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 

Abstract— The liver shows a close coexistence between 

endothelial cells and hepatocytes. Endothelial cells main purpose 

is to protect hepatocytes from blood vessel shear stress, acting as 

a barrier, but experimental evidences suggests that they could 

also play a role in regulating hepatocytes glucose metabolism. A 

well-known singular effect in hepatocyte-endothelial co-cultures 

is the reduction of glucose consumption respect to hepatocytes in 

single culture. Hepatocytes were shown to reduce their glucose 

consumption supporting energy needs of endothelial cells. Monti 

et al. have studied the effects of Endothelin-1 on Glucokinase 

activity in adult rat hepatocytes. They observed a reduction in 

hepatocytes Glucokinase catalytic rate, which is dependent of 

Endothelin-1 concentration. We developed CREPE (CRosstalking 

of Endothelial cells and hePatocytE metabolism), that is a 

mathematical model of the Endothelin-1 mediated crosstalk 

between hepatocytes (HepG2) and endothelial cells (Human 

Umbilical Vein Endothelial Cells) in a traditional static co-culture 

system. CREPE was validated against experimental data, 

showing good agreement with them. CREPE can be a starting 

point to develop predictive tools on complex and highly 

interconnected environments.  

 
Index Terms— Computational Systems Biology, Cell cross-

talk, Mathematical modeling, Endothelin-1, Glucokinase.  

 

I. INTRODUCTION 

ANY attempts to model biological systems, such as 

biochemical pathways or intracellular environment, have 

been proposed during last years. There was the need to 

combine biological experiments to high-throughput 

experiments in order to maximize the results and minimizing 

the costs.  Starting from online metabolic pathways databases 

such as KEGG [1], we previously developed HEMETβ 

(HEpatocyte METabolism mathematical model [2], [3]) and 

ENMET (ENdothelial cell METabolism mathematical model 

[4]), two virtual cell models that reproduced respectively 

hepatocyte and endothelial cell metabolism.  HEMETβ [3] was 

developed with the idea to describe the cell metabolic 

architecture by considering its physical, chemical and cell-cell 
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interactions, using as basic bricks the single enzymatic 

reactions of metabolic cell pathways. HEMETβ was 

implemented in Simulink® (The Mathworks Inc.) with 

modular layout, allowing the users to explore, understand or 

add/modify blocks easily. In this way we related the system 

theory language to the metabolic cell pathways, in order to 

associate the systemic view of the metabolic pathways with the 

quantitative results of simulation tool. The basic block was 

derived from the Michaelis-Menten kinetic for enzymatic 

reactions. It could be duplicated and connected to form 

complex reaction networks, which could represent the 

principal metabolic pathways such as glycolysis, Krebs cycle, 

etc. This reaction network was developed with the aim of 

simulating hepatocyte metabolism. ENMET was another cell 

model based on previous modular approach, which analyzed 

endothelial cell metabolism instead [4]. It integrated 

biochemical pathways and biochemical response to a physical 

stimulus: the software, in fact, processed secretion of 

endothelial products (Nitric Oxide and Endothelin-1) in 

response to shear stress action on endothelial cells [5]. 

However the models were able to describe only what happens 

in cells single cultures, that do not represents properly the liver 

environment, that at least see the cooperation of hepatocytes 

an endothelial cells. Hepatocyte co-cultures with non-

parenchymal cells were shown to stabilize hepatocyte 

phenotype [6] and enhance its secretions. Co-cultures could 

also help us to understand how hepatocytes alter their 

metabolism in response to specific stimuli coming from their 

non-parenchymal neighbors, and what these cells need for their 

proliferation [7]. A better understanding of complex 

communication network underlying hepatocytes cross talking 

with non- parenchymal cells could for example suggest the 

best topological features to realize a scaffold for liver tissue 

engineering. Thus we developed CREPE (CRosstalking of 

Endothelial cells and hePatocytE metabolism), which merged 

the previous models in order to model metabolism of 

hepatocytes and endothelial cells co-culture. CREPE 

implemented the effect of Endothelin-1 on hepatocyte 

Glucokinase activity, the cell proliferation model of two cell 

types in co-culture and the tuning of albumin synthesis due to 

co-culture condition. 

