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Abstract

We consider the weak solutions to the Euler-Fourier system describing the motion of a
compressible heat conducting gas. Employing the method of convex integration, we show that
the problem admits infinitely many global-in-time weak solutions for any choice of smooth
initial data. We also show that for any initial distribution of the density and temperature, there
exists an initial velocity such that the associated initial-value problem possesses infinitely many
solutions that conserve the total energy.

1 Introduction

The concept of weak solution has been introduced in the mathematical theory of systems of (non-
linear) hyperbolic conservation laws to incorporate the inevitable singularities in their solutions that
may develop in a finite time no matter how smooth and small the data are. As is well known,
however, many nonlinear problems are not well posed in the weak framework and several classes of
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admissible weak solutions have been identified to handle this issue. The implications of the Second
law of thermodynamics have been widely used in the form of various entropy conditions in order
to identify the physically relevant solutions. Although this approach has been partially successful
when dealing with systems in the simplified 1D−geometry, see Bianchini and Bressan [4], Bressan
[5], Dafermos [7], Liu [14], among others, the more realistic problems in higher spatial dimensions
seem to be out of reach of the theory mostly because the class of “entropies” is rather poor consisting
typically of a single (physical) entropy. Recently, De Lellis and Székelyhidi [9] developed the method
of convex integration (cf. Müller and Šverák [15]) to identify a large class of weak solutions to the
Euler system violating the principle of well-posedness in various directions. Besides the apparently
non-physical solutions producing the kinetic energy (cf. Shnirelman [18]), a large class of data has
been identified admitting infinitely many weak solutions that comply with a major part of the known
admissibility criteria, see De Lellis and Székelyhidi [8].

In this paper, we develop the technique of [8] to examine the well-posedness of the full Euler-
Fourier system:

∂t̺+ divx(̺u) = 0, (1.1)

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺, ϑ) = 0, (1.2)

∂t(̺e(̺, ϑ)) + divx(̺e(̺, ϑ)u) + divxq = −p(̺, ϑ)divxu, (1.3)

where ̺(t, x) is the mass density, u = u(t, x) the velocity field, and ϑ the (absolute) temperature of
a compressible, heat conducting gas, see Wilcox [19]. For the sake of simplicity, we restrict ourselves
to the case of perfect monoatomic gas, for which the pressure p(̺, ϑ) and the specific internal energy
e(̺, ϑ) are interrelated through the constitutive equations:

p(̺, ϑ) =
2

3
̺e(̺, ϑ), p(̺, ϑ) = a̺ϑ, a > 0. (1.4)

Although the system (1.1 - 1.3) describes the motion in the absence of viscous forces, we suppose
that the fluid is heat conductive, with the heat flux q determined by the standard Fourier law:

q = −κ∇xϑ, κ > 0. (1.5)

The problem (1.1 - 1.3) is supplemented with the initial data

̺(0, ·) = ̺0, (̺u)(0, ·) = ̺0u0, ϑ(0, ·) = ϑ0 in Ω. (1.6)

In addition, to avoid the effect of the kinematic boundary, we consider the periodic boundary condi-
tions, meaning the physical domain Ω will be taken the flat torus

Ω = T
3 =

(

[0, 1]|{0,1}
)3

.
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The first part of the paper exploits the constructive aspect of convex integration. We present
a “variable coefficients” variant of a result of De Lellis-Székelyhidi [8] and show the existence of
infinitely many global-in-time1 weak solutions to the problem (1.1 - 1.6) for any physically relevant
choice of (smooth) initial data. Here, physically relevant means that the initial distribution of the
density ̺0 and the temperature ϑ0 are strictly positive in Ω. These solutions satisfy also the associated
entropy equation; whence they comply with the Second law of thermodynamics.

Similarly to their counterparts constructed in [8], these “wild” weak solutions violate the First
law of thermodynamics, specifically, the total energy at any positive time is strictly larger than for
the initial data. In order to eliminate the non-physical solutions, we therefore impose the total energy
conservation in the form:

E(t) =
∫

Ω
̺
(

1

2
|u|2 + e(̺, ϑ)

)

(t, ·) dx =
∫

Ω
̺0

(

1

2
|u0|

2 + e(̺0, ϑ0)
)

dx = E0 for (a.a.) t ∈ (0, T ).

(1.7)
Following [12] we show that the system (1.1 - 1.3), augmented with the total energy balance

(1.7), satisfies the principle of weak-strong uniqueness. Specifically, the weak and strong solutions
emanating from the same initial data necessarily coincide as long as the latter exists. In other words,
the strong solutions are unique in the class of weak solutions. This property remains valid even if we
replace the internal energy equation (1.3) by the entropy inequality

∂t(̺s(̺, ϑ))+divx(̺s(̺, ϑ)u)+divx

(

q

ϑ

)

≥ −
q · ∇xϑ

ϑ2
, ϑDs(̺, ϑ) ≡ De(̺, ϑ)+p(̺, ϑ)D

(

1

̺

)

, (1.8)

in the spirit of the theory developed in [11].
Although the stipulation of (1.7) obviously eliminates the non-physical energy producing solu-

tions, we will show that for any initial data ̺0, ϑ0 there exists an initial velocity u0 such that the
problem (1.1 - 1.6) admits infinitely many global-in-time weak solutions that satisfy the total energy
balance (1.7).

The paper is organized as follows. After a brief introduction of the concept of weak solutions
in Section 2, we discuss the problem of existence of infinitely many solutions for arbitrary initial
data, see Section 3. In particular, we prove a “variable coefficients” variant of a result of De Lellis
and Székelyhidi [8] and employ the arguments based on Baire’s category. In Section 4, we show the
weak-strong uniqueness principle for the augmented system and then identify the initial data for
which the associated solutions conserve the total energy. The paper is concluded by some remarks
on possible extensions in Section 5.

1By global-in-time solutions we mean here solutions defined on [0, T ) for any T > 0. For discussion about solutions
defined on [0,∞) see Section 5.
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2 Weak solutions

To simplify presentation, we may assume, without loss of generality, that

a = κ = 1.

We say that a trio [̺, ϑ,u] is a weak solution of the problem (1.1 - 1.6) in the space-time cylinder
(0, T )× Ω if:

• the density ̺ and the temperature ϑ are positive in (0, T )× Ω;

•
∫ T

0

∫

Ω
(̺∂tϕ+ ̺u · ∇xϕ) dx dt = −

∫

Ω
̺0ϕ(0, ·) dx (2.1)

for any test function ϕ ∈ C∞
c ([0, T )× Ω);

•
∫ T

0

∫

Ω
(̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ+ ̺ϑdivxϕ) dx dt = −

∫

Ω
̺0u0 · ϕ(0, ·) dx (2.2)

for any test function ϕ ∈ C∞
c ([0, T )× Ω;R3);

•
∫ T

0

∫

Ω

(

3

2
[̺ϑ∂tϕ+ ̺ϑu · ∇xϕ]−∇xϑ · ∇xϕ− ̺ϑdivxuϕ

)

dx dt = −
∫

Ω
̺0ϑ0ϕ(0, ·) dx (2.3)

for any test function ϕ ∈ C∞
c ([0, T )× Ω).

