r2

h̃
. (5)

By comparing Eqs. (3) and (4) we infer that:

h̃ =
√
h2 + 2r2U . (6)
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Unlike Eq. (2) which is just the expression of the orbital angular momentum, Eq. (5)

does not have a straightforward physical meaning. On the other hand, it is instructive

to relate the independent variable φ to well known astrodynamical quantities such as

the classical orbital elements. To this end, let us write the variation of the independent

variable φ with respect to the initial value φ0 as the sum:

4φ = 4ν + γ, (7)

where 4ν = ν−ν0, being ν the true anomaly. The latter quantity takes the expression

(as shown in the Appendix II which is published as Electronic Supplementary Material):

γ = 4ω +

∫ Ω

Ω0

cos idΩ + 2

∫ t

0

U
h̃+ h

dt,

where 4ω, Ω and i are, respectively, the argument of periapsis variation with respect

to the initial orbit, the longitude of the ascending node and the orbital inclination.

Equation (7) underlines that the variation 4φ of the independent variable differs, in

general, from the variation 4ν of the osculating true anomaly by an angular drift γ

due to the action of orbital perturbations. Therefore, φ can be referred to as pseudo

true anomaly of the perturbed orbital motion.

In the particular case in which the orbital plane is invariant (Ω = Ω0) and U = 0,

γ coincides with the angle between the eccentricity vector of the initial and of the

osculating orbit, and φ, after setting φ0 = ν0, becomes the longitude of the particle

measured from the eccentricity vector of the initial orbit. The initial value of the

independent variable is arbitrary. In our implementation of the method the value of

the initial true anomaly ν0 was assigned to φ0, so that φ0 = ν0.

2.2 Projective decomposition

Let us express the position r as the product of its magnitude r and its direction i, in

order to decompose the motion of the particle into a displacement of magnitude r along
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the radial direction i and a rotation of i. This procedure is known as projective decom-

position ([Ferrándiz, J. M.(1987/88)]; [Deprit, A., Elipe, A., and Ferrer, S.(1994)]).

We introduce a rotating frame R = 〈x, y, z〉 with one axis oriented along the radial

direction i. Let the axes of R be defined as follows:

1. the x-axis is oriented along i;

2. the y-axis lies on the osculating orbital plane, and is oriented along j in such a way

that j · v ≥ 0, being v the velocity vector;

3. the z-axis is oriented along the direction k of the orbital angular momentum vector

h = r× v.

According to the previous definitions, the orthonormal basis {i, j, k} is defined by the

relations:

i =
r

r
, j = k× i, k =

h

h
. (8)

Following the idea of the projective decomposition the particle’s dynamics is de-

scribed by the four projective coordinates (r, i) and their time derivatives (dr/dt, di/dt).

Next, we will derive a set of linear equations of motions corresponding to the inverse

of the orbital radius r, and the orbital radius direction expressed in quaternion form.

Orbital radius dynamics

The radial component of Eq. (1) can be written as:

d2r

dt2
− h2

r3
+

1

r2
= fx, (9)

where fx = f ·i.

As shown by Szebehely and Bond ([Szebehely, V., and Bond, V.(1983)]) Eq. (9)

can be regularized and linearized (at least for the unperturbed case) by employing the

following transformation of the orbital radius:

r = ρ−1, (10)
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together with a suitable change in the independent variable. To this end we substitute

Eqs. (10) and (5) into Eq. (9) to obtain, as detailed in Appendix II (published as

Electronic Supplementary Material):

d2ρ

dφ2
+ ρ− 1

h̃2
= −1

h̃

dρ

dφ

dh̃

dφ
− 1

ρh̃2

(
fx
ρ
− 2U

)
, (11)

where the term dh̃/dφ takes the form:

dh̃

dφ
=

1

ρ3h̃

[
dρ

dφ

(
ρ
∂U
∂ρ
− 2U

)
+

1

ρh̃

(
Py

√
ρ2h̃2 − 2U +

∂U
∂t

)]
, (12)

being Py = P·j, which is derived in the Appendix II (published as Electronic Supple-

mentary Material). Note that when fx = 0 and U = 0 Eq. (11) represents a harmonic

oscillator perturbed by the constant positive term h−2.

Radial direction dynamics

The time variation of the radial unit vector i obeys in general:

di

dt
=

h

r2
j.

From the above expression and taking into account Eqs. (5) and (6) one readily obtains:

di

dφ
=

√
1− 2r2U

h̃2
j. (13)

If both sides of this equation are differentiated with respect to φ it results a second

order differential equation in φ which for vanishing U and fz represents a harmonic

oscillator in the state variable i.

We propose instead to exploit Eq. (13) in order to replace di/dφ with j in the state

vector. This implies that we have to consider also the pseudo angular momentum h̃ as

a state variable.

Note that the two unit vectors i and j provide the evolution of the rotating frame

R which was defined in Eq. (8). According to Euler’s rotation theorem, the attitude of
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R with respect to a reference frame I with fixed orientation in space, is obtained by

a rotation of an angle ϕ around a unit vector u. Following quaternion algebra, let us

introduce the unit quaternion q̂ associated to such rotation:

q̂ = (q4, q) , (14)

where the scalar part q4 and the vectorial part q are functions of ϕ and u as follows:

q4 = cos
ϕ

2
, q = u sin

ϕ

2
. (15)

By projecting q onto the rotating frame R as:

q = q1i + q2j + q3k,

the time derivative of q̂ appears in the form:

dq̂

dt
=

1

2
q̂ ŵ,

where q̂ ŵ represents the quaternion product of q̂ by the quaternion ŵ = (0, w) being

w the angular velocity of the frame R which is represented in R by:

w =

(
rfz
h
, 0,

h

r2

)T

.