II. HEPATOCYTE CO-CULTURES 

Many studies have been performed about the behavior of 

hepatocytes co-cultured with different kind of non-

parenchymal cell: epithelial cells, stellate cells (Ito, fat-

storing), sinusoidal endothelial cells, Kupffer cells, etc. [5-7] 
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However our work is focused on hepatocytes co-culture with 

endothelial cells. Supported by endothelial cells hepatocytes 

not only enhance their primary metabolism, drug clearance and 

gene expression, but also maintain their shape and show an 

enhanced proliferation [5-8]. A singular effect in hepatocyte-

endothelial co-culture is the reduction of glucose consumption 

rate by hepatocytes, compared to hepatocytes in single culture. 

Hepatocytes are able extract energy for their cell functions 

from other metabolic pathways in addition to glucose 

metabolism, such as amino acids metabolism. Endothelial cells 

instead cannot get significant energy from this pathway. It 

suggests that a particular communication is established, so 

hepatocytes reduce their glucose consumption rate, supporting 

energy needs of endothelial cells. Monti et al. [8] have studied 

how Endothelin-1 acts on Glucokinase activity in adult rat 

hepatocytes. They observed a reduction in intracellular G6P 

(Glucose-6-Phosphate), glycogen content and a glucose release 

in the medium. Thinking Endothelin-1 effect on glucokinase 

activity could be important for a future development of a 

cross-talking model, we implement this effect to HEMETβ 

starting from Monti et al. experiment. To validate this model 

we started a series of cell cultures in vitro using methods 

described in the following paragraph and in other studies about 

cross-talking [5].  

 

III. MATERIALS AND METHODS 

A. Cell Cultures 

 The human cell line HepG2 was used as an alternative to 

primary human hepatocytes. The cell culture medium was 

MEM (glucose 1 g/L) supplemented with 5% FBS, 100 U/mL 

penicillin, 100 μg/mL streptomycin, 1% glutamine, 2% MEM 

nonessential amino acids, and 2% vitamins. HepG2 were 

cultured in 75 cm
2
 flasks with complete MEM. For their use in 

experiments, they were detached with 0.05% trypsin with 

0.02% EDTA, and seeded on glass slides of 12 mm diameter 

placed in 24-multiwell plate. HepG2 were seeded at a density 

of 5 × 10
4
 cells per well for monoculture tests, and at a density 

of 8 × 10
4
 cells per well for co-culture experiments. HUVEC 

were extracted using a trypsin-based treatment. The umbilical 

vein was cannulated and washed with PBS. Then, it was closed 

at one end, filled with 0.05% trypsin with 0.02% EDTA in 

PBS, and left at 37°C for 15 min. The solution was recovered 

and centrifuged (900 rpm, 5 min), and the cell-containing 

pellet was suspended in a fresh medium. The cells were 

counted using a Burker chamber, assessed for vitality through 

a trypan blue exclusion assay (routinely greater than 90%), and 

seeded for amplification in a 25 cm
2
 flask coated with 0.5% 

gelatin. To maintain and grow the cells, M199 was 

supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/mL 

streptomycin, 1% glutamine, and 1% bovine brain extract; this 

is referred to as complete M199. When at confluence, HUVEC 

were detached with trypsin and seeded on glass slides 

pretreated with 0.5% gelatin at a density of 5 × 10
4
 per well for 

static monoculture tests, at a density of 8 × 10
3
 per well for co-

culture experiments. For the co-culture experiments, HUVEC 

and HepG2 were suspended together and seeded onto the 

slides. The HUVEC: HepG2 seeding ratio was. 1:10, which 

mimics the ratio between endothelial cells and hepatocytes in 

human liver, where the two types of cells have homotypic and 

heterotypic connections. Experiments were performed for 5 

days (120 h). 