As a matter of fact, the weak solutions we construct in this paper will be rather regular with
the only exception of the velocity field. In particular, the functions ̺, ϑ, and even divxu will be
continuously differentiable in [0, T ]× Ω, and, in addition,

ϑ ∈ L2(0, T ;W 2,p(Ω)), ∂tϑ ∈ Lp(0, T ;Lp(Ω)) for any 1 ≤ p < ∞.

Thus the equations (1.1), (1.3) will be in fact satisfied pointwise a.a. in (0, T )×Ω. As for the velocity
field, we have

u ∈ Cweak([0, T ];L
2(Ω;R3)) ∩ L∞((0, T )× Ω;R3), divxu ∈ C([0, T ]× R3).
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3 Second law is not enough

Our first objective is to show the existence of infinitely many solutions to the Euler-Fourier system
for arbitrary (smooth) initial data.

Theorem 3.1 Let T > 0. Let the initial data satisfy

̺0 ∈ C3(Ω), ϑ0 ∈ C2(Ω),u0 ∈ C3(Ω;R3), ̺0(x) > ̺ > 0, ϑ0(x) > ϑ > 0 for any x ∈ Ω. (3.1)

Then the initial-value problem (1.1 - 1.6) admits infinitely many weak solutions in (0, T ) × Ω
belonging to the class:

̺ ∈ C2([0, T ]× Ω), ∂tϑ ∈ Lp(0, T ;Lp(Ω)), ∇2
xϑ ∈ Lp(0, T ;Lp(Ω;R3×3)) for any 1 ≤ p < ∞,

u ∈ Cweak([0, T ];L
2(Ω;R3)) ∩ L∞((0, T )× Ω;R3), divxu ∈ C2([0, T ]× Ω).

Remark 3.1 Using the maximal regularity theory for parabolic equations (see Amann [3], Krylov
[13]) we observe that ϑ is a continuous function of the time variable t ranging in the interpolation
space [Lp(Ω);W 2,p(Ω)]α for any 1 ≤ p < ∞ finite and any α ∈ (0, 1). Thus it is possible to show that
the conclusion of Theorem 3.1 remains valid if we assume that

ϑ0 ∈ [Lp(Ω);W 2,p(Ω)]α for sufficiently large 1 ≤ p < ∞ and 0 < α < 1, ϑ0 > 0 in Ω,

where [, ]α denotes the real interpolation. In particular, the solution ϑ(t, ·) will remain in the same
regularity class for any t ∈ [0, T ].

The rest of this section is devoted to the proof of Theorem 3.1.

3.1 Reformulation

Following Chiodaroli [6], we reformulate the problem in the new variables ̺, ϑ, andw = ̺u obtaining,
formally

∂t̺+ divxw = 0, (3.2)

∂tw + divx

(

w ⊗w

̺

)

+∇x(̺ϑ) = 0, (3.3)

5



3

2
(̺∂tϑ+w · ∇xϑ) = ∆ϑ− ϑdivxw + ϑ

∇x̺

̺
·w. (3.4)

Next, we take the following ansatz for the density:

̺(t, x) = ̺0(x)− h(t)divx(̺0(x)u0(x)) ≡ ˜̺(t, x),

with

h ∈ C2[0, T ], h(0) = 0, h′(0) = 1, ̺0(x)− h(t)divx(̺0(x)u0(x)) >
̺

2
for all t ∈ [0, T ], x ∈ Ω. (3.5)

Accordingly, we write w in the form of its Helmholtz decomposition

w = v +∇xΨ, divxv = 0, ∆Ψ = h′(t)divx(̺0u0),
∫

Ω
Ψ dx = 0.

Obviously, by virtue of the hypotheses (3.1) imposed on the initial data, we have

˜̺ ∈ C2([0, T ]× Ω),∇xΨ ∈ C2([0, T ]× Ω;R3), ˜̺(0, ·) = ̺0,w0 = ̺0u0.

Moreover, the equation of continuity (3.2) is satisfied pointwise in (0, T ) × Ω, while the remaining
two equations (3.2), (3.3) read

∂tv + divx

(

(v +∇xΨ)⊗ (v +∇xΨ)

˜̺

)

+∇x (˜̺ϑ+ ∂tΨ) = 0, divxv = 0, (3.6)

v(0, ·) = v0 = ̺0u0 −∇x∆
−1divx(̺0u0), (3.7)

3

2

(

˜̺∂tϑ+ (v +∇xΨ) · ∇xϑ
)

= ∆ϑ− ϑ∆Ψ + ϑ
∇x ˜̺

˜̺
· (v +∇xΨ), ϑ(0, ·) = ϑ0. (3.8)

3.2 Internal energy and entropy equations

For a given vector field v ∈ L∞((0, T ) × Ω;R3), the internal energy equation (3.8) is linear with
respect to ϑ and as such admits a unique solution ϑ = ϑ[v] satisfying the initial condition ϑ(0, ·) = ϑ0.
Moreover, the standard Lp−theory for parabolic equations (see e.g. Krylov [13]) yields

ϑ(t, x) > 0 for all t ∈ [0, T ], x ∈ Ω,

∂tϑ ∈ Lp(0, T ;Lp(Ω)), ∇2
xϑ ∈ Lp(0, T ;Lp(Ω;R3×3) for any 1 ≤ p < ∞, (3.9)

where the bounds depend only on the data and ‖v‖L∞((0,T )×Ω;R3).
Dividing (3.8) by ϑ we deduce the entropy equation

˜̺∂t log

(

ϑ3/2

˜̺

)

+ (v +∇xΨ) · ∇x log

(

ϑ3/2

˜̺

)

= ∆ log(ϑ) + |∇x log(ϑ)|
2, (3.10)

where we have used the identity −∆Ψ = ∂t ˜̺. We note that, given the regularity of the solutions in
Theorem 3.1, the entropy equation (3.10) and the internal energy equation (3.8) are equivalent. In
particular, the weak solutions we construct are compatible with the Second law of thermodynamics.
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3.2.1 Uniform bounds

Introducing a new variable

Z = log

(

ϑ3/2

˜̺

)

we may rewrite (3.10) as

˜̺∂tZ +
(

v +∇xΨ−
8

9
∇x log(˜̺)

)

· ∇xZ =
2

3
∆Z +

4

9
|∇xZ|

2 +
2

3
∆ log(˜̺) +

4

9
|∇x log(˜̺)|

2. (3.11)

Applying the standard parabolic comparison principle to (3.11) we conclude that |Z| is bounded only
in terms of the initial data and the time T . Consequently, the constants ϑ, ϑ can be taken in such a
way that

0 < ϑ ≤ ϑ[v](t, x) ≤ ϑ for all t ∈ [0, T ], x ∈ Ω. (3.12)

We emphasize that the constants ϑ, ϑ are independent of v - a crucial fact that will be used in the
future analysis.

