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Analysis of the contact between cubic profiles
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Università di Pisa - via Diotisalvi n.2 Pisa 56100 - Italy

Abstract

The contact between cubic profiles with continuous relative curvatures has
been analyzed and solutions in closed form were obtained for both sym-
metric and non symmetric conditions. Analytical solutions have allowed a
complete parametric study to be performed, showing the effects of the gradi-
ent of relative curvature. The accuracy of approximate ‘equivalent’ Hertzian
solutions has been verified.

Keywords: Cubic profile; Contact stresses; Non-Hertzian contacts.

Notation
Ei modulus of elasticity for body i

νi Poisson’s ratio for body i

E∗ coupled modulus of elasticity in Johnson [1], E∗ = 2/A in Hills [2]
p(x) pressure function along the profile
P total contact load per unit thickness
h(x) gap function
k(x) relative curvature function
c relative curvature at first contact point O

g gradient of relative curvature (constant with cubic profile)
a half length of the contact region
aHz half length of the contact region for the Hertzian reference model
a1 left extent of the contact region
a2 right extent of the contact region
d abscissa of the mid point of the contact region
dp abscissa of the point where the resultant force is applied
γ dimensionless gradient of relative curvature
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1 Introduction

The Hertz’s solution for the two-dimensional contact between two elastic
bodies is based on the assumptions that the relative curvature of the profiles
is unique in the contact region and the extension of contact region is small
as compared to the radius of relative curvature. Under these hypotheses
the gap function, representing the relative distance between the undeformed
bodies in geometrical contact, can be represented by a symmetric quadratic
function.
However, in several practical cases the condition of constant relative cur-
vature in the whole contact region is questionable. For instance, in a
heavy duty gear transmission, the contact region can become as large as
the (20−30)% the extension of the tooth profile. In these conditions, a non-
negligible variation of relative curvature can be expected within the contact
region.
As a first approximation, the relative curvature can be assumed to vary lin-
early with the position along the contact region. This can be modeled by
assuming a third order polynomial (cubic) expression for the gap function.
In the present paper, analytical solutions for the plane contact between two
elastic bodies with several cubic gap functions have been obtained and then
discussed. The contact between two smooth profiles, continuous up to the
second derivative (C2 continuous), was considered.
The obtained results are interesting also for assessing numerical solutions of
contact problems which can be found in the technical literature. Indeed, the
use of cubic splines for approximating complex profiles is widely diffused,
particularly when Finite Element analysis is employed. In fact, the cubic
spline is one of the simplest smooth curve with either slope or curvature
uniquely defined at any point. Finite Element solutions between profiles
approximated by cubic splines can be found in Refs. [3, 4], and application
to contact between meshing gears in Refs. [5, 6].
In the following sections, after the formulation of the contact problem in
plane strain, symmetric and a not-symmetric cubic contact problems are
analyzed and relevant solutions are obtained and discussed.
Reference Hertzian contacts are introduced for both cases, in order to discuss
the effects of the relative curvature variation on the solution.

2 Definition of the contact problem

According to the Hertz’s theory [1, 2], two linear elastic bodies are considered
in contact in a small surface where friction is neglected. A two dimensional
scheme in plane strain conditions is assumed.
In this paper only incomplete contact is considered, while the theoretical
approach to partially and complete contact can be found in Ref. [7].
The distribution of the contact pressure (hereafter assumed a positive quan-

2



tity) is completely determined by the relative distance between the unde-
formed profiles when they reach the first geometrical contact. As shown in
Fig. 1 (a), the position of the first point of contact O is assumed as the
origin of a local Cartesian reference frame having the x axis on the common
tangent and the y axis on the common normal. The gap function h(x) mea-
sures the relative distance of the two undeformed profiles in the y direction.
The relative curvature of the undeformed profiles k(x) is defined as the
curvature of the gap function and plays a fundamental role in the contact
problem. The relative curvature can be obtained by the following expression:

k(x) ≈ d2

dx2
h(x) (1)

which is an acceptable approximation if the slope of the gap function h′(x) =
d
dxh(x) is much less than the unit within the contact region.
Moreover, the following results are accurate enough if the extension of the
contact region, 2a in Fig. 1 (b), is small as compared to the radius of relative
curvature 1/k(x) with x in the contact region.
External constraints on the two bodies are assumed to produce a relative
movement which can be approximated, after the first contact in O, by a far
field translation in the y direction, as schematically shown in Fig. 1 (a).

(a)

~P

Body 1

Body 2

x

y

h(x)
O

(b)

~P

a1
a2

x

y

d

dp

aa

O

p(x)

Figure 1: Scheme of two plane bodies in contact and related symbols. (a)
Undeformed profiles and (b) deformed profiles.