After applying the quaternion product rule and switching from t to φ we obtain:

dq̂

dφ
=
r2

2h̃
(−q ·w, q4w + q×w) ,
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which yields the four differential equations:

dq1
dφ

=
1

2ρh̃
√
ρ2h̃2 − 2U

[
q4
fz
ρ

+ q2
(
ρ2h̃2 − 2U

)]
, (16)

dq2
dφ

=
1

2ρh̃
√
ρ2h̃2 − 2U

[
q3
fz
ρ
− q1

(
ρ2h̃2 − 2U

)]
, (17)

dq3
dφ

= − 1

2ρh̃
√
ρ2h̃2 − 2U

[
q2
fz
ρ
− q4

(
ρ2h̃2 − 2U

)]
, (18)

dq4
dφ

= − 1

2ρh̃
√
ρ2h̃2 − 2U

[
q1
fz
ρ

+ q3
(
ρ2h̃2 − 2U

)]
. (19)

When both U and fz vanish Eqs. (16) - (19) become linear.

Summary of the differential equations of motion

The time equation obtained by substituting Eq. (10) into Eq. (5):

dt

dφ
=

1

ρ2h̃
, (20)

together with Eqs. (11), (12) and Eqs. (16) - (19) represent a set of differential equations

which govern the motion of the particle in terms of the eight state variables:

(
t, ρ,

dρ

dφ
, h̃, q1, q2, q3, q4

)
.

The above equations were also presented in a slight different form by Sharaf et al.

([Sharaf, M. A., Awad, M. E., and Najmuldeen, S. A. A.(1992)]).

3 Set of generalized orbital elements

In this section we apply the variation of parameters technique to Eqs. (11), and (16)

- (19) to derive the differential equations of a new set of generalized orbital elements

linked to the state vector. For convenience, we divide the orbital elements into two

sets, the first defining the orbit shape while the second characterizing its orientation.
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3.1 First set of elements

The only variable of the state vector that is already an integral of the unperturbed

motion is the pseudo angular momentum h̃. Let us define the generalized orbital element

ζ3 as the inverse of h̃:

ζ3 =
1

h̃
. (21)

In the case of pure Keplerian motion Eq. (11) reduces to:

d2ρ

dφ2
= −ρ+ ζ23 ,

which can be solved analytically to yield:

ρ = ζ3s, (22)

dρ

dφ
= −ζ3u, (23)

where:

s = ζ3 + ζ1 cosφ+ ζ2 sinφ, (24)

u = ζ1 sinφ− ζ2 cosφ, (25)

and where ζ1 and ζ2 are two integration constants, which we will employ as generalized

orbital elements.

First let us rewrite the time equation (20) by exploiting Eqs. (21) and (22) as:

dt

dφ
=

1

ζ3s2
.

The differential equations of ζ1, ζ2 and ζ3 are derived as follows. First, we substi-

tute Eqs. (22) and (23) into Eq. (11), exploit Eq. (21) to substitute for h̃, and after

simplifying and rearranging the terms, we get:

d

dφ
(ζ1 (φ) sinφ− ζ2 (φ) cosφ) = s− ζ3 +

1

s

(
fx
ζ3s
− 2U

)
. (26)



A new set of integrals of motion to propagate the perturbed two-body problem 15

Equation (26) and the osculating condition:

d

dφ
(ζ3 (φ) [ζ3 (φ) + ζ1 (φ) cosφ+ ζ2 (φ) sinφ]) = −ζ3u,

constitute a system of two algebraic equations which are solved for the derivatives of

ζ1 and ζ2 with respect to φ to yield:

dζ1
dφ

=
sinφ

s

(
fx
ζ3s
− 2U

)
−
(
s

ζ3
+ 1

)
cosφ

dζ3
dφ

,

dζ2
dφ

=
cosφ

s

(
2U − fx

ζ3s

)
−
(
s

ζ3
+ 1

)
sinφ

dζ3
dφ

,

where the derivative of the orbital element ζ3 can be obtained by deriving both members

of Eq. (21) to finally find (for the algebraic details see Appendix II which is published

as Electronic Supplementary Material):

dζ3
dφ

= − 1

h̃2
dh̃

dφ
= − 1

s4

[
uζ3s

(
2U − ζ3s

s+ ζ3

∂U
∂ζ3

)
+ Py

√
s2 − 2U +

∂U
∂t

]
.

3.2 Second set of elements

Equations (16) - (19) in purely Keplerian motion simplify to:

dq1
dφ

=
1

2
q2,

dq2
dφ

= −1

2
q1,

dq3
dφ

=
1

2
q4,

dq4
dφ

= −1

2
q3.

These equations can be analytically integrated to give the solutions:

q1 = ζ4 cos
4φ
2

+ ζ5 sin
4φ
2

, (27)

q2 = ζ5 cos
4φ
2
− ζ4 sin

4φ
2

, (28)

q3 = ζ6 cos
4φ
2

+ ζ7 sin
4φ
2

, (29)

q4 = ζ7 cos
4φ
2
− ζ6 sin

4φ
2

, (30)

where 4φ = φ − φ0 and the four constants of integration ζ4, ζ5, ζ6, ζ7 represent the

remaining generalized orbital elements.
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By applying again the variation of parameters technique, we substitute the solution

(27) - (30) into Eqs. (16) - (19) and solve for the derivatives of ζ4, ζ5, ζ6 and ζ7 with

respect to φ to finally obtain:

dζ4
dφ

=
fz

2ζ3s2
√
s2 − 2U

(ζ7 cos4φ− ζ6 sin4φ) +
ζ5
2s

(√
s2 − 2U − s

)
,

dζ5
dφ

=
fz

2ζ3s2
√
s2 − 2U

(ζ6 cos4φ+ ζ7 sin4φ)− ζ4
2s

(√
s2 − 2U − s

)
,

dζ6
dφ

= − fz

2ζ3s2
√
s2 − 2U

(ζ5 cos4φ− ζ4 sin4φ) +
ζ7
2s

(√
s2 − 2U − s

)
,

dζ7
dφ

= − fz

2ζ3s2
√
s2 − 2U

(ζ4 cos4φ+ ζ5 sin4φ)− ζ6
2s

(√
s2 − 2U − s

)
.

In the Appendix II (published as Electronic Supplementary Material) the procedure

to derive these four equations is outlined.