3.3 Reduction to a modified Euler system

Summing up the previous discussion, our task reduces to finding (infinitely many) solutions to the
problem

∂tv + divx

(

(v +∇xΨ)⊗ (v +∇xΨ)

˜̺

)

+∇x

(

˜̺ϑ[v] + ∂tΨ−
2

3
χ
)

= 0, divxv = 0,v(0, ·) = v0,

(3.13)
with a suitable spatially homogeneous function χ = χ(t).

Following the strategy (and notation) of De Lellis and Székelyhidi [8], we introduce the linear
system

∂tv + divxU = 0, divxv = 0, v(0, ·) = v0, v(T, ·) = vT , (3.14)

together with the function e,

e[v] = χ−
3

2
˜̺ϑ[v]−

3

2
∂tΨ, (3.15)

with a positive function χ ∈ C[0, T ] determined below.
Furthermore, we introduce the space R3×3

sym,0 of symmetric traceless matrices, with the operator
norm

λmax[U]− the maximal eigenvalue of U ∈ R3×3
sym,0.
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Finally, we define the set of subsolutions

X0 =

{

v
∣

∣

∣ v ∈ L∞((0, T )× Ω;R3) ∩ C1((0, T )× Ω;R3) ∩ Cweak([0, T ];L
2(Ω;R3)), (3.16)

v satisfies (3.14) with some U ∈ C1((0, T )× Ω;R3×3
sym,0),

inf
t∈(ε,T ),x∈Ω

{

e[v]−
3

2
λmax

[

(v +∇xΨ)⊗ (v +∇xΨ)

˜̺
− U

]}

> 0 for any 0 < ε < T

}

.

Note that X0 is different from its analogue introduced by Chiodaroli [6] and De Lellis and Székelyhidi
[8], in particular, the function e[v] depends on the field v.

As shown by De Lellis and Székelyhidi [8], we have the (pointwise) inequality

1

2
|w|2 ≤

3

2
λmax [w⊗w− U] , w ∈ R3, U ∈ R3×3

sym,0,

where the identity holds only if

U = w ⊗w −
1

3
|w|2I.

Consequently, by virtue of (3.12), there exists a constant c depending only on the initial data
[̺0, ϑ0,u0] such that

sup
t∈[0,T ]

‖v(t, ·)‖L∞(Ω;R3) < c for all v ∈ X0. (3.17)

Next, we choose the function χ ∈ C[0, T ] in (3.15) so large that

3

2
λmax

[

(v0 +∇xΨ)⊗ (v0 +∇xΨ)

˜̺

]

< χ−
3

2
˜̺ϑ[v0]−

3

2
∂tΨ ≡ e[v0] for all (t, x) ∈ [0, T ]× Ω,

in particular, the function v0 = v0(x), together with the associated tensor U ≡ 0, belongs to the set
X0, where v0 = vT .

We define a topological space X as a completion of X0 in Cweak([0, T ];L
2(Ω;R3)) with respect to

the metric d induced by the weak topology of the Hilbert space L2(Ω;R3). As we have just observed,
the space X0 is non-empty as v = v0 is in X0.

Finally, we consider a family of functionals

Iε[v] =
∫ T

ε

∫

Ω

(

1

2

|v +∇xΨ|2

˜̺
− e[v]

)

dx dt for v ∈ X, 0 < ε < T. (3.18)

As a direct consequence of the parabolic regularity estimates (3.9), we observe that

e[v] → e[w] in C([0, T ]× Ω) whenever v → w in X ; (3.19)

8



therefore each Iε is a compact perturbation of a convex functional; whence lower semi-continuous in
X .

In order to proceed, we need the following crucial result that may be viewed as a “variable
coefficients” counterpart of [8, Proposition 3].

Proposition 3.1 Let v ∈ X0 such that

Iε[v] < −α < 0, 0 < ε < T/2.

There there is β = β(α) > 0 and a sequence {vn}
∞
n=1 ⊂ X0 such that

vn → v in Cweak([0, T ];L
2(Ω;R3)), lim inf

n→∞
Iε[vn] ≥ Iε[v] + β.

We point out that the quantity β = β(α) is independent of ε and v.
Postponing the proof of Proposition 3.1 to the next section, we complete the proof of Theorem

3.1 following the line of arguments of [8]. To begin, we observe that cardinality of the space X0 is
infinite. Secondly, since each Iε is a bounded lower semi-continuous functional on a complete metric
space, the points of continuity of Iε form a residual set in X . The set

C =
⋂

m>1

{

v ∈ X | I1/m[v] is continuous
}

,

being an intersection of a countable family of residual sets, is residual, in particular of infinite
cardinality, see De Lellis and Székelyhidi [8] for a more detailed explanation of these arguments.

Finally, we claim that for each v ∈ C we have

I1/m[v] = 0 for all m > 1;

whence
1

2

|v +∇xΨ|2

˜̺
= e[v] ≡ χ−

3

2
˜̺ϑ[v]−

3

2
∂tΨ,

U =
(v +∇xΨ)⊗ (v +∇xΨ)

˜̺
−

1

3

|v +∇xΨ|2

˜̺
I for a.a. (t, x) ∈ (0, T )× Ω,

in other words, the function v is a weak solution to the problem (3.13). Indeed, assuming I1/m[v] <
−2α < 0, we first find a sequence {un}

∞
n=1 ⊂ X0 such that

un → v in Cweak([0, T ];L
2(Ω;R3)), I1/m[un] < −α.

Then for each un we use Proposition 3.1 and together with standard diagonal argument we obtain a
sequence {vn}

∞
n=1 ⊂ X0 such that

vn → v in Cweak([0, T ];L
2(Ω;R3)), lim inf

n→∞
I1/m[vn] ≥ I1/m[v] + β, β > 0,

in contrast with the fact that v is a point of continuity of I1/m.

9



3.4 Proof of Proposition 3.1

The proof of Proposition 3.1 is based on a localization argument, where variable coefficients are
replaced by constants. The fundamental building block is the following result proved by De Lellis
and Székelyhidi [8, Proposition 3], Chiodaroli [6, Section 6, formula (6.9)]:

Lemma 3.1 Let [T1, T2], T1 < T2, be a time interval and B ⊂ R3 a domain. Let r̃ ∈ (0,∞), Ṽ ∈ R3

be constant fields such that
0 < r < r̃ < r, |Ṽ| < V .