B. MTT assay 

Cell viability was assessed by the MTT assay. It uses a yellow 

compound that is oxidized by mitochondrial enzymes to a 

purple compound soluble in dimethyl sulfoxide. The cell 

suspension was centrifuged at 900 rpm for 5 min, and the 

pellet was suspended in 200 μL of fresh medium and placed in 

96-multiwell plate. Twenty microliters of MTT solution 

5 mg/mL was added to the cell suspension. After 12 h medium 

was removed, the pellet suspended in 200 μL dimethyl 

sulfoxide, and the absorbance measured at 540 nm.  

 

 

C. Glucose and Albumin assay 

Metabolite concentrations were determined in the medium 

using commercial kits in accordance with manufacturer 

instructions and then converted to absolute quantities by 

multiplying by the total volume. In particular, the glucose 

concentration was assessed using the Glucose Test Kit 

(Megazyme International Ireland, Bray, Ireland), a 

TABLE I 

ENZYMES KINETIC RATES 

Enzyme Kinetic rate 

Glucokinase 
GK =

VmaxGK[ATP][Glu]

KmGK +[ATP][Glu]
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G6P Dehydrogenase 

]6[)1
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(
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6

6

6
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K
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Glu → Glucose; G6P → Glucose 6 phosphate; F6P → Fructose 6 

phosphate; G1P → Glucose 1 phosphate; Vmax and affinity constants 

numerical values are detailed in [4]. 

 

 
Fig. 1: CREPE user-friendly interface and modeling approach. It is possible 

to see in the main interface two principal blocks, the upper one that 

simulates the hepatocyte metabolism and the other one that simulates the 

endothelial cell metabolism. Each block is composed by a set of sub-blocks 

that represent the principal metabolic pathways of the cell, and each pathway 

is a net composed by the two base blocks (green and orange blocks). The 

base blocks implement the Michaelis-Menten equations for irreversible and 

reversible enzymatic reactions.  
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colorimetric assay based on glucose-oxidase and peroxidase 

reactions. Human albumin concentration was evaluated by an 

ELISA immunochemical assay (Bethyl Laboratories, 

Montgomery, TX). 

 

IV. MODEL DEVELOPMENT 

A. Hemetβ and ENMET models 

The objective of HEMETβ model was to implement the main 

pathways of hepatocyte metabolic network, following online 

database such as KEGG [1] and consolidated biochemistry [9]. 

We used differential equations, system theory approach [10], 

[11] and energetic consideration, such as availability of ATP 

and other high-energy molecules used in biosynthesis 

processes [12]. As explained above the basic blocks derives 

from Michaelis-Menten [13] kinetic:  

][

][][][ max

SK

SV

dt

Sd

dt

Pd

m 
             (1) 

where P (mM) is the product of an enzymatic reaction, S (mM) 

is the substrate, and KM and Vmax are the Michaelis-Menten 

affinity constant and the maximum velocity of enzyme 

respectively. The other basic block of HEMETβ derives from 

the Michaelis Menten equation for equilibrium reactions: 
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where KMd (mM) and KMi (mM) are respectively direct and 

inverse reaction affinity constants. In metabolic pathways 

many reactions are multi-substrate reaction, so we need more 

general reaction blocks. We supposed that the reactive event 

considers all reactants in the same instant, so a general 

equation in which we have m products and n substrates can be 

written as: 
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where affinity constants are obtained as the mean of these for 

all compounds. Following system theory approach is possible 

to convert entire metabolic pathways as series of ODE 

(Ordinary Differential Equations) using metabolites 

concentration as state variables and equations (3-4) as state 

equations. Considering these equations as elementary 

Simulink
®
 blocks and following block scheme algebra rules, 

linking these blocks in series and/or parallel can create an 

entire pathway (Fig. 1). Each pathway constitutes a block that 

can be linked with other blocks if they have common 

metabolites. The block structure is user-friendly and highly 

expandable, in fact it is possible to easily define new cell types 

by adding or removing some blocks as we did in a previous 

work in which we created ENMET (ENdothelial cell 

METabolism mathematical model [4]). 