Under these assumptions, the contact pressure is related to the gap function
by the following integral equation [1]:

2
πE∗

∫ a2

−a1

p(s)
x− s

ds = h′(x) (2)

where the range [−a1, a2] indicates the region in which the pressure p(x) is
applied, Ei and νi are the elastic properties for the body i and, according
to Johnson’s notation [1], E∗ is the coupled plane strain elastic modulus:

1
E∗ =

1− ν2
1

E1
+

1− ν2
2

E2
(3)
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Fig. 1 (b) shows the main geometrical quantities for a general non-symmetric
contact.
The solution for the integral equation 2 can be found in Refs. [8, 9]:

p(x) =
1

π
√

(a1 + x)(a2 − x)

(
E∗

2

∫ a2

−a1

√
(a1 + s)(a2 − s)

x− s
h′(s)ds + P

)
(4)

being P the total contact load per unit thickness

P =
∫ a2

−a1

p(s)ds (5)

As shown in Refs. [1, 2], assuming for the gap function a bilinear expression
(h(x) ∝ |x|), Eq. 4 gives the pressure of the wedge contact with the correct
singular stress field.
For a symmetric quadratic gap function h(x) = c

2x2, equation 4 leads to the
classical plane strain Hertz’s solution. In this case, the relative curvature
of the profiles is constant in the contact region k(x) = c and c becomes the
only geometrical quantity governing the solution.
In the contact between two smooth profiles with the gap function having a
C2 continuity but not a unique relative curvature, a Hertz’s approximation
is commonly performed by assuming for the relative curvature the value in
O (k(0)). However, as observed, several situations exist in which a non-
negligible variation of relative curvature k (x) is found in the contact region
x ∈ [a1, a2] and this approximation needs to be verified.
An abrupt change of relative curvature within the contact region was an-
alyzed in Ref. [7] assuming for the gap function a C1 piecewise parabolic
expression. However, also a continuous variation of relative curvature can
affect the accuracy of the approximate Hertzian solution too.
The following gap functions with linearly variable relative curvature are
considered:

• cubic gap function symmetric about the point O,

• not symmetric cubic gap function.

The methods used to get the solutions and the results of the parametric
analysis are reported in the following sections.

3 Symmetric cubic gap function

3.1 Analytical solution

For a C2 symmetric cubic gap function the following expression was as-
sumed:

h(x) =
g

6
|x|3 (6)
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where the positive quantity g is the unique geometrical parameter.
Using Eq. 1, the relative curvature can be obtained as follows:

k(x) = g |x| (7)

indicating that g is the gradient of relative curvature in the x direction. In
this symmetric condition a = a1 = a2, the relative curvature is zero at the
center O (k(0) = 0) and it attains the maximum values at the extremes
kmax = k(a) = ga.
Eq. 4 can be rewritten as follows:

p(x) =
1

π
√

1− (x
a )2

(
E∗

2
a2

∫ 1

−1

√
1− τ2

x
a − τ

g

2
τ |τ |dτ +

P

a

)
(8)

in which τ is a dimensionless integration variable.
Before solving Eq. 8 (see the appendix A.1 for analytical details), the gra-
dient of relative curvature g and the load P can be related to the extension
of the contact region a:

P =
E∗

4
ga3

∫ 1

−1

|τ |3√
1− τ2

dτ =
E∗

2
ga3

∫ 1

0

τ3

√
1− τ2

dτ =
E∗

3
ga3 (9)

By means of integration tables or symbolic software like MathematicaTM

[10], also the contact stress distribution can be written in analytical form:

p(x) =
3
2π

P

a




√
1−

(
x

a

)2

+
(

x

a

)2

log

√
1− (x

a )2 + 1

|xa |


 (10)

3.2 Comparison with the equivalent Hertzian solution for
the symmetric cubic gap function

As k(0) = 0, in this case the reference Hertzian solution cannot be defined.
In order to analyze the properties of the solution, an equivalent Hertzian
contact was introduced. The equivalence was defined by selecting a relative
curvature cHz which produces the same extension of the contact region under
the same load.
For the equivalent Hertzian solution, the following relationship holds:

P =
π

4
E∗a2cHz (11)

Comparing Eqs. 9 and 11, the equivalent Hertzian curvature cHz and the
pressure distribution pHz(x) can be obtained

cHz =
4
3π

ga (12)
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Figure 2: Pressure for a symmetric cubic profile compared to the equivalent
Hertzian distribution.