Suppose that
v ∈ Cweak([T1, T2];L

2(B,R3)) ∩ C1((T1, T2)×B;R3)

satisfies the linear system

∂tv + divxU = 0, divxv = 0 in (T1, T2)× B

with the associated field U ∈ C1((T1, T2)× B;R3×3
sym,0) such that

3

2
λmax

[

(v + Ṽ)⊗ (v + Ṽ)

r̃
− U

]

< e in (T1, T2)× B

for a certain function e ∈ C([T1;T2]× B).
Then there exist sequences {wn}

∞
n=1 ⊂ C∞

c ((T1, T2)×B;R3), {Yn}
∞
n=1 ⊂ C∞

c ((T1, T2)×B;R3×3
sym,0)

such that vn = v +wn, Un = U + Yn satisfy

∂tvn + divxUn = 0, divxvn = 0 in (T1, T2)× B

3

2
λmax

[

(vn + Ṽ)⊗ (vn + Ṽ)

r̃
− Un

]

< e in (T1, T2)× B,

vn → v ∈ Cweak([T1, T2];L
2(B;R3)),

and

lim inf
n→∞

∫ T2

T1

∫

B
|vn − v|2 dx dt ≥ Λ

(

r, r, V , ‖e‖L∞((T1,T2)×B)

)

∫ T2

T1

∫

B

(

e−
1

2

|v + Ṽ|2

r̃

)2

dx dt.

(3.20)

Remark 3.2 Note that Ṽ is constant in Lemma 3.1; whence

∂tv = ∂t(v + Ṽ).

Remark 3.3 It is important that the constant Λ depends only on the quantities indicated explicitly
in (3.20), in particular Λ is independent of v, of the length of the time interval, and of the domain
B.
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3.4.1 Localization principle

The scale invariance encoded in (3.20) can be used for showing a “variable coefficients” variant of
Lemma 3.1, specifically when both r̃ and Ṽ are sufficiently smooth functions of t and x.

Lemma 3.2 Let ˜̺ ∈ C1([T1, T2]× Ω), V ∈ C1([T1, T2]× Ω;R3), T1 < T2 be functions satisfying

0 < r < ˜̺(t, x) < r, |V(t, x)| < V for all t, x.

Suppose that
v ∈ Cweak([T1, T2];L

2(Ω, R3)) ∩ C1((T1, T2)× Ω;R3)

solves the linear system
∂tv + divxU = 0, divxv = 0 in (T1, T2)× Ω

with the associated field U ∈ C1((T1, T2)× B;R3×3
sym,0) such that

3

2
λmax

[

(v +V)⊗ (v +V)

˜̺
− U

]

< e− δ in (T1, T2)× Ω (3.21)

for some e ∈ C([T1;T2]× B) and δ > 0.
Then there exist sequences {wn}

∞
n=1 ⊂ C∞

c ((T1, T2)×Ω;R3), {Yn}
∞
n=1 ⊂ C∞

c ((T1, T2)×Ω;R3×3
sym,0)

such that vn = v +wn, Un = U + Yn satisfy

∂tvn + divxUn = 0, divxvn = 0 in (T1, T2)× Ω (3.22)

3

2
λmax

[

(vn +V)⊗ (vn +V)

˜̺
− Un

]

< e in C((T1;T2)× Ω), (3.23)

vn → v ∈ Cweak([T1, T2];L
2(Ω;R3)), (3.24)

and

lim inf
n→∞

∫ T2

T1

∫

Ω
|vn − v|2 dx dt ≥ Λ

(

r, r, V , ‖e‖L∞((T1,T2)×Ω)

)

∫ T2

T1

∫

Ω

(

e−
1

2

|v +V|2

˜̺

)2

dx dt.

(3.25)

Remark 3.4 The role of the positive parameter δ in (3.21) is only to say that the inequality (3.21)
is strict, otherwise the conclusion of the lemma is independent of the specific value of δ.
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Remark 3.5 In view of (3.24), the convergence formula (3.25) may be equivalently replaced by

lim inf
n→∞

∫ T2

T1

∫

Ω

1

2

|vn +V|2

˜̺
dx dt (3.26)

≥
∫ T2

T1

∫

Ω

1

2

|v +V|2

˜̺
dx dt+ Λ

(

r, r, V , ‖e‖L∞((T1,T2)×Ω)

)

∫ T2

T1

∫

Ω

(

e−
1

2

|v +V|2

˜̺

)2

dx dt.

Proof:
We start with an easy observation that there exists ε = ε (δ, |e|) such that























3
2

∣

∣

∣

∣

λmax

[

(v+V)⊗(v+V)
˜̺

− U

]

− λmax

[

(v+Ṽ)⊗(v+Ṽ)
r̃

− U

]∣

∣

∣

∣

< δ
4
,

∣

∣

∣

∣

1
2
|v+V|2

˜̺
− 1

2
|v+Ṽ|2

r̃

∣

∣

∣

∣

< δ
4























(3.27)

whenever
3

2
λmax

[

(v +V)⊗ (v +V)

˜̺
− U

]

< e, | ˜̺− r̃| < ε, |V − Ṽ| < ε.

For δ appearing in (3.21), we fix ε = ε
(

δ, ‖e‖L∞(T1,T2)×Ω)

)

as in (3.27) and find a (finite) decom-

position of the set (T1, T2)× Ω such that

[T1, T2]× Ω = ∪N
i=1Qi, Qi = (T i

1, T
i
2)×Bi, Qi ∩Qj = ∅ for i 6= j,

sup
Qi

˜̺− inf
Qi

˜̺< ε, sup
Qi

∣

∣

∣

∣

∣

V −
1

|Qi|

∫

Qi

V dx dt

∣

∣

∣

∣

∣

< ε,

where the number N depends on ε and the Lipschitz constants of ˜̺, V in [T1, T2]× Ω.
Now, we apply Lemma 3.1 on each set Qi with the choice of parameters

r̃ = sup
Qi

˜̺, Ṽ =
1

|Qi|

∫

Qi

V dx dt.

In accordance with (3.21), (3.27), we have

3

2
λmax

[

(v + Ṽ)⊗ (v + Ṽ)

r̃
− U

]

< e−
δ

2
in Qi.