4 Summary of the differential equations of motion

The state variables that describe the motion of the particle around the primary are:

(t, ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7) , (31)
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and the corresponding differential equations with respect to the independent variable

φ are:

dt

dφ
=

1

ζ3s2
(32)

dζ1
dφ

=
sinφ

s

(
fx
ζ3s
− 2U

)
−
(
s

ζ3
+ 1

)
cosφ

dζ3
dφ

(33)

dζ2
dφ

=
cosφ

s

(
2U − fx

ζ3s

)
−
(
s

ζ3
+ 1

)
sinφ

dζ3
dφ

(34)

dζ3
dφ

= − 1

s4

[
uζ3s

(
2U − ζ3s

s+ ζ3

∂U
∂ζ3

)
+ λPy +

∂U
∂t

]
(35)

dζ4
dφ

=
1

2s

[
fz
ζ3sλ

(ζ7 cos4φ− ζ6 sin4φ) + ζ5 (λ− s)
]

(36)

dζ5
dφ

=
1

2s

[
fz
ζ3sλ

(ζ6 cos4φ+ ζ7 sin4φ)− ζ4 (λ− s)
]

(37)

dζ6
dφ

= − 1

2s

[
fz
ζ3sλ

(ζ5 cos4φ− ζ4 sin4φ)− ζ7 (λ− s)
]

(38)

dζ7
dφ

= − 1

2s

[
fz
ζ3sλ

(ζ4 cos4φ+ ζ5 sin4φ) + ζ6 (λ− s)
]
, (39)

where 4φ = φ− φ0, s and u are provided respectively by Eqs. (24) and (25):

s = ζ3 + ζ1 cosφ+ ζ2 sinφ, (40)

u = ζ1 sinφ− ζ2 cosφ, (41)

and:

λ =
√
s2 − 2U . (42)

It should be pointed out that the orbital element ζ3 can be replaced by the total

energy ε in the state vector. In this case we need the differential equation:

dε

dφ
=

1

ζ3s2

(
uPx + Py

√
s2 − 2U +

∂U
∂t

)
,

which is derived in the Appendix II (published as Electronic Supplementary Material).

The quantity ζ3 is computed from ε and the orbital elements ζ1 and ζ2 thanks to the

relation:

ζ3 =
√
ζ21 + ζ22 − 2ε,
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which will be shown in Section 5.4. As a rule of thumb, we say that the more conserva-

tive is the perturbation, the more advantageous in terms of accuracy and computational

speed is the choice of ε in place of ζ3 in the state vector. On the other hand, as we

consider the case of a strongly non conservative perturbation, the computation of ζ3

from ε, ζ1 and ζ2 is likely to produce a bigger error than numerically integrating ζ3.

5 Collection of formulae for the implementation of the method

In this section will be developed useful relationships between the new generalized orbital

elements and the cartesian components of the position and velocity and the classical

orbital elements.

5.1 From the generalized orbital elements to the position and velocity vectors

First, we provide the relations to compute the components of the dimensionless position

and velocity vectors expressed in a fixed reference frame I:

r = (RX , RY , RZ)T , v = (VX , VY , VZ)T ,

from the generalized orbital elements (ζ1, . . . , ζ7).

Equations (22) and (23) are used along with Eqs. (10) and (5) to express the orbital

radius r and the radial velocity vr in function of ζ1, ζ2, ζ3 and φ as:

r =
1

ζ3 (ζ3 + ζ1 cosφ+ ζ2 sinφ)
, (43)

vr = ζ1 sinφ− ζ2 cosφ. (44)

Besides, the expression of the transverse velocity can be obtained as:

vθ =
h

r
=
√

(ζ3 + ζ1 cosφ+ ζ2 sinφ)2 − 2U , (45)
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where we made use of Eqs. (6), (21) and (43). From comparison of Eqs. (44) and (45)

with Eqs. (25) and (42) one infers that:

vr = u, vθ = λ.

The position and velocity vectors of the particle can be expressed in I by the two

matrix multiplications:

(RX , RY , RZ)T = QRI (r, 0, 0)T , (46)

(VX , VY , VZ)T = QRI (u, λ, 0)T , (47)

where QRI is the rotation matrix between the local-vertical local-horizontal frame R

and the fixed frame I and will be computed as follows.

The relations (27) - (30) correspond to a quaternion product:

q̂ = ζ̂ ẑ, (48)

where q̂ was defined by Eqs. (14) and (15), and we have introduced the two unit

quaternions:

ζ̂ = (ζ7, ζ) , ẑ =

(
cos
4φ
2
, z

)
,

with the vectorial part given by:

ζ = (ζ4, ζ5, ζ6) , z =

(
0, 0, sin

4φ
2

)
.

The unit quaternion q̂, as seen in Section 2.2, is associated to the rotation matrix

QRI , while the corresponding rotation matrices for ζ̂ and ẑ are, respectively:
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Q0 =


1− 2ζ25 − 2ζ26 2ζ4ζ5 − 2ζ6ζ7 2ζ4ζ6 + 2ζ5ζ7

2ζ4ζ5 + 2ζ6ζ7 1− 2ζ24 − 2ζ26 2ζ5ζ6 − 2ζ4ζ7

2ζ4ζ6 − 2ζ5ζ7 2ζ5ζ6 + 2ζ4ζ7 1− 2ζ24 − 2ζ25

 , (49)

Mφ =


cos4φ − sin4φ 0

sin4φ cos4φ 0

0 0 1

 . (50)

The relation between QRI , Q0 and Mφ, analogous to the product (48), is the matrix

multiplication:

QRI = Q0Mφ. (51)

After performing the products in Eqs. (46) and (47), where the matrix QRI is

determined according to Eq. (51) by employing Eqs. (49) and (50), we obtain the six

components:

RX = r
[
(1− 2ζ25 − 2ζ26 ) cos4φ+ 2 (ζ4ζ5 − ζ6ζ7) sin4φ

]
,

RY = r
[
(1− 2ζ24 − 2ζ26 ) sin4φ+ 2 (ζ4ζ5 + ζ6ζ7) cos4φ

]
,

RZ = 2r [(ζ5ζ6 + ζ4ζ7) sin4φ+ (ζ4ζ6 − ζ5ζ7) cos4φ] ,

VX =
[
2λ (ζ4ζ5 − ζ6ζ7) + u(1− 2ζ25 − 2ζ26 )

]
cos4φ

+
[
2u (ζ4ζ5 − ζ6ζ7)− λ(1− 2ζ25 − 2ζ26 )

]
sin4φ,

VY =
[
λ(1− 2ζ24 − 2ζ26 ) + 2u (ζ4ζ5 + ζ6ζ7)

]
cos4φ

+
[
u(1− 2ζ24 − 2ζ26 )− 2λ (ζ4ζ5 + ζ6ζ7)

]
sin4φ,
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VZ = 2 [λ (ζ5ζ6 + ζ4ζ7) + u (ζ4ζ6 − ζ5ζ7)] cos4φ

+ 2 [u (ζ5ζ6 + ζ4ζ7)− λ (ζ4ζ6 − ζ5ζ7)] sin4φ.