pHz(x) =
2
π

P

a

√
1−

(
x

a

)2

(13)

Fig. 2 shows the pressure distributions for the two solutions.
The comparison is general as, with the dimensionless quantities represented
in the Fig. 2, the curves are independent from geometry, load and elastic
properties.
For the symmetric cubic contact, the pressure distribution attains the max-
imum values pmax at two points (|x| = xmax) symmetric about the origin.
Indeed the zero relative curvature at O produces a kind of local conforming
contact and a local minimum of p(x). Moreover, the maximum pressure is
lower than the equivalent Hertzian maximum.
The main properties of the solution are reported hereafter:

xmax ≈ 0.55 a

pmax = p(xmax) ≈ 0.57
P

a

p(0) =
3
2π

P

a
≈ 0.48

P

a

while
pHzmax = pHz(0) =

2
π

P

a
≈ 0.64

P

a
(14)

In common with every contacts between two smooth profiles, the derivative
of the pressure distribution is singular at the boundaries of the contact
region.
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The following relationships hold:

lim
x
a
→+1−

d
dxp(x)

d
dxpHz(x)

= lim
x
a
→−1+

d
dxp(x)

d
dxpHz(x)

=
3
2

(15)

thus indicating that the singularity of the pressure derivative at the edges
of the contact is of the same kind than the equivalent Hertzian solution but
stronger.
Eq. 9 shows that P ∝ a3 if the gap function is cubic symmetric. It is inter-
esting to observe that for the bilinear symmetric gap function (the wedge
problem) P ∝ a, and for the symmetric parabolic gap function (Hertz’s
problem) P ∝ a2. This result can be explained by considering that the
higher is the power of the function defining the symmetric gap function the
more conforming is the contact between the elastic bodies.

4 Not symmetric cubic gap function

4.1 Analytical solution

The following expression for a the general not symmetric gap function was
assumed

h(x) =
g

6
x3 +

c

2
x2 (16)

indicating that the problem depends on two geometrical parameters:

• g the gradient of the relative curvature,

• c = k(0) the relative curvature at the point O of the first contact.

The two parameters are independent from each other, however, as discussed
below, they may vary in limited ranges (depending also on the load and
material properties) in order to guarantee convex gap function, inside the
contact region.
Due to the asymmetry, a shift of the contact region has to be expected which
is indicated by the abscissa d, of the mid point of the contact region:

d =
a2 − a1

2
(17)

as shown in Fig. 1 (b). For uniformity of notation, the half-width of the
contact region is indicated with the usual letter a :

a =
a2 + a1

2
(18)

Assuming the pressure distribution given by Eq. 4 with the boundary con-
ditions: p(−a1) = p(a2) = 0, the following equation can be derived (see the
appendix A.1 for analytical details):

gd2

2a
+

cd

a
+

ga

4
= 0 (19)
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giving the unique meaningful solution (with |d| < a) :

d =

√(
c

g

)2

− a2

2
− c

g
(20)

Positive d values are predicted for negative g, thus indicating that the center
of the contact region moves toward the side where the relative curvature is
lower. Relation 20 is not purely geometrical as the load P and material
properties influence the extension of the contact region a.
By integrating the pressure, the total contact load P can be written as
follows:

P =
π

4
E∗a2(c + gd) (21)

where the quantity in brackets is the relative curvature at the mid-point
(x = d) of the contact region.
By substituting Eq. 20 into Eq. 21, the total contact load can be expressed
as follows:

P =
π

4
E∗a2

√
c2 − (ga)2

2
(22)

If the load is imposed, the extension of the contact region a can be found
by solving a third order equation deduced by Eq. 22 (see appendix A.3 for
details), and, consequently, the off-set d can be calculated from Eq. 20.
By Eq. 4, the following expression for the pressure distribution can be
obtained:

p(x) =
2
π

P

a

c

c + gd

√
1−

(
x− d

a

)2 [
1 +

g

2c
(x + d)

]
(23)

The pressure distribution has an unique maximum which is located at the
position given by:

xmax =
d

2
− c +

√
(c + dg)2 + 2(ga)2

2g
(24)

Due to the asymmetry, if the relative movement of the two bodies is con-
strained as shown in Fig. 1 (a), the resultant of the pressure, P , has to be
applied in a position dP differing from either the origin O or the mid point
of the contact region. The abscissa dP can be obtained by equating the
moment of P therein applied with the moment produced by the pressure
distribution (see appendix A.2)

dP = d− 8dc + ga2 + 4gd2

8(c + gd)
(25)

It is worth noting that this quantity (along with the positions of the maxi-
mum xmax and of the mid-point of the contact region d) increases when the
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load is increased. Alternatively, if the position of the load is set, a tilt be-
tween the two bodies must be imposed as discussed in Ref. [7]. However, in
many practical situations (for instance in the contact between two match-
ing gear teeth), the relative motion of the bodies is imposed by external
constraints thus the model developed in this section appears more realistic.