Under these circumstances, Lemma 3.1 yields a sequence of smooth functions vi
n, U

i
n, with v − vi

n,
U − U

i
n compactly supported in Qi, such that

∂tv
i
n + divxU

i
n = 0, divxv

i
n = 0 in Qi,

12



3

2
λmax

[

(vi
n + Ṽ)⊗ (vi

n + Ṽ)

r̃
− U

i
n

]

< e−
δ

2
, (3.28)

vi
n → v in Cweak([T

i
1, T

i
2], L

2(Bi)),

and

lim inf
n→∞

∫

Qi

∣

∣

∣vi
n − v

∣

∣

∣

2
dx dt ≥ Λ

(

r, r, V , ‖e‖L∞((T1,T2)×Ω)

)

∫

Qi

(

e−
1

2

|v + Ṽ|2

r̃
−

δ

2

)2

dx dt. (3.29)

In view of (3.27), we replace r̃ by ˜̺ and Ṽ by V in (3.28) to obtain

3

2
λmax

[

(vi
n +V)⊗ (vi

n +V)

˜̺
− Un

]

< e in Qi.

As vn, Un are compactly supported perturbations of v, U in Qi, we may define

vn(t, x) = vi
n(t, x), Un = U

i
n for any (t, x) ∈ Qi, i = 1, . . . , N.

In accordance with the previous discussion, vn, Un satisfy (3.22 - 3.24). In order to see (3.25),
use (3.27) to observe that

(

e−
1

2

|v + Ṽ|2

r̃
−

δ

2

)

>

(

e−
1

2

|v +V|2

˜̺
−

3δ

4

)

> 0 in Qi;

whence, making use of the hypothesis (3.21), specifically of the fact that

e−
1

2

|v +V|2

˜̺
> δ,

we may infer that
(

e−
1

2

|v +V|2

˜̺
−

3δ

4

)

≥
1

4

(

e−
1

2

|v +V|2

˜̺

)

in Qi.

Thus, summing up the integrals in (3.29) we get (3.25).

Q.E.D.
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3.4.2 Application to functionals Iε

Fixing ε ∈ (0, T/2) we complete the proof of Proposition 3.1. Given e ∈ C([0, T ]×Ω), we introduce
the spaces

X0,e =

{

v
∣

∣

∣ v ∈ C1((0, T )× Ω;R3) ∩ Cweak([0, T ];L
2(Ω;R3)) (3.30)

v satisfies (3.14) with some U ∈ C1((0, T )× Ω;R3×3
sym,0),

3

2
λmax

[

(v +∇xΨ)⊗ (v +∇xΨ)

˜̺
− U

]

< e for t ∈ (0, T ), x ∈ Ω

}

,

along with the associated functionals

Iε,e[v] =
∫ T

ε

∫

Ω

(

1

2

|v +∇xΨ|2

˜̺
− e

)

dx dt for v ∈ X, 0 < ε < T/2. (3.31)

The following assertion is a direct consequence of Lemma 3.2.

Lemma 3.3 Let v ∈ X0,e, e ∈ C([0, T ]× Ω), 0 < ε < T/2 be such that

Iε,e[v] < −α < 0.

There there is β = β(α, ‖e‖L∞((0,T )×Ω)) > 0, independent of ε, and a sequence {vn}n>0 ⊂ X0,e

such that
vn ≡ v in [0, ε]× Ω,

vn → v in Cweak([0, T ];L
2(Ω;R3)), lim inf

n→∞
Iε,e[vn] ≥ Iε,e[v] + β.

Remark 3.6 We have used Lemma 3.2 with (3.26), where, by virtue of Jensen’s inequality,

∫ T

ε

∫

Ω

(

e−
1

2

|v +V|2

˜̺

)2

dx dt ≥
1

(T − ε)|Ω|

(

∫ T

ε

∫

Ω

(

e−
1

2

|v +V|2

˜̺

)

dx dt

)2

≥
α2

(T − ε)|Ω|
.

Finally, we show how Lemma 3.3 implies Proposition 3.1. Under the hypotheses of Proposition 3.1
and in accordance with the definition of the space X0, we find δ > 0 and a function e ∈ C([0, T ]×Ω)
such that

e ≤ e[v], e ≡ e[v]− δ whenever t ∈ [ε, T ],

and
v ∈ X0,e.
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Thus, we have

Iε,e[v] =
∫ T

ε

∫

Ω

(

1

2

|v +∇xΨ|2

˜̺
− e[v] + δ

)

dx dt = Iε[v] + (T − ε)|Ω|δ < −α/2 < 0

as soon as δ > 0 was chosen small enough.
Consequently, by virtue of Lemma 3.3, there is a sequence of functions {vn}

∞
n=1 and β = β(α) > 0

such that
vn ∈ X0,e, vn ≡ v in [0, ε]× Ω,

and

vn → v in Cweak([0, T ];L
2(Ω;R3)), lim inf

n→∞
Iε,e[vn] ≥ Iε,e[v] + β = Iε[v] + β + (T − ε)|Ω|δ.

Moreover, in accordance with (3.19),

Iε,e[vn]− Iε[vn] =
∫ T

ε

∫

Ω
e[vn]− e[v] + δ dx → (T − ε)|Ω|δ as n → ∞;

whence we may infer that
lim inf
n→∞

Iε[vn] ≥ Iε[v] + β.

Finally, it remains to observe that vn ∈ X0 for all n large enough. To this end, note that

3

2
λmax

[

(vn +∇xΨ)⊗ (vn +∇xΨ)

˜̺
− U

]

=
3

2
λmax

[

(v +∇xΨ)⊗ (v +∇xΨ)

˜̺
− U

]

< e ≤ e[v] = e[vn]

for all t ∈ [0, ε], while

3

2
λmax

[

(vn +∇xΨ)⊗ (vn +∇xΨ)

˜̺
− U

]

< e = e[v]− δ ≤ e[vn]− δ/2 for all t ∈ [ε, T ]

for all n large enough. We have proved Proposition 3.1.

4 Dissipative solutions

The solutions of the Euler-Fourier system constructed in Section 3 suffer an essential deficiency,
namely they do not comply with the First law of thermodynamics, meaning, they violate the total
energy conservation (1.7). On the other hand, the initial data in (3.1) are smooth enough for the
problem to possess a standard classical solution existing on a possibly short time interval (0, Tmax),
see e.g. Alazard [1], [2]. Note that the Euler-Fourier system fits also in the general framework and
the corresponding existence theory developed by Serre [16], [17]. As the classical solutions are unique
(in their regularity class) and obviously satisfy the total energy balance (1.7), the latter can be added
to (2.1 - 2.3) as an admissibility condition. The weak solutions of (1.1 - 1.6) satisfying (1.7) will be
called dissipative solutions.
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4.1 Relative entropy (energy) and weak-strong uniqueness

Following [12] we introduce the relative entropy functional

E
(

̺, ϑ,u
∣

∣

∣r,Θ,U
)

(4.1)

=
∫

Ω

(

1

2
̺|u−U|2 +HΘ(̺, ϑ)−

∂HΘ(r,Θ)

∂̺
(̺− r)−HΘ(r,Θ)

)

dx,

where HΘ is the ballistic free energy,

HΘ(̺, ϑ) = ̺
(

e(̺, ϑ)−Θs(̺, ϑ)
)

= ̺

(

3

2
ϑ−Θ log

(

ϑ3/2

̺

))

.