B. Modeling Endothelin-1 effect 

Glucokinase is the enzyme responsible of the glucose to 

Glucose 6 phosphate (G6P) conversion after its transport into 

intracellular medium. G6P cellular content results equal to 

algebraic sum of G6P produced and G6P consumed by 

metabolic pathways such as glycolysis, pentose phosphate 

pathway, and glycogen synthesis; in particular the production / 

consumption rate that defined G6P state variable is: 

 PDGPGMGPIGK
dt

PGd
6

]6[
         (5) 

The significance of each term is explained in Table I [3]. 

Glucokinase (GK) is the enzyme responsible of immediate 

glucose conversion in Glucose 6 phosphate after its transport 

into intracellular medium. Because it is the first enzyme in 

glucose metabolic pathway, it can influence with its kinetic the 

velocity of the entire chain. If something causes a slowing 

down of GK activity, the entire cell glucose metabolism is 

slowed down. Monti et al. [8] found that endothelin-1 (Et-1) 

can reduce GK maximum velocity in hepatocytes. Endothelin-

1 is a protein, with a vasoconstrictor effect, secreted by 

endothelial cells, so it seems reasonable to consider this effect 

in our model of hepatocytes and endothelial cells in co-culture. 

We tried to use two different models to reply Et-1 effect on 

GK: in the first one we supposed that Et-1 acted as a non-

competitive inhibitor [13] of GK, by the following equation: 

1

0maxmax

]1[
1

IET

GK
K

Et
VV                  (6) 

TABLE II 

ESTEEMED AND MEASURED PARAMETERS 

Parameter Meaning Value 

aH Hepatocyte area 4.50•10-10 m2 

aE Endothelial cell area 4.03•10-10 m2 

AW Well area (measured) 3•10-4 m2 

CH Hepatocytes basal rate 

of proliferation 

0.0380 ± 0.00412 h-1 

CE Endothelial cells basal 

rate of proliferation 

0.0408 ± 0.00347 h-1 

SC Substrate function 

critical value 

(6.68 ± 1,31) •10-5 mM 

KIEt1 Non-competitive 

inhibition constant 

2.231•10-3 mM 

K Max GK genetic 

inhibition factor 

0.6208 ± 0,182 

m GK genetic inhibition 

Hill coefficient 

2.318 ± 0,463 

θ GK genetic half 

inhibition concentration 

(1.057 ± 0,18) •10-9 mM 

CGH Hepatocyte glucose 

consumption rate 

(0.478± 0.0227) •10-7 h-1 

CGE Endothelial cell glucose 

consumption rate 

(0.256±0.0136) •10-7 h-1 

RGH Hepatocyte glucose 

release rate 

(0.258 ± 0,0229) •10-8 h-1 

αalb Albumin maintenance 

term 

0.0187± 0.00251 h-1 

β0 Basal Albumin secretion 

rate 

5.03 ± 1.87 mM-1h-1 

Kalb Albumin max 

enhancement factor 

130±0.987 

θalb Albumin half 

enhancement ratio 

0.0955±0.00147 

v Albumin Hill coefficient 2.47 ± 0.263 

All parameters (except well area that was measured) result from 

parameter estimation using nonlinear least squares method on experimental 

data. Values are expressed as mean ± standard deviation. 
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where Vmax0 (mM/s) is basal maximum velocity of 

Glucokinase, [Et-1] (mM) is Et-1 concentration in the medium 

and KIEt1 is the inhibition constant of the enzyme (esteemed, 

see Table II). This vision of Et-1 effect seems to be forced; in 

fact a better physiological hypothesis is that Endothelin-1 

causes a signal transduction cascade in hepatocytes in order to 

act as a genetic inhibitor. So equation (6) was replaced with 

following one, which is more suited to describe genetic 

inhibition [14]: 













mm

m

GK
Et

EtK
VV

]1[

]1[
10maxmax

 (7) 

where θ (mM), K and m (adimensional) are parameters  

esteemed with a curve fitting tool. Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) [21] 

give us a tool for choose the best model between (6) and (7). 