5.2 From the position and velocity vectors to the generalized orbital elements

In the following we show how to compute the generalized orbital elements (ζ1, . . . ζ7)

from the components of the position and velocity vectors expressed in the fixed frame

I, that is (RX , RY , RZ) and (VX , VY , VZ).

By solving Eqs. (43), (44) and (45) for the three orbital elements ζ1, ζ2 and ζ3, one

derives the relations:

ζ1 =

(√
λ2 + 2U − 1

r
√
λ2 + 2U

)
cosφ+ u sinφ, (52)

ζ2 =

(√
λ2 + 2U − 1

r
√
λ2 + 2U

)
sinφ− u cosφ, (53)

ζ3 =
1

r
√
λ2 + 2U

, (54)

where:

r =
√
R2
X +R2

Y +R2
Z ,

u = v·i =
RXVX +RY VY +RZVZ

r
,

λ = v·j =
h

r
,

with:

h =
√
H2
X +H2

Y +H2
Z ,

HX = RY VZ −RZVY , HY = RZVX −RXVZ , HZ = RXVY −RY VX .
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The remaining orbital elements can be derived from Eq. (49):

ζ4 =
Q0 (3, 2)−Q0 (2, 3)

4ζ7
, (55)

ζ5 =
Q0 (1, 3)−Q0 (3, 1)

4ζ7
, (56)

ζ6 =
Q0 (2, 1)−Q0 (1, 2)

4ζ7
, (57)

ζ7 = ±1

2

√
1 +Q0 (1, 1) +Q0 (2, 2) +Q0 (3, 3), (58)

with (Eq. 51):

Q0 = QRIM
T
φ , (59)

where Mφ is given in Eq. (50) and QRI can be written by columns as:

QRI =

(
r

r
,

r× v

|r× v| ×
r

r
,

r× v

|r× v|

)
.

By substituting into Eqs. (55) - (58) the elements of the matrix Q0 as derived in

the Appendix I we finally have:

ζ4 =
1

4ζ7

[(
HXRY −HY RX

rh

)
cos4φ+

RZ
r

sin4φ− HY
h

]
,

ζ5 =
1

4ζ7

[(
HXRY −HY RX

rh

)
sin4φ− RZ

r
cos4φ+

HX
h

]
,

ζ6 =
1

4ζ7

[(
HXRZ −HZRX

rh
− RX

r

)
sin4φ+

(
HZRY −HY RZ

rh
+
RY
r

)
cos4φ

]
,
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ζ7 = ±1

2

√
1 +

HZ
h

+

(
HZRX −HXRZ

rh
+
RX
r

)
cos4φ+

(
HZRY −HY RZ

rh
+
RY
r

)
sin4φ.

The singular case ζ7 = 0 is discussed in the Appendix I.

5.3 From the classical to the generalized orbital elements

We provide the relations to compute the generalized orbital elements (ζ1, . . . , ζ7) from

the classical orbital elements:

(h, e, ν, i, Ω, ω) ,

with h the dimensionless angular momentum, e the eccentricity, ν the true anomaly, i

the inclination, Ω the longitude of the ascending node and ω the argument of pericenter.

The orbital radius r, radial velocity u, and transverse velocity λ can be written as

(see for instance at pages 117 and 126 of ref. [Battin, R. H.(1999)]):

r =
h2

1 + e cos ν
, (60)

u =
1

h
e sin ν, (61)

λ =
1

h
(1 + e cos ν) . (62)

By inserting these expressions into Eqs. (52) - (54), after some algebra we have:

ζ1 =

e cos ν (1 + e cos ν) + 2Uh2

h

√
(1 + e cos ν)2 + 2Uh2

 cosφ+
e

h
sin ν sinφ,

ζ2 =

e cos ν (1 + e cos ν) + 2Uh2

h

√
(1 + e cos ν)2 + 2Uh2

 sinφ− e

h
sin ν cosφ,

ζ3 =
1 + e cos ν

h

√
(1 + e cos ν)2 + 2Uh2

.

The four Euler parameters ζ4, ζ5, ζ6, and ζ7 are associated to the Euler angle

sequence (Ω, i, ω + ν −4φ), as we infer from Eq. (59). As a consequence, the following
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relations can be established:

ζ4 = sin
i

2
cos

Ω − ω − ν +4φ
2

,

ζ5 = sin
i

2
sin

Ω − ω − ν +4φ
2

,

ζ6 = cos
i

2
sin

Ω + ω + ν −4φ
2

,

ζ7 = cos
i

2
cos

Ω + ω + ν −4φ
2

.

5.4 From the generalized to the classical orbital elements

We derive the relations to compute the classical orbital elements (h, e, ν, i, Ω, ω) from

the generalized orbital elements (ζ1, . . . , ζ7).

First, by using Eqs. (43) - (45) to substitute for r, u and λ on the left-hand side of

Eqs. (60) - (62), and then solving for the dimensionless angular momentum h, eccen-

tricity e and true anomaly ν, we derive:

h =

√
s2 − 2U
ζ3s

,

e =
1

ζ3s

√
(s2 − 2U) (ζ21 + ζ22 − 2U) + 2Uζ23 ,

ν = tan−1

(
u
√
s2 − 2U

s2 − 2U − ζ3s

)
.

The expressions of the inclination i, longitude of the ascending node Ω and ar-

gument of pericenter ω are obtained by equating the components of the matrix Q0

expressed in terms of quaternions (Eq. 49) and described by the Euler angle sequence
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(Ω, i, ω + ν −4φ) as can be inferred from Eq. (59):

i = cos−1
(

1− 2ζ24 − 2ζ25
)
,

Ω = tan−1

(
ζ4ζ6 + ζ5ζ7
ζ4ζ7 − ζ5ζ6

)
,

ω = 4φ− ν + tan−1

(
ζ4ζ6 − ζ5ζ7
ζ5ζ6 + ζ4ζ7

)
.