Repeating step by step the arguments of [12] we can show that any dissipative solution of the problem
(1.1 - 1.6) satisfies the relative entropy inequality :

[

E
(

̺, ϑ,u
∣

∣

∣r,Θ,U
)]t=τ

t=0
+
∫ τ

0

∫

Ω
Θ
|∇xϑ|

2

ϑ2
) dx dt (4.2)

≤
∫ τ

0

∫

Ω

(

̺(U− u) · ∂tU+ ̺(U− u)⊗ u : ∇xU− p(̺, ϑ)divxU
)

dx dt

−
∫ τ

0

∫

Ω

(

̺
(

s(̺, ϑ)− s(r,Θ)
)

∂tΘ+ ̺
(

s(̺, ϑ)− s(r,Θ)
)

u · ∇xΘ
)

dx dt

+
∫ τ

0

∫

Ω

((

1−
̺

r

)

∂tp(r,Θ)−
̺

r
u · ∇xp(r,Θ)

)

dx+
∫ τ

0

∫

Ω

∇xϑ

ϑ
· ∇xΘ dx dt

for any trio of smooth “test” functions

r, Θ, U, r > 0, Θ > 0.

We report the following result [10, Theorem 6.1].
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Theorem 4.1 [Weak-strong uniqueness]

Let [̺, ϑ,u] be a dissipative (weak) solution of the problem (1.1 - 1.6), emanating from the initial
data [̺0, ϑ0,u0] satisfying (3.1), such that

0 < ̺ < ̺(t, x) < ̺, 0 < ϑ < ϑ(t, x) < ϑ, |u(t, x)| < u for a.a. (t, x) ∈ (0, T )× Ω.

Suppose that the same problem (with the same initial data) admits a classical solution [ ˜̺, ϑ̃, ũ] in
(0, T )× Ω.

Then
̺ ≡ ˜̺, ϑ ≡ ϑ̃, u ≡ ũ.

Remark 4.1 Here, “classical” means that all the necessary derivatives appearing in the equations
are continuous functions in [0, T ]× Ω.

Remark 4.2 The proof of Theorem 4.1 is based on taking r = ˜̺, Θ = ϑ̃, U = ũ as test functions
in the relative entropy inequality (4.2) and making use of a Gronwall type argument. This has been
done in detail in [10, Section 6] in the case of a viscous fluid satisfying the Navier-Stokes-Fourier
system. However, the same arguments can be used to handle the inviscid case provided the solutions
are uniformly bounded on the existence interval.

Remark 4.3 As the proof of Theorem 4.1 is based on the relative entropy inequality (4.2), the
conclusion remains valid if we replace the internal energy equation (1.3) by the entropy inequality
(1.8) as long as we require (1.7).

4.2 Infinitely many dissipative solutions

Apparently, the stipulation of the total energy balance (1.7) eliminates the non-physical solutions
obtained in Theorem 3.1, at least in the case of regular initial data. As we will see, the situation
changes if we consider non-smooth initial data, in particular the initial velocity field u0 belonging
only to L∞(Ω;R3). Our final goal is the following result.
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Theorem 4.2 Let T > 0 be given. Let the initial data ̺0, ϑ0 be given, satisfying

̺0, ϑ0 ∈ C2(Ω), ̺0(x) > ̺ > 0, ϑ0(x) > ϑ > 0 for any x ∈ Ω. (4.3)

Then there exists a velocity field u0,

u0 ∈ L∞(Ω;R3),

such that the problem (1.1 - 1.6) admits infinitely many dissipative (weak) solutions in (0, T )×Ω,
with the initial data [̺0, ϑ0,u0].

Remark 4.4 As we shall see below, the solutions obtained in the proof of Theorem 4.2 enjoy the
same regularity as those in Theorem 3.1, in particular, the equation of continuity (1.1) as well as the
internal energy balance (1.3) are satisfied pointwise (a.a.) in (0, T )× Ω.

Remark 4.5 In general, the initial velocity u0 depends on the length of the existence interval T . See
Section 5 for more discussion concerning possible extension of the solutions to [0,∞).

The remaining part of this section is devoted to the proof of Theorem 4.2 that may be viewed
as an extension of the results of Chiodaroli [6] and De Lellis-Székelyhidi [8] to the case of a heat
conducting fluid.

4.2.1 Suitable initial data

Following the strategy of [8] our goal is to identify suitable initial data u0 for which the associated
(weak) solutions of the momentum equation dissipate the kinetic energy. In contrast with [8], how-
ever, we have to find the initial data for which the kinetic energy decays sufficiently fast in order to
compensate the associated production of heat.

The velocity field v = ̺u we look for will be solenoidal, in particular, we focus on the initial data
satisfying

divx(̺0u0) = 0.

This assumption simplifies considerably the ansatz introduced in Section 3.1, specifically,

̺ = ˜̺ = ̺0(x), v = ̺u, divxv = 0,Ψ ≡ 0;
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whence the problem reduces to solving

∂tv + divx

(

v ⊗ v

˜̺

)

+∇x

(

˜̺ϑ[v]−
2

3
χ
)

= 0, divxv = 0, v(0, ·) = v0, divxv0 = 0, (4.4)

for a suitable spatially homogeneous function χ = χ(t).
Mimicking the steps of Section 3.3 we introduce the quantity

e[v] = χ−
3

2
˜̺ϑ[v]. (4.5)

As the anticipated solutions satisfy
1

2

|v|2

˜̺
= e[v],

the energy of the system reads

E(t) =
∫

Ω

(

|v|2

2˜̺
+

3

2
˜̺ϑ[v]

)

(t, ·) dx = χ(t)|Ω| = χ(t). (4.6)

Consequently, in accordance with the construction procedure used in Section 3.3, it is enough to find
a suitable constant χ and the initial velocity field v0 such that

divxv0 = 0, E0 =
∫

Ω

(

|v0|
2

2˜̺0
+

3

2
˜̺0ϑ0

)

dx = χ,

and the associated space of subsolutions X0 defined in (3.16) (with ∇xΨ = 0) is non-empty. This is
the objective of the remaining part of this section.