Given a likelihood function L to maximize in the fitting, two 

criteria consider the number of parameters k and the 

experimental data n.  

)ln(22 LkAIC    (8)
   )ln(2)ln( LnkBIC    (9) 

In general terms given a set of candidate models for a data set, 

the preferred model is the one with the minimum AIC or BIC 

value. Thus these criterions not only reward goodness of fit, 

but also include a penalty that is an increasing function of the 

number of estimated parameters. This penalty discourages 

overfitting, so we used these criterions to justify the presence 

of a greater number of parameters in the new model. A 

difference between AIC and BIC is that BIC penalizes more 

free parameters than AIC, so we decided to compare (6) and 

(7) with both indices, with a likelihood function based on sum 

of squared residuals (SSR) that drove to the following 

formulas:  









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n
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nkAIC ln2

  (10)
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
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
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n
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



n

i

ii xySSR
1

2)(
  (12) 

where yi is the fitting curve and xi is the experimental data 

point. On the basis of these indices (Table III) genetic 

inhibition model (7) gave better results in comparison with 

non-competitive inhibition model (6), because the AIC/BIC 

scores are less in the former model than in the latter one. Due 

to this result even if the number of parameters is increased the 

overfitting issue is neglected in this case. 

 

 

C. Cell proliferation model 

In HEMET, HEMETβ and ENMET cell proliferation was 

modeled with a logistic function: 

    2)()(
)(

tNbtNC
dt

tdN
           (13) 

where C and b are respectively cell grow rate and death rate. 

The logistic function is suitable for cell proliferation model as 

it is for all kind of population growth model. It reflects the 

initial phase of cell growing, given by the exponential 

increment (linear term). In the middle and in the late phase the 

logistic function is appropriate for mimicking the competition 

between cells (quadratic term) that arise from the lack of 

resources, and that settles the system in steady-state. In this 

model we consider a less compact equation derived from 

equation (13), by which we correlated the death term to 

contact inhibition and substrate lack. Hepatocytes as 

endothelial cells are affected by contact inhibition, but in our 

culture only endothelial cells are affected from substrate lack. 

Hepatocytes do not suffer from substrate lack, because they 

can get energy from other substrates, as we told before. We 

formulated the following equations: 
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each term is summarized in Table II. The terms aH and aE 

represent hepatocyte and endothelial cell area respectively, 

while AW is the whole area available for cell adhesion (~3 

cm
2
). These area were calculated considering hepatocyte as a 

24 μm diameter circular cell, and endothelial cell as 12.5 × 32 

μm
2
 rectangle. Last term in equation (15) indicates the death 

term due to lack of substrates. S is calculated as the sum of 

substrates [3]: 

    
i itAAtGluS )()(              (16) 

where [Glu(t)] (mM) is the glucose concentration in the 

medium and [AA(t)]i (mM) is the i-th aminoacid concentration 

in the medium. In the software the user can set the initial 

number of each cell type with a dialog box; the integration of 

equation (14) and (15) start from 18
th

 hour, because cells do 

not proliferate soon after seeding. The meaning of this 

TABLE III 

COMPARISON BETWEEN TESTED MODELS 

 

Non 

competitive 

inhibition 

Genetic inhibition 

n 4 4 

k 1 3 

SSR 0.003317 0.0005808 

AIC -26.3800 - 29.3496 

BIC -26.9937 - 31.1907 

AIC= n•ln(SSR/n)+2k, BIC= n•ln(SSR/n)+ k•ln(n) where n is the number 

of experimental points, k is the number of esteemed parameters and SSR is 

the sum of square residuals. 

 

 
Fig. 2: Effect of Et-1 on Glucokinase Vmax. Circles indicate experimental 

values obtained from (Monti et al. 2000), error bars represent the standard 

deviations of measured data. Solid and dashed lines represent respectively 

equation (6) and equation (7).  
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equation set is that cell culture follows a logistic curve that is 

inhibited by a contact inhibition (geometric terms) and a 

substrate lack inhibition (substrate function term, present only 

in the equation of endothelial cell growth).  