Finally, the total energy ε can be computed directly from ζ1, ζ2 and ζ3 by exploiting

Eqs. (21), (43) and (44):

ε =
1

2

(
v2r +

h̃2

r2

)
− 1

r
=
ζ21 + ζ22 − ζ23

2
.

6 Disturbing potential

When introducing the generalized Sundman time transformation defined by Eqs. (5)

and (6) the following constraint has to be satisfied in order to guarantee the existence

of h̃ and avoid singularities:

U > −v
2
θ

2
. (63)

As far as the characterization of the function U the main conservative perturbation

relevant to astrodynamical problem is of gravitational origin and can stem from higher

spherical harmonics of the primary body as well as from the gravitational disturbance

of third bodies. In the first case it is possible to prove that the above condition can

only be violated when the particle is located inside the primary physical envelope. The

second case is more complicated to evaluate and violations of Eq. (63) can occur. On

the other hand this fact is not of concern as an arbitrary constant can always be added

to U to remove the singularity (as both the disturbing potential energy and the particle

transversal velocity are bounded under realistic conditions). Moreover, the third body
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perturbation is almost always expressed directly as a force obtained through accurate

ephemeris data and rarely considered in potential form.

In the case in which the acting perturbations are not derivable from a potential,

or are not considered as such, the function U can still be used as a pure constant to

eliminate the singularity affecting Peláez’s method for vanishing transversal velocity

(h = 0 in Eq. 2). For the purpose of eliminating the singularity any positive constant

value for U can be chosen, as it is evident from Eq. (63). However, some care should be

taken in this regard as the chosen value may affect the performance of the method2.

7 Performance of the method

In this section we test the performance of our method by adopting some known exam-

ples in the literature. The aim is twofold: to show the appreciable gain in performance

with respect to Peláez’s special perturbation method ([Peláez, J., Hedo, J. M., and de Andrés, P. R.(2007)]),

and to compare our formulation with other very efficient element methods coming from

the Kustaanheimo-Stiefel and the Sperling-Burdet regularizations.

Because all the propagation methods considered here involve first-order ordinary

differential equations it is reasonable to choose the same numerical integrator. Accord-

ingly, an appropriate and reliable performance parameter is the number of function

calls, that is the total number of evaluations of the derivative of the state vector with

respect to the fictitious time. Referring to the number of function calls makes our

analysis completely independent of uncontrolled factors related to the particular envi-

ronment where the simulations are run.

The comparison is done by monitoring the number of function calls and the achieved

accuracy of each method by varying the relative tolerance of the numerical integrator.

Basically, we can say that the best method shows the lowest function evaluations for

a required level of accuracy, or equivalently, the best accuracy for a given number of

function calls. We also provide plots that show the error of the position and physical

2 Note for instance that setting U 6= 0 the resulting dependent variables (ζ1, . . . , ζ7) are not
constant in the unperturbed motion.
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time as a function of the normalized independent variable which is defined by the ratio:

χ =
τ

max (τ)
, (64)

where τ is the time-like argument of a certain method.

The following propagation schemes are compared: the method proposed in this pa-

per, Peláez’s special perturbation method ([Peláez, J., Hedo, J. M., and de Andrés, P. R.(2007)]),

the Sperling-Burdet’s set of spatial and temporal elements as presented in Chapter 9

of ref. ([Bond, V. R., and Allman, M. C.(1996)]), and the Stiefel-Scheifele’s set of ele-

ments as described in Section 19 of ref. ([Stiefel, E. L., and Scheifele, G.(1971)]). The

latter was considered also by Arakida and Fukushima ([Arakida, H., and Fukushima, T.(2001)])

in a comparison of the performance of different element methods generated by the K-S

regularization. Note that only the last two methods employ a complete set of elements

because a time-element ([Stiefel, E. L., and Scheifele, G.(1971)], Section 18) is used in

place of the physical time in the state vector. On the other hand, both our formulation

and the Dromo method do not take advantage of a time-element3 and the physical

time is a dependent variable. Therefore, for the fairness of comparison we decided to

replace in the state vector of the Sperling-Burdet and Stiefel-Scheifele formulations the

time-element with the physical time.

The propagators were implemented in the Matlab environment (version 2009a),

and the explicit Runge-Kutta (4, 5) pair of Dormand and Prince (DP54, see Section

II.5 of ref. [Hairer, E., Nørsett, S. P., and Wanner, G.(2009)]), which is provided by

the ode45 function of Matlab, was selected as the numerical integrator.

We report and discuss below the performance diagrams for some typical problems

in astrodynamics.

3 The possibility of introducing a time-element in our set of elements will be presented in a
forthcoming paper.
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7.1 Problem description and performance analysis

Let us consider a spacecraft around the Earth. The components of the position vector of

the spacecraft at the initial epoch projected into an Earth-centered inertial coordinate

frame I are reported in Table (1). The velocity vector at the initial epoch is oriented

along the X positive direction and its magnitude depends on the selected eccentricity

of the initial osculating orbit. This orbit has an inclination of nearly 30◦ and the

spacecraft is at the perigee at an orbital distance of 6800 km. Table (1) reports the

velocity vector at the initial epoch for an eccentricity of 0.95, which represents the case

considered in Section 23 of ref. ([Stiefel, E. L., and Scheifele, G.(1971)]).

The motion is propagated up to the desired epoch in three different perturbed

scenarios involving the Earth’s oblateness, the Moon’s third body gravitational attrac-

tion and the Earth’s atmospheric drag. The accuracy of each method is assessed by

computing the error that affects the spacecraft position vector at the end of the nu-

merical propagation. Let Xe, Ye, and Ze be the components of the exact position at

some epoch, and Xa, Ya, and Za the approximated position obtained from one of the

compared methods, then the error is calculated as:

δ =
√

(Xe −Xa)2 + (Ye − Ya)2 + (Ze − Za)2.