4.2 Discussion and parametric analysis

In order to highlight the effect of the relative curvature gradient, the refer-
ence Hertzian contact was defined by assuming for the relative curvature the
value at O, k(0) = c. The extension of the contact region for the reference
Hertzian contact is given by:

aHz =

√
4P

πE∗c
(26)

As demonstrated in the following, aHz is always smaller than the corre-
sponding value a for the cubic contact. However, the solution for the non
symmetric contact approaches the reference Hertzian solution when reduc-
ing the load. Moreover, even at relatively high load, aHz can be regarded
as a reasonable underestimation of a.
The following dimensionless gradient of relative curvature is introduced:

γ =
aHz

c
g (27)

The quantity γ collects the main properties of the problem: the gradient of
relative curvature g, the relative curvature at the beginning of the contact
c, and an approximate value of the contact region extension aHz (a quantity
depending on material properties and load level). For this reason γ is a
meaningful parameter by which the properties of the solution can be com-
pletely analyzed. Indeed, coupling Eqs. 27 and 22, the following relationship
between a, γ and aHz can be obtained:

γ2

2

(
a

aHz

)6

−
(

a

aHz

)4

+ 1 = 0 (28)

which can be reduced to a third-order algebraic equation giving a real solu-
tion under the condition: (see appendix A.3)

|γ| ≤ γ̂ = 4

√
16
27
≈ 0.8774 (29)

In order to produce a contact on a single interval under compressive pressure
only, the following conditions have to be fulfilled :

c > 0

|g| ≤ 4

√
16
27

√
4Pc

πE∗

(30)
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Figure 3: Pressure distributions for asymmetric cubic contact for different
gradients of relative curvature.

Pressure distributions obtained by Eq. 23 are shown in Fig. 3 (values nor-
malized with the quantity P/aHz) for several values of the dimensionless
gradient of relative curvature. Solutions for negative γ values have been
represented as the curves for positive values can be easily obtained by sym-
metry.

−0.9 −0.6 −0.3 0 0.3 0.6 0.9
1

1.1

1.2

1.3

1.4

a
/a

H
z

γ

Figure 4: Effect of γ on the extension of the contact region.

For γ = 0 the reference Hertzian solution is obtained. By increasing |γ| a
rightward shift of the pressure distribution is observed thus demonstrating
that the mid-point of contact region tends to migrate toward the zones with
lower relative curvature. As usual, the slope of the pressure distribution is
unbounded at the extremes of the contact region for |γ| < γ̂. It is worth
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noting that for |γ| = γ̂ the slope of the pressure tends to zero at the extreme
with the minimum curvature.
In Fig. 4 the extension of the contact region is plotted versus the gradient
of relative curvature. As anticipated a ≥ aHz but, even for relatively high
values of the contact load, a ≈ aHz.
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0
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H
z

d
P

a
H

z

x
m

a
x

a
H

z

γ

d/aHz

dP /aHz

xmax/aHz

Figure 5: Non symmetric properties of the solution versus γ.

The non-symmetric properties of the solution are depicted in Fig. 5. As
already observed, negative γ produces positive values of both d and dP . On
the contrary, the abscissa of the maximum pressure xmax has the same sign
of γ. It can be noted also that dP ≈ d/2 even at high γ values.
As qualitatively shown in Fig. 3, the maximum values of the dimension-
less pressure are not significantly affected by γ. The maximum pressure
is plotted versus the gradient of relative curvature in Fig. 6 showing that
the maximum dimensionless pressure varies less than 1% changing γ in the
whole range. The peak value of the maximum dimensionless pressure is
attained for the reference Hertzian solution when γ = 0.