 

 

D. Glucose uptake 

The slowing down of GK activity could cause an accumulation 

of glucose in intracellular environment, if it is not balanced 

with glucose uptake, so we decided to insert a release term in 

the glucose uptake equation: 

][][][
][

IHHGHEGEHGH GluNRGluNCGluNC
dt

Glud
  (16) 

where CH, CE and RH are esteemed parameters (subscripts H 

and E are relative to hepatocytes and endothelial cells 

respectively), NH and NE are the number of cells in the well 

and [Glu] and [GluIH] are the glucose concentration in the 

medium and in the hepatocyte intracellular environment. 

E. Albumin biosynthesis 

Albumin is one of principal markers of hepatocyte metabolic 

activity. Albumin is a plasma protein that acts as a carrier of 

fatty acid because their hydrophobic properties do not allow 

their transport in plasma without its action. It is reasonable to 

assume that hepatocytes secrete albumin in response to fatty 

acids presence. In fact in HEMETβ [3] albumin biosynthesis 

follows the dynamic described by equation: 

][]][[
][

AlbATPPal
dt

Albd
albalb            (17) 

where [Alb] is albumin concentration (mM), [Pal] is palmitate 

concentration (mM) and [ATP] is ATP concentration (mM). 

βalb and αalb are kinetic constants derived in [3]. Albumin rate 

of production is proportional to palmitate concentration (if 

ATP is available), in order to represent the ability of 

hepatocyte to secrete albumin in response to the presence of 

fatty acids. Note that the term -αalb[Alb] does not denote a term 

of consumption but allows varying the albumin production rate 

only when the palmitate concentration varies. The evidence 

that in co-culture the enhancement of hepatospecific genes is 

related to the heterotypic contact between the two cell types 

[6], led us to investigate on the possibility of modelling the 

heterotypic contact. Furthermore Brieva et al. [22] found that 

in hepatocytes co-culture with fibroblasts, the enhancement of 

albumin synthesis is reduced if fibroblasts do not express e-

cadherin on their membrane. So we supposed that this 

phenomenon is general for the contact with all type of non-

parenchymal cell, in particular for endothelial cells. We 

consider that the activation of hepatospecific genes follows a 

typical genetic activation curve [14] with the membrane 

proteins concentration. Endothelial cells membrane proteins in 

contact with the single hepatocyte are assumed to be 

proportional to the number of endothelial cells in contact with 

one hepatocyte. Assuming that the cells in co-culture are 

uniformly distributed, the number of endothelial cells in 

contact with the single hepatocyte is equal to the ratio r of 

endothelial cells number and hepatocytes number in the co-

culture. So we replaced in (17) the constant βalb with the 

following equation: 

v

alb

v
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alb
alb
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rK





 0

 (18)     
)(

)(

tN

tN
r

H

E
  (19) 

where NE and NH are the endothelial cells number and 

hepatocytes number in the well, described by (14) and (15). 

The parameters β0 , Kalb (mM
-1

s
-1

), v and θalb are esteemed 

(Table II). The differential equations of the model were 

implemented in the Simulink® environment and solved using 

the Rosenbrock algorithm with an integration step fixed at 

0.01. Unknown parameters were estimated using the Simulink 

Parameter Estimation Toolbox, by a non-linear least squares 

method using Levenberg-Marquardt algorithm, whose cost 

function was the sum of square error (SSR). As lower/upper 

bounds, the maximum velocity of known enzymatic reaction, 

and stoichiometric ratios were used [15-17]. The optimization 

problem was high dimensional, and is recognized that the 

parameter sensitivity is in general “sloppy” [18,19] when 

modeling biological systems. In our case for assessing the 

reliability of estimated parameters we ran several parameter 

estimation with randomized parameter initial condition, in 

order to check the convergence of parameter values. Clever 

optimization schemes [20] could be implemented in the future 

for improved parameter estimation reliability. 