4.2.2 Dissipative data for the Euler system

Similarly to (3.30), we introduce the set of subsolutions

X0,e[T1, T2] =

{

v
∣

∣

∣ v ∈ C1((T1, T2)× Ω;R3) ∩ Cweak([T1, T2];L
2(Ω;R3)) (4.7)

v satisfies (3.14) with some U ∈ C1((T1, T2)× Ω;R3×3
sym,0),

3

2
λmax

[

v ⊗ v

˜̺
− U

]

< e for t ∈ (T1, T2), x ∈ Ω

}

,

where e ∈ C([T1, T2]× Ω).
The following result may be seen as an extension of [8, Proposition 5]:
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Lemma 4.1 Suppose that v ≡ v0(x), together with the associated field Uv ≡ 0, belong to the set of
subsolutions X0,e[0, T ].

Then for any τ ∈ (0, T ) and any ε > 0, there exist τ ∈ (0, T ), |τ − τ | < ε and w ∈ X0,e[τ , T ],
such that

1

2

|w(τ , ·)|2

˜̺
= e(τ , ·), (4.8)

w ≡ v, Uw ≡ 0 in a (left) neighborhood of T.

Remark 4.6 Note that, thanks to (4.8),

w(t, ·) → w(τ , ·) (strongly) in L2(Ω;R3) as t → τ + .

Remark 4.7 The result is probably not optimal; one should be able, with greater effort, to show the
same conclusion with τ = τ .

Proof:
We construct the function w as a limit of a sequence {wk}

∞
k=1 ⊂ X0,e[0, T ],

wk → w in Cweak([0, T ];L
2(Ω;R3)),

where wk will be obtained recursively, with the starting point

w0 = v ≡ v0, τ0 = τ, ε0 = ε.

More specifically, we construct the functions wk, together with τk, εk, k = 1, . . . satisfying:

•

wk ∈ X0,e[0, T ], supp[wk −wk−1] ⊂ (τk−1 − εk, τk−1 + εk), where 0 < εk <
εk−1

2
; (4.9)

•

d(wk,wk−1) <
1

2k
, sup

t∈(0,T )

∣

∣

∣

∣

∣

∫

Ω

1

˜̺
(wk −wk−1) ·wm dx

∣

∣

∣

∣

∣

<
1

2k
for all m = 0, . . . , k − 1, (4.10)

recalling that d is the metric induced by the weak topology of the Hilbert space L2(Ω;R3).
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• there exists τk,
τk ∈ (τk−1 − εk, τk−1 + εk)

such that
∫

Ω

1

2

|wk|
2

˜̺
(τk, ·) dx ≥

∫

Ω

1

2

|wk−1|
2

˜̺
(t, ·) dx+

λ

ε2k
α2
k (4.11)

≥
∫

Ω

1

2

|wk−1|
2

˜̺
(τk−1, ·) dx+

λ

2ε2k
α2
k for all t ∈ (τk−1 − εk, τk−1 + εk),

where

αk =
∫ τk−1+εk

τk−1−εk

∫

Ω

(

e−
1

2

|wk−1|
2

˜̺

)

dx dt > 0,

and λ > 0 is constant independent of k.

Supposing we have already constructed w0, . . . ,wk−1 we find wk enjoying the properties (4.9 -
4.11). To this end, we first compute

αk =
∫ τk−1+εk

τk−1−εk

∫

Ω

(

e−
1

2

|wk−1|
2

˜̺

)

dx dt for a certain 0 < εk <
εk−1

2

and observe that

αk

2εk
=

1

2εk

∫ τk−1+εk

τk−1−εk

∫

Ω

(

e−
1

2

|wk−1|
2

˜̺

)

dx dt →
∫

Ω

(

e−
1

2

|wk−1|
2

˜̺

)

(τk−1) dx > 0 for εk → 0

as wk−1 is smooth in (0, T ).
Consequently, by the same token, we can choose εk > 0 so small that

1

2εk

∫ τk−1+εk

τk−1−εk

∫

Ω

1

2

|wk−1|
2

˜̺
dx dt+

Λ(˜̺, ‖e‖L∞(0,T )×Ω))

4ε2k
α2
k (4.12)

≥
∫

Ω

1

2

|wk−1|
2

˜̺
(t, ·) dx+

Λ(˜̺, ‖e‖L∞(0,T )×Ω))

8ε2k
α2
k

≥
∫

Ω

1

2

|wk−1|
2

˜̺
(τk−1, ·) dx+

Λ(˜̺, ‖e‖L∞(0,T )×Ω))

16ε2k
α2
k for all t ∈ (τk−1 − εk, τk−1 + εk),

where Λ(˜̺, ‖e‖L∞(0,T )×Ω)) > 0 is the universal constant from Lemma 3.2.
Applying Lemma 3.2 in the form specified in Remark 3.5 we obtain a function wk ∈ X0,e such

that
supp[wk −wk−1] ⊂ (τk−1 − εk, τk−1 + εk),
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d(wk,wk−1) <
1

2k
, sup

t∈(0,T )

∣

∣

∣

∣

∣

∫

Ω

1

˜̺
(wk −wk−1) ·wm dx

∣

∣

∣

∣

∣

<
1

2k
, m = 0, . . . , k − 1 (4.13)

and
∫ τk−1+εk

τk−1−εk

∫

Ω

1

2

|wk|
2

˜̺
dx dt ≥

∫ τk−1+εk

τk−1−εk

∫

Ω

1

2

|wk−1|
2

˜̺
dx dt +

Λ(˜̺, ‖e‖L∞(0,T )×Ω))

2εk
α2
k, (4.14)

where we have applied Jensen’s inequality to the last integral in (3.26).
Finally, the relations (4.12), (4.14) yield (4.11) with some τk ∈ (τk−1 − εk, τk−1 + εk), λ = Λ/16.
Now, by virtue of (4.10), there is w such that

wk → w in Cweak([0, T ];L
2(Ω;R3)). (4.15)

Moreover, (4.9) implies (i)
τk → τ ∈ (0, T ), |τ − τ | < ε;

(ii) for any δ > 0 there is k = k0(δ) such that

w(t, ·) = wk(t, ·) = wk0(t, ·) for all t ∈ (0, τ − δ) ∪ (τ + δ, T ), k ≥ k0. (4.16)

In particular, (4.16) yields

w ∈ X0,e[τ , T ], and w ≡ v, Uw ≡ 0 in a (left) neighborhood of T.