5 Conclusions

Symmetric and non symmetric contacts between cubic profiles with a C2

continuity have been analyzed and analytical solutions obtained. The ana-
lytical solutions allowed for a complete parametric study of the problem.
In the symmetric contact, an equivalent Hertzian problem was defined in
order to produce a contact region with the same extension under the same
load. It was verified that the maximum contact pressure is always smaller
than the equivalent Hertzian maximum.
For the non symmetric contact, the effect of the gradient of relative curva-
ture was analyzed. In this case, the reference Hertzian solution was defined
by assuming, for the relative curvature, the value in the first point of con-
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Figure 6: Effect of γ on the maximum dimensionless pressure.

tact. This simplified scheme is usually adopted when the gradient of relative
curvature is neglected and its predictions are accurate when the contact ex-
tension is small. It was shown that the gradient of relative curvature may
vary in a limited range, depending on the load and on the local relative cur-
vature, if the contact has to be constrained in a single interval. Within these
limits, excluding a small shift of the contact region due to the asymmetry,
the gradient of relative curvature does not produce strong modification of
the reference Hertzian solution. In particular, as compared to the reference
Hertzian solution:

• the contact region is slightly larger,

• the maximum pressure is almost coincident.

In general it can be concluded that, provided the gradient of relative curva-
ture does not induce tensile pressure in the solution, the reference Hertzian
approximation gives always a reasonable conservative estimation of the con-
tact parameters.

A Mathematical details

In this appendix the main issues of the paper are briefly demonstrated.

A.1 Derivation of the pressure distributions

From the quadrature solution 4 of the integral equation 2, using the positions

x̂ = x− d, ξ =
x̂

a
, δ =

d

a
(31)
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the following dimensionless form is achieved:

p(ξ) =
1

π
√

(1− ξ2)

(
E∗

2

∫ 1

−1

√
1− τ2

ξ − τ
ĥ′(τ)dτ +

P

a

)
(32)

where ĥ′(ξ) is the dimensionless derivative of the gap function, for cubic
symmetric

ĥ′(ξ) =
g

2
a2ξ|ξ| (33)

while for cubic non symmetric

h′(ξ) =
ga2

2
(ξ + δ)2 + ca(ξ + δ) (34)

which contains the unknown quantity δ.
In this paper only incomplete contact is considered for which the pressure at
the edges of the contact region is zero. Therefore putting p = 0 for ξ = ±1
the following equations can be found:

∫ 1

−1

ĥ′(τ)√
1− τ2

dτ = 0 (35)

P = −E∗

2
a

∫ 1

−1

τ√
1− τ2

ĥ′(τ)dτ (36)

For symmetric gap, Eq. 35 is trivial, while it produces a relation between d
and a as Eq. 19 for non symmetric gaps. Equation 36 relates load P and
material properties E∗ to a and δ as in 21, while P , E∗ to a, for symmetric
profile as in Eq. 9.
By substituting 36 in 32 with a little of algebra expression

p(ξ) = −E∗

2π

√
1− ξ2

∫ 1

−1

ĥ′(τ)√
1− τ2(τ − ξ)

dτ (37)

can be obtained. This result is very important in contact mechanics, a
similar procedure is proposed in Ref. [7]. A more comprehensive treatise
can be found in Ref. [8].

A.2 Load off-set dP

In order to find the position of the load off-set, as shown in Ref. [7], the mo-
ment of the pressure distribution p(x) about the origin has to be calculated

M =
∫ a2

−a1

p(s)sds =
∫ a

−a
p(ŝ)(ŝ + d)dŝ = Pd +

∫ a

−a
p(ŝ)ŝdŝ (38)

After dividing by P , and putting the integrals in dimensionless form, the
expression of dP can be rewritten

dP = d + a

∫ 1
−1 p(τ)τdτ
∫ 1
−1 p(τ)dτ

(39)
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From Eq. 36 it follows

dP = d +
a2E∗

2P

∫ 1

−1

τ2

√
1− τ2

ĥ′(τ)dτ (40)

and, remembering equation 35

dP = d− a2E∗

2P

∫ 1

−1
ĥ′(τ)

√
1− τ2dτ (41)

A.3 Discussion and solutions of Eq. 28 relating a/aHz to γ

By indicating α = (a/aHz)2, Eq. 28 can be rewritten as

α3 − 2
γ2

α2 +
2
γ2

= 0 (42)

The roots of Eq. 42 are

αk = 2
3γ2

[
1 + 2 cos

(
1
3 arccos

(
1− 27

8 γ4
)

+ 2
3(k − 1)π

)]
, k = 1, 2, 3.

(43)
Real and positive values of α are obtained only if

1− 27
8

γ4 ≥ −1 ⇒ |γ| ≤ γ̂ = 4

√
16
27

(44)

The only solution of interest is that for k = 3, here expanded

α3 = 2
3γ2

[
1− cos

(
arccos(1− 27

8
γ2)

3

)
+
√

3 sin
(

arccos(1− 27
8

γ2)
3

)]
(45)

This solution has the following properties:

α3(γ) > 1, γ 6= 0

α3(0) = 1
(46)

While the two other solutions do not fulfill these conditions.
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