 
Fig. 4: Measured and simulated glucose trend in culture medium. Solid line, 

dashed and dotted line represent the glucose trends simulated by CREPE in 

the case of co-culture, single culture of hepatocytes and single culture of 

endothelial cells respectively, while squares, circles and triangles represent 

their experimental data shown with their standard deviation. 

 
Fig. 3: Measured and simulated cell count in function of time. Solid line, 

dashed and dotted line represent respectively the cell number simulated by 

CREPE in the case of co-culture, single culture of hepatocytes and single 

culture of endothelial cells respectively, while squares, circles and triangles 

represent their experimental data shown with their standard deviation. 
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V. RESULTS AND DISCUSSION 

A. Endothelin-1 effect 

We simulated Monti et al. [8] experiment starting the 

simulation with 10
6
 cells seeded, in a typical medium 

containing 12 mMol/lit glucose and 1.2 pMol/lit insulin.  The 

first test was conducted without Endothelin-1, while the 

second with 2 nMol/lit Endothelin-1. We calculated the total 

G6P in the culture (G6P/cell × cell number) obtaining ΔG6P 

=-12.32 μMol/lit, a value similar to Monti et al. study. This 

result is important not only for the validation of our hypothesis 

regarding this effect, but also for a further validation of the 

previous model HEMETβ approach. It is possible to 

appreciate the high expandability of our approach: we changed 

a block and the system reacts well for the simulation two 

experiment (our and Monti’s one).  

B. Cell proliferation model and MTT test 

Deterministic simulations of ODEs system were performed 

with 1g/lit glucose in cell culture medium, amino acid content 

as the medium culture one. The initial number of cells 

considered was described above, and is summarized in Table 

IV. We used part of the experimental dataset to estimate the 

parameters of the equation set described in this paper, and part 

of the dataset to validate our model (each the co-culture model 

each the single culture model with the new features). As shown 

in figures 3-6 we validated the model for the simulation of 

hepatocytes cultures, endothelial cell cultures and their co-

culture. We can see in Figure 3 that both equation (14) and 

(15) represent well experimental cell proliferation either in 

case of simple culture than the co culture case. Endothelial 

cells (dotted line) in accord with experimental data suffer the 

lack of nutrients in the medium starting from the fourth day. 

Co-culture trend (solid line) is in part different from the 

experimental trend in the third and fourth day, maybe because 

a particular communication regulates the proliferation in the 

co-culture in order to maintain a certain ratio between the two 

cell populations, so hepatocytes seems to wait the endothelial 

cells in the third day and then they continue to proliferate until 

endothelial cells are no longer able to proliferate due to the 

lack of nutrients (fifth day). However these hypotheses need 

more investigation, as the role of cross-talking in the 

proliferation of the two cell population. MTT test experimental 

data are associated with cell energy state (Figure 6), obtained 

by multiplying the cell “energy function” for cell number [2], 

[3], [23]. So CREPE reflected well the interaction between 

these two different cell types. It is an important improvement 

from previous single cell models (HEMET, HEMETβ, 

ENMET), which did not take in account in any manner the 

complexity of a real tissue. CREPE, instead, take in account a 

more physiological and realistic situation for cells. It will lead 

to have a quantitative prediction model that replies the real 

environment where hepatocytes and endothelial cells live. 

C. Glucose uptake 

Glucose trend in the medium follows exactly the experimental 

data (Fig. 4) except in the case of co-culture. It should be 

noted that it is a reflection of the error in the last three days of 

the proliferation model.  In fact it is evident that a greater 

glucose consumption results from a greater number of cells, 

and this one results from an error in the proliferation model. 

Great deviations of experimental data in the first day are 

probably due to a different starting condition of the cultures. 