Next, in view of (4.11),

∫

Ω

1

2

|wk−1|
2

˜̺
(t, ·) dx ր Y uniformly for t ∈ (τk−1 − εk, τk−1 + εk), (4.17)

therefore
αk

εk
=

1

εk

∫ τk−1+εk

τk−1−εk

∫

Ω

(

e−
1

2

|wk−1|
2

˜̺

)

dx dt → 0; (4.18)

whence, finally,
∫

Ω

1

2

|wk|
2

˜̺
(τ , ·) dx ր

∫

Ω
e(τ , ·) dx. (4.19)

Combining (4.19) with (4.10), (4.15) we get

wk(τ , ·) → w(τ , ·) in L2(Ω;R3)

which implies (4.8). Indeed we have

∫

Ω

1

˜̺
|wn −wm|

2(τ , ·) dx
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=
∫

Ω

1

˜̺
|wn|

2(τ , ·) dx−
∫

Ω

1

˜̺
|wm|

2(τ , ·) dx− 2
∫

Ω

1

˜̺
(wn −wm) ·wm(τ , ·) dx for all n > m,

where, by virtue of (4.10),

∫

Ω

1

˜̺
(wn −wm) ·wm(τ , ·) dx =

n−m−1
∑

k=0

∫

Ω

1

˜̺
(wk+1 −wk) ·wm(τ , ·) dx → 0 for m → ∞.

Q.E.D.

4.2.3 Construction of suitable initial data for the Euler-Fourier system

Fixing ̺0, ϑ0 satisfying (4.3) and ̺ = ˜̺≡ ̺0 we can use (3.12) to deduce that there is a constant ϑ
depending only on [̺0, ϑ0] such that

|ϑ[v]| ≤ ϑ, whence
3

2
p(˜̺, ϑ[v]) < P on the whole interval [0, T ], (4.20)

with P independent of v.
Next, we estimate the difference ϑ− ϑ0 satisfying the equation

˜̺∂t(ϑ− ϑ0) + v · ∇x(ϑ− ϑ0)−
2

3
∆(ϑ− ϑ0) = −v · ∇xϑ0 +

2

3
∆ϑ0 +

2

3
ϑv ·

∇x ˜̺

˜̺
.

Consequently, using (4.20) and the comparison principle, we deduce that

|ϑ[v](t, ·)− ϑ0| ≤ c
(

1 + ‖v‖L∞((0,T )×Ω;R3)

)

t for all t ∈ [0, T ]. (4.21)

We take v0 ∈ C1(Ω), divxv0 = 0, and a constant χ0 in such a way that

3

2
λmax

(

v0 ⊗ v0

˜̺

)

< χ0 −
3

2
̺0ϑ0. (4.22)

Moreover, for any χ > 2χ0, K > 0 given, it is easy to construct a function χ ∈ C[0, T ] such that

•

χ(0) = χ(T ) = χ0, χ(t) > χ0 for all t ∈ (0, T ), max
t∈(0,T )

χ(t) = χ;
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• there is τ ∈ (0, T ) and ε > 0 such that

χ(τ)− χ0 >
χ

2
, χ(t) < χ(τ )−K(t− τ) for all t ∈ (τ , T ) whenever |τ − τ | < ε. (4.23)

Consequently, we have
v ≡ v0 ∈ X0,e[0, T ] (with U ≡ 0)

provided

e(t, x) = χ(t)−
3

2
̺0ϑ0.

Applying Lemma 4.1, we find a function w ∈ X0,e[τ , T ], with the corresponding field Uw, such
that

1

2

|w(τ, ·)|2

˜̺
= χ(τ )−

3

2
̺0ϑ0 >

χ

2
+ χ0 −

3

2
̺0ϑ0,

w ≡ v0, Uw = 0 in a (left) neighborhood of T,

and
1

2

|w|2

˜̺
<

3

2
λmax

(

w ⊗w

˜̺
− Uw

)

< χ(t)−
3

2
̺0ϑ0

≤ χ(τ )−
3

2
̺0ϑ0 −K(t− τ), t ∈ (τ , T ].

Denoting w0 = w(τ , ·) and shifting everything to the origin t = 0, we infer that there is a function
w ∈ X0,e(0, T ), with the following properties:

•

w(0, ·) = w0,
1

2

|w0|
2

˜̺
= χ(τ)−

3

2
̺0ϑ0, w(T, ·) = v0, (4.24)

•

e(t, x) =















χ(τ )− 3
2
̺0ϑ0 −Kt, t ∈

[

0, χ(τ )−χ0

K

]

χ0 −
3
2
̺0ϑ0 for t ∈

[

χ(τ)−χ0

K
, T
]

.

(4.25)

Similarly to (3.16), we introduce the set X0, together with the function

e[v] = χ(τ )−
3

2
̺0ϑ[v].
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Our ultimate goal is to show that the function w, introduced in (4.24), belongs to X0 as long as
we conveniently fix the parameters χ, K. To this end, it is enough to show that e, defined through
(4.25), satisfies

e(t, x) < e[w] = χ(τ )−
3

2
̺0ϑ[w] for all t ∈ (0, T ]. (4.26)

For t ∈
(

0, χ(τ)−χ0

K

]

, this amounts to showing

3

2
(̺0ϑ[w]− ̺0ϑ0) < Kt, t ∈

(

0,
χ(τ)− χ0

K

]

,

which follows from (4.21) provided K = K(χ) is taken large enough.

Next, for t ∈
[

χ(τ)−χ0

K
, T
]

, we have to check that

3

2
(̺0ϑ[w]− ̺0ϑ0) <

χ(τ )

2
, t ∈

[

χ(τ )− χ0

K
, T

]

,

which follows from (4.20), (4.23) provided we fix χ = χ(̺0, ϑ0) large enough.
Having found a suitable subsolution we can finish the proof of Theorem 4.2 exactly as in Section

3.3.

5 Concluding remarks

• In this paper, we focused exclusively on the physically relevant 3D− setting. The reader will
have noticed that exactly the same results may be obtained also in the 2D−case. Note, however,
that the method does not apply to the 1D−system as the conclusion of Lemma 3.1 is no longer
available.

• Theorem 4.2 obviously applies to the larger class of dissipative solutions for which the internal
energy balance is replaced by the entropy inequality

∂t

(

̺ log

(

ϑ3/2

̺

))

+ divx

(

̺ log

(

ϑ3/2

̺

)

u

)

− divx

(

∇xϑ

ϑ

)

≥
|∇xϑ|

2

ϑ2
. (5.1)

Moreover, we could even construct dissipative solutions with an “artificial” entropy production
satisfying (5.1) with strict inequality and, at the same time, conserving the total energy. On
the other hand, a criterion based on maximality of the entropy production could be possibly
used to identify a class of physically relevant solutions.
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• The conclusion of Theorem 4.1 can be extended to the time interval [0,∞) by means of con-
tinuation. Indeed we can take the function h in (3.5) such that h(T ) = 0; whence

˜̺(T, ·) = ̺0.

Moreover, as pointed out in Remark 3.1

ϑ(t, ·) ∈ [Lp(Ω),W 2,p(Ω)]α for all t ∈ [0, T ],

therefore we can apply Theorem 4.1 recursively on the time intervals [nT, (n + 1)T ], n=1,. . .

A similar extension of Theorem 4.2 seems possible but technically more complicated.
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[11] E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids. Birkhäuser-
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