Because an analytical solution will not be available a reference solution for the position

vector is derived with the following procedure: after running the four compared schemes

by setting a tight relative tolerance of the numerical integrator, we keep the common

figures in each component of the final position vector.

The time range of propagation is chosen in order to allow a number of revolutions

that is sufficiently high for accumulating an appreciable error, and to stop the spacecraft

when it is the furthest possible from the Earth because the slower dynamics improves

the accuracy of the reference solution.

As regards the computation of the error during the numerical integration the same

procedure described by Fukushima in ref. ([Fukushima, T.(2007b)]) is followed. Two
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Table 1 Initial position and velocity vectors expressed in an Earth-centered inertial frame as
employed in ref. ([Stiefel, E. L., and Scheifele, G.(1971)]). The resulting Keplerian orbit is a
highly eccentric ellipse (the eccentricity is 0.95) and has an inclination of nearly 30◦.

RX,0 (km) RY,0 (km) RZ,0 (km) VX,0 (km/s) VY,0 (km/s) VZ,0 (km/s)

0 −5888.9727 −3400 10.691338 0 0

propagations are carried out with a Runge-Kutta of order four (RK4): the first uses a

step size h and the second a halved step size h/2. Then, an accurate estimate of the

position and physical time errors is given by:

4r =
16

15

[
(rh − rh/2)− vh/2(th − th/2)

]
, (65)

4t =
16

15
(th − th/2), (66)

where the subscript indicates the step size. Note that the position error 4r is referred

to the physical time th which, in general, is different from th/2.

For convenience we will use the following labels to refer to the methods in the

performance diagrams and, when necessary, in the text: “Dromo(P)” for the method

presented in this paper, “Dromo” for Peláez’s special perturbation method, “Spe&Bur”

and “Sti&Sche” for the Sperling-Burdet and Stiefel-Scheifele formulations respectively

both with the physical time employed in place of the time-element.

Earth’s oblateness

A spacecraft, with initial conditions provided in Table (1), is perturbed by the second

zonal harmonic of the Earth’s gravity field which represents the equatorial bulge. The

corresponding perturbing potential is given by ([Battin, R. H.(1999)], p. 503):

U =
µER

2
EJ2

2r3

(
3 cos2 θ − 1

)
, (67)

where the orbital radius r is meant as dimensional here, θ is the colatitude and the

Earth’s radius RE , gravitational parameter µE and oblateness coefficient J2 take the
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values:

RE = 6371.22 km, µE = 398601 km3/s2, J2 = 1.08265× 10−3.

The motion is propagated up to 289.66457509 mean solar days (msd) from the ini-

tial epoch, when the spacecraft has completed 49.5 revolutions around the Earth. This

problem is the same presented in the “Example 1” at page 119 of ref. ([Stiefel, E. L., and Scheifele, G.(1971)]).

The reference position at the final epoch is reported in the first row of Table (2).

In Fig. (1, left) the performance of the methods are compared. Dromo(P) requires

fewer function calls than Dromo for a given error, or equivalently is more accurate for

the same number of function calls. Moreover, it is notable that the maximum error is

nearly one order of magnitude smaller for Dromo(P) than Dromo. A deeper analysis

has revealed that the main source of error for the position is due to the error affecting

the physical time which has a dominant effect over the error of the orbital elements

employed by each method. The influence of the latter on the position error can be

assessed as follows.

For each formulation the same final value of the independent variable is set to stop

the numerical integrations with different relative tolerances of the integrator. This

value of the independent variable is determined in such a way that when it is used

to stop a propagation which is performed with the tightest relative tolerance available

(we choose 10−13 for the integrator DP54) then the physical time at the end of the

numerical integration is exactly (the error is at the rounding-off level) the desired final

time of propagation. However when the accurate final independent variable is employed

with a different (higher) value of the relative tolerance the physical time differs from

the desired time of propagation by some variable amount for each method. Figure (1,

right) shows the error of the position which has been obtained in this way. Dromo(P)

not only considerably improves Dromo but also exhibits the best performance. This

fact suggests that the implementation of a time-element in Dromo(P), at least for the

problem under consideration, may greatly increase the efficiency of the method.
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Table 2 Reference position vector at the final time expressed in an Earth-centered inertial
frame.

Examples Xe (km) Ye (km) Ze (km)

J2 −19330.6793 228708.2356 130258.6070
J2 + Moon
e = 0.95 −24219.0501 227962.10637 129753.44240
e = 0.7 −3529.0232 33375.887010 18838.29677
e = 0.3 −1142.351295 11002.0634065 6042.183235
e = 0 −587.059481 6017.7665435 3094.323699

J2 + drag 3754.122945 −5623.63869 708.40001

The error accumulation of the position and physical time with respect to the nor-

malized time-like argument χ defined in Eq. (64) is shown in Figs. (2, left) and (2,

right) respectively. Peaks of similar amplitude for Dromo(P) and Dromo characterize

the error near the apogee. While the amplitude of these peaks does not increase, the

mean error grows linearly between two consecutive apogees but with a smaller slope

for Dromo(P) than Dromo so that our proposed method seems to be more suited to

long-term propagations.

Finally, because the perturbation is derivable from a conservative potential the

total energy is constant and equal to the value ε0 of the initial epoch. For this reason

it is interesting to compute the total energy ε from the spacecraft position and velocity

vectors and check the variation of the relative error:

ξ =
|ε− ε0|
ε0

. (68)

Figure (3) plots this error in function of the physical time for a long-term integration.

In the comparison we include also the formulation of our method where the state

variable ζ3 is replaced by total energy ε, and we refer to this variation of Dromo(P) as

Dromo(P2). As we said in Section 4 the employment of the total energy is advantageous

especially when the perturbations are conservative. The curves were obtained by setting

a tight relative tolerance (10−12) of the numerical integrator. Dromo(P2) along with

Dromo(P) show the best behavior and the error does not increase for Dromo(P2).