Thus glucose uptake model results mimicking well 

experimental behaviour. Endothelin-1 is able to slow down 

hepatocytes glucose metabolism, but it is not sufficient to slow 

down significantly the global glucose uptake, as we can see in 

Fig. 4. Maybe this is due to the state of hepatocytes during the 

experiment or to other factors that we have not considered yet. 

 

 

TABLE IV 

SIMULATION INITIAL STATE DATA 

Parameter Hepatocyte 

culture 

Endothelial 

culture 

Co-culture 

Hepatocytes 

seeded 

5•104 cells 0 8•104 cells 

Endothelial 

cells seeded 

0 5•104 cells 8•103 cells 

 

 
Fig. 6: Measured and simulated MTT test in function of time. Solid, dashed 

and dotted line represent cell energy function simulated by CREPE in the 

case of co-culture, single culture of hepatocytes and single culture of 

endothelial cells respectively. Squares, circles and triangles represent relative 

experimental data with their standard deviation. Solid curves, obtained by 

multiplying single cell energy function for the number of cells in culture 

medium, shows the same trend of experimental data derived from MTT tests. 

 
Fig. 5: Measured and simulated albumin concentration in culture medium. 

Continue and dashed represent the albumin trends simulated by CREPE in 

the case of co-culture and single culture of hepatocytes respectively, while 

squares and circles represent their experimental data shown with their 

standard deviation. 
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D. Albumin synthesis model 

As we can see in Fig. 6 the albumin synthesis model fits the 

dataset. The improvement of the model for adapting the 

previous model to the case of co-culture was necessary, 

because in this case the albumin secretion starts faster than in 

the single culture. In the last days of culture albumin secretion 

reaches a plateau because of the lack of nutrients. 

VI. CONCLUSION 

As evident from the equation set and from the results CREPE 

is a high expandable model able to simulate hepatocyte 

metabolism alone, endothelial cells metabolism alone, and 

their metabolism when they are in co-culture. It represents the 

first model that tries to consider the alteration of cellular 

metabolism in the co-cultures and it could help us to 

understand the complex communications that hepatocytes 

established with non-parenchymal cells. Hepatocytes cross-

talk with non-parenchymal cells is not easy to understand 

because it is due to a great quantity of stimuli. In CREPE we 

considered two types of stimuli: Endothelin-1 mediated cross-

talk that led to a slowing-down of hepatocytes glucose 

metabolism, and heterotypic contact that led to a correct 

hepatospecific genes expression. We modeled Endothelin-1 

action as a genetic inhibition and our results are compatible 

with the experimental data. The choice of modeling 

heterotypic contact is due to the evidence that it is necessary 

for correct hepatocytes functionality. Furthermore our data 

show that albumin synthesis is faster in the case of co-culture 

(because of heterotypic contact). We validated CREPE 

considering its ability to model the complete co-culture data 

set (cell count, glucose trends and albumin trends) and the 

complete single-culture trends. However there are many other 

factors involved in cross-talking that we have not considered 

yet, like the role of growth factors or the role of topology in 

heterotypic contact. Future investigations about this topic, and 

so future improvement of CREPE, could regard the role of 

cross–talk in cell proliferation and the study of co-culture in 

presence of insulin.  
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TABLE V 

SIMULATION INITIAL STATE DATA 

Parameter Value Parameter Value 

Glucose 1 g/lit Istidine 0.0420 g/lit 

  Leucine 0.0520 g/lit 

Alanine 0.0250 g/lit Lysine 0.0725 g/lit 

Arginine 0.1260 g/lit Methionine 0.0150 g/lit 

Asparagine 0.0800 g/lit Proline 0.0400 g/lit 

Aspartate 0.1313 g/lit Serine 0.0250 g/lit 

Cysteine 0.0750 g/lit Tyrosine 0.0519 g/lit 

Phenylalanine 0.0320 g/lit Tryptophan 0.0100 g/lit 

Glycine 0.0500 g/lit Valine 0.0460 g/lit 

Glutamate 0.0750 g/lit   

Glutamine 0.0100 g/lit Simulation time 120 hours 

Isoleucine 0.0520 g/lit   

 