32 Giulio Baù, Claudio Bombardelli, Jesús Peláez

10−4 10−2 100 102 104

0.5

1.5

2.5

3.5

4.5x 104

Position error  (km)

Fu
nc

tio
n 

ca
lls

 

 

 Spe&Bur
 Sti&Sche
 Dromo(P)
 Dromo
10−6

10−7

10−8

10−9

10−10

10−4 10−3 10−2 10−1 100 101

0.5

1.5

2.5

3.5

4.5x 104

Position error  (km)

Fu
nc

tio
n 

ca
lls

 

 

 Spe&Bur
 Sti&Sche
 Dromo(P)
 Dromo
10−6

10−7

10−8

10−9

10−10

Fig. 1 Number of function calls of the DP54 integrator versus position error with J2 pertur-
bation. The propagation starts from an ellipse of eccentricity 0.95 and (left) stops after 49.5
revolutions (289.66457509msd). The plot on the right shows the same performance diagram
when an accurate propagation of the physical time is performed. The markers refer to different
values of the relative tolerance of the numerical integrator.
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Fig. 2 Magnitude (left) of the position vector error (Eq. 65) and (right) of the time error
(Eq. 66) versus normalized time-like argument (Eq. 64) for the same problem of Fig. (1). The
motion is propagated by the RK4 integrator with 3168 steps (64 steps per revolution).

Earth’s oblateness and Moon’s third body gravitational attraction

We refer now to the “Example 2” at page 121 of ref. ([Stiefel, E. L., and Scheifele, G.(1971)]).

This example has been used for comparing the performance of different methods also by

Bond ([Bond, V. R.(1974)]), in Section 9.7 of ref. ([Bond, V. R., and Allman, M. C.(1996)])

and by Peláez et al. ([Peláez, J., Hedo, J. M., and de Andrés, P. R.(2007)]). The mo-

tion is perturbed by the Earth’s oblateness, which, like in the previous example, is

introduced as the J2 perturbing potential in Eq. (67), and by the Moon’s attraction,
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Fig. 3 Total energy error (Eq. 68) for a long-term propagation of 10 years under J2 pertur-
bation and starting from an ellipse of eccentricity 0.95.

which instead is implemented as a perturbing force. The orbit of the Moon is assumed

circular and its position vector in the Earth-centered inertial frame is:

XM = % sin (wt) , YM = −
√

3

2
% cos (wt) , ZM = −1

2
% cos (wt) ,

where t is the physical time. Moon’s orbital radius, angular velocity and gravitational

parameter take the values:

% = 384400 km, w = 2.665315780887× 10−6 s−1, µM = 4902.66 km3/s2.

We first selected the initial position and velocity provided in Table (1), and the

motion was propagated through 288.12768941 msd, which is the same time interval

chosen in the “Example 2b” at page 122 of ref. ([Stiefel, E. L., and Scheifele, G.(1971)]).

Then, the initial X-component of the velocity in Table (1) was gradually decreased in

order to lower the apogee radius, while keeping unchanged the perigee radius and the

other classical orbital elements. More specifically, the additional initial eccentricities

0.7, 0.3 and 0 were chosen. The time of propagation is set for each case to allow

49.5 revolutions around the Earth and the reference positions are found in Table (2).

Figure (4) collects the four performance diagrams for the considered initial conditions.
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Fig. 4 Number of function calls of the DP54 integrator versus position error under J2
and Moon’s attraction perturbations for 49.5 revolutions and with different eccentricities
e of the initial osculating orbit. The time propagation is 288.12768941msd for e = 0.95,
19.43348169msd for e = 0.7, 5.45405849msd for e = 0.3, and 3.19412898msd for e = 0. The
markers refer to different values of the relative tolerance of the numerical integrator.

The results reveal the eccentricity dependence of the position error of Dromo(P) in

the sense that we now explain. By lowering the apogee altitude the motion takes

place nearer to the Earth and farther from the Moon, therefore the Earth’s oblateness

becomes the main perturbation for an increasingly large time of propagation. When

the initial eccentricity is 0 the Moon’s attraction is negligible and the spacecraft is

always perturbed by a strong nearly conservative force field. For this reason Dromo(P)

behaves better for small eccentricities than Dromo and it is worth noting that for the

case of initial circular orbit it ranks first among the compared methods.

Let us focus on the 0 and 0.3 initial eccentricity examples, and investigate the

accumulation of the position and time error during the numerical integration. Figure

(5) contains the plots of such errors which are computed by Eqs. (65) and (66). For
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near-circular motion only Dromo(P) and the Sperling-Burdet method enjoy the linear

dependence of the error averaged over one revolution for both position and time, while

the average errors produced by Dromo and the Stiefel-Scheifele method follow the

quadratic law aτ2 + bτ , where τ is the independent variable and the coefficients a and

b can be conveniently computed. For moderate eccentricity linearity characterizes the

average error growth of the physical time of all methods and in particular we note

that the rate of accumulation is smaller of a factor around 30 for Dromo(P) than for

Dromo. As concerns the position error two different trends of accumulation appear

both in Dromo and Dromo(P), with the latter showing a much better performance

than the former.

One final remark is on the fact that by decreasing the eccentricity the Stiefel-

Scheifele method progressively loses accuracy while Dromo(P) improves its perfor-

mance. In fact it is significant that for the case of zero initial eccentricity the level of

accuracy reached by Sti&Sche with the tightest relative tolerance (10−10) is still worse

than Dromo(P) with a relative tolerance of 10−6.

Earth’s oblateness and atmospheric drag

We finally address an example involving the atmospheric drag which produces a force

not derivable from a potential. An object of mass m acted upon by the atmospheric

drag force undergoes the acceleration ([Vallado, D. A.(2001)], p. 525):

a = −1

2
ρCD

A

m
vrelvrel,

where we set for the drag coefficient and the surface to mass ratio the following values

typical of a compact spacecraft in free molecular flow:

CD = 2.2,
A

m
= 0.01

m2

kg
.
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Fig. 5 Magnitude (left column) of the position vector error (Eq. 65) and (right column) time
error (Eq. 66) versus normalized time-like argument (Eq. 64) with J2 and Moon’s attraction
perturbations. The motion is propagated from a circular orbit (upper row) and an ellipse of
eccentricity 0.3 (lower row) through 49.5 revolutions by the RK4 integrator with 3168 steps
(64 steps per revolution).

The velocity of the atmosphere at the spacecraft location, which is required to compute

the relative velocity vector vrel, is written in an Earth-centered inertial frame as:

vatm = wE (−Y, X, 0)T ,

where wE = 7.29211585531× 10−5 rad/s is the angular speed of the Earth’s rotation

and the components X and Y define the spacecraft position projected in the equatorial

plane. The exponential atmospheric model is employed to determine the atmosphere

density ρ according to the relation ([Vallado, D. A.(2001)], p. 535):

ρ = ρ0 exp

(
−h− h0

H

)
,
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where the height above the Earth’s surface is calculated as the difference between the

orbital distance and the Earth’s radius h = r − RE , and the base altitude h0, the

scale height H and the nominal density ρ0 are taken from Table 8.4 at page 537 of ref.

([Vallado, D. A.(2001)]).

The second perturbation that is considered apart from drag is the J2 zonal har-

monic, which as in the previous examples is introduced by means of the potential in Eq.

(67). The propagation starts from a circular orbit (the initial conditions are the same

of the example with e = 0 in the previous section) and continues through a suitable

number of revolutions (namely 150) for appreciating the effect of drag on the trajec-

tory. The reference position vector is contained in the last row of Table (2). Figure (6,

left) shows that Dromo(P) is the most accurate method for a given number of function

calls while Dromo is the worst in this sense. The sensible gain in performance which

is achieved by Dromo(P) with respect to Dromo is mainly due to the strong reduction

of the numerical integration error affecting the physical time as can be appreciated in

Fig. (6, right). Such figure is obtained similarly to Fig. (1, right) by employing with

a certain method the same accurate final value of the independent variable for all the

chosen relative tolerances. The dependence of the position and time errors on the time-

like argument is the same observed in Fig. (5, upper row) where Dromo(P) and Dromo

exhibit a linear and quadratic character of the error growth respectively.

8 Conclusions

A new set of orbital elements for the numerical propagation of the perturbed two-body

problem has been presented. The new scheme, called Dromo(P), can be seen as a gen-

eralization of the element method published by Peláez et al. in 2007 with an improved

performance for the case when perturbations arise partially or totally from a potential.

As such, the scheme inherits all the benefits of Peláez’s method, among which it is

notable that it can propagate different conics without resorting to Stumpff functions.

Moreover, it is shown that the singularity that affects Peláez’s method for the case

of vanishing angular momentum is removed in the proposed method. Numerical tests
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Fig. 6 Number of function calls of the DP54 integrator versus (left) position error and (right)
time error with J2 and drag perturbations. The propagation starts from a circular orbit and
stops after 150 revolutions. The markers refer to different values of the relative tolerance of
the numerical integrator.

with astrodynamics problems widely used in the literature, namely the propagation

of elliptic orbits under J2 perturbation applied alone and together with either lunar

attraction or atmospheric drag, have been performed highlighting the excellent perfor-

mance of the method. More specifically, when considering as a performance metric the

achievable accuracy per number of function calls required and as a numerical integrator

the explicit Runge-Kutta (4, 5) pair of Dormand and Prince known as DOPRI5, the

proposed method behaves always better than Peláez’s scheme, and the improvement

in the performance increases as perturbations derived from a potential, the J2 in our

examples, have a stronger effect on the motion. In fact for the case of near circular

motion perturbed by J2 and either third body attraction or drag Dromo(P) not only

ranks first among the compared methods but also transforms the growth of the posi-

tion error over the independent variable from quadratic to linear. Similar conclusions

are drawn also when the explicit Runge-Kutta code of order 8 based on the method of

Dormand and Prince is employed4.

An important role is played in our comparisons by the error accumulated in the

physical time, which can become dominant over the error affecting the generalized

orbital elements. We have shown that if the physical time is propagated with a much

4 This is the numerical integrator DOP853 which is described in Section II.5 of ref.
([Hairer, E., Nørsett, S. P., and Wanner, G.(2009)]).
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higher accuracy than is achievable by adopting a time transformation of Sundman

type, Dromo(P) further gains in performance with respect to Dromo and the other

formulations even when forces arising from a potential exert a moderate influence

on the motion. For this reason the development of a time-element for Dromo(P) is

currently under investigation and will be presented in a forthcoming paper.
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APPENDIX I

Matrices QRI and Q0

We write below the expressions of the elements of the matrix QRI :

QRI (1, 1) =
RX
r

,

QRI (2, 1) =
RY
r

,

QRI (3, 1) =
RZ
r

,

QRI (1, 2) =
HY RZ −HZRY

hr
,

QRI (2, 2) =
HZRX −HXRZ

hr
,

QRI (3, 2) =
HXRY −HY RX

hr
,

QRI (1, 3) =
HX
h

,

QRI (2, 3) =
HY
h

,

QRI (3, 3) =
HZ
h
.
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We write below the expressions of the elements of the matrix Q0:

Q0 (1, 1) =
RX
r

cos4φ−
(
HY RZ −HZRY

hr

)
sin4φ,

Q0 (2, 1) =
RY
r

cos4φ−
(
HZRX −HXRZ

hr

)
sin4φ,

Q0 (3, 1) =
RZ
r

cos4φ−
(
HXRY −HY RX

hr

)
sin4φ,

Q0 (1, 2) =
RX
r

sin4φ+

(
HY RZ −HZRY

hr

)
cos4φ,

Q0 (2, 2) =
RY
r

sin4φ+

(
HZRX −HXRZ

hr

)
cos4φ,

Q0 (3, 2) =
RZ
r

sin4φ+

(
HXRY −HY RX

hr

)
cos4φ,

Q0 (1, 3) =
HX
h

,

Q0 (2, 3) =
HY
h

,

Q0 (3, 3) =
HZ
h
.

Expressions of ζ4, ζ5 and ζ6 when ζ7 = 0

In the case that ζ7 = 0 Eqs. (55) - (57) become singular and we can use instead:

ζ4 =
Q0 (1, 3)

2ζ6
, (69)

ζ5 =
Q0 (2, 3)

2ζ6
, (70)

ζ6 = ±
√
Q0 (3, 3) + 1

2
.

If additionally ζ6 = 0 Eqs. (69) and (70) are singular and we can use instead:

ζ4 = ±
√

1−Q0(2, 2)

2
, ζ5 =

Q0(1, 2)

2ζ4
.

Finally, if also ζ4 = 0, then we have ζ5 = ±1.
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