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Abstract

Purpose This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of 

epiphytic lichens and the bioaccumulation of traffic-related elements in a town of central Italy. 

Methods An Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of road lining 

trees and in a urban park 250 m away, and the content of selected trace elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, 

Pb, Sb, V, Zn) was determined in samples of the lichen Punctelia borreri (Sm.) Krog growing on tree bark, both on the 

exposed and opposite sides. 

Results ILD increases with distance from traffic emissions. However, at the site with vehicle traffic, non-nitrophilous 

lichens decreased while nitrophilous ones increased. The concentration of the traffic-related elements Ba, Cr, Cu, Mn, 

Sb and Zn accumulated in thalli of P. borreri was higher on roadside trees than in trees from the urban park. ILD was 

not affected by the angular exposure to the road and the bioaccumulation of traffic-related elements was similar in 

lichens from the side of the bole exposed to traffic emissions and particulate resuspension and from the opposite side.

Conclusion The angular exposure respect to the traffic source does not influence trace element accumulation. These 

results are important when using lichens for biomonitoring purposes, both for planning future studies and for the 

reliability of the interpretation of past surveys that do not report information about the angular exposure of the collected 

lichen material.
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1. Introduction 

Vehicular traffic is the main source of particulate matter and airborne metals in urban environments (Cadle et al. 1997) 

and a major source of CO, VOCs, SO2 and NOx produced by fuel combustion (Campo et al. 1996) and NH3 formed 

inside catalytic converters (Sutton et al., 2000). Emission of traffic-related elements (TRE) originates from fuel 

combustion (Pb and Ba), tire, brake, engine and vehicle components deterioration (Cd, Cr, Cu, Fe, Mn, Ni, Sb, V and 

Zn) and, indirectly, by resuspension of soil (Al, Fe and associated elements) and street dust (Bargagli 1998; Garty 

2001).

Catalytic converters minimize toxic emissions produced during gas combustion by means of some platinum group 

elements (PGE) i.e. Pt, Pd and Rh, and Cerium (Ce), but upon their corrosion and deterioration, these elements are 

released as well into the environment (Helmers 1996; Helmers 2000; Morcelli et al. 2005). Antimony (Sb), owing to its 

stabilising properties, is often used in a number of alloys for motor bearings and it is found associated with the release 

of TRE into the environment following brake pads deterioration (Von Uexküll et al. 2005). Barium is used in unleaded 
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gasoline and diesel oil and has many applications in the automotive industry, including rubber production, lubricating 

oil additives and fuel synthesis. Consequently, Ba was found in urban street dust (Hopke et al. 1980) and in diesel- and 

unleaded gasoline-powered vehicle emissions (Lowenthal et al. 1994; Que Hee 1994). Barium and antimony have been 

recognized as suitable new tracers for vehicle emissions in place of lead, traditionally linked in the past to motor 

combustion processes (Monaci et al. 2000; Fujiwara et al. 2011).

Lichens are among the most valuable biomonitors of atmospheric pollution (Ferry et al. 1973). The diversity of 

epiphytic lichens is used as a sensitive indicator of the biological effects of air pollutants by means of standard 

procedures (e.g. Asta et al. 2002) and the mapping of lichen diversity is becoming routine in several countries (Nimis et 

al. 2002) since it is quick and inexpensive and provides results on which predictions for human health can be based 

(Cislaghi and Nimis 1997). In addition to floristic changes, lichens have been widely used for monitoring deposition 

patterns of heavy metals (Garty 1993; Bačkor and Loppi 2009). In fact, lichens are known for their ability to accumulate 

airborne substance to concentrations far greater than those in the atmosphere, and the element contents of lichen thalli 

proved to be directly correlated with environmental levels (Sloof 1995; Bari et al. 2001).

Investigations carried out to estimate air quality in proximity of roads, road intersections and highways, showed 

decreasing concentrations of gaseous pollutants (especially NOx) and heavy metals (especially Pb) within few tenths of 

meters from traffic roads (Garty 2001; Cape et al. 2004). 

Although a large amount of data is available on the distance-dependent distribution of traffic-related pollutants, only 

few studies investigated the angular distribution of epiphytic lichens (Del Guasta 2000) and TRE (Bargagli 1998) in 

relation to the source of pollution.

In this work we investigated whether an asymmetrical distribution of epiphytic lichens and element concentrations 

accumulated in lichen thalli exists in relation to angular exposure and proximity to vehicle traffic in a town of central 

Italy. To this purpose, an Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of 

road lining trees and in a urban park 250 m away, and the content of selected trace elements was determined in samples 

of the lichen Punctelia borreri growing on tree bark, both on the exposed and the opposite sides. 

2. Materials and Methods

2.1 Study sites

The study was performed at two selected sites in the urban area of Siena, a small town (ca. 60,000 inhab.) in Tuscany, 

central Italy. The elevation of the town is ca. 300 m asl. Climate is sub-Mediterranean, with a mean annual temperature 

of 13.9°C and a mean annual rainfall of ca. 800 mm, which is concentrated in autumn and winter, while summer is 

fairly dry. Economy is mainly based on tourism and industrial activity is limited, and hence vehicular traffic and 

domestic heating are the main sources of atmospheric pollution. Air pollution in the town is moderate, as confirmed by 

recent instrumental monitoring (ARPAT 2010). Measured pollutants are all within legal limits (yearly average [legal 

limits]): NO2 (29 μg/m3 [40]), PM10 (28 μg/m3 [40]), benzene (0.9 μg/m3 [5]) and CO (0.4 mg/m3 [10]). 

The first study site is a busy one-way road close to the town centre with a flow of ca. 800 slow-moving cars per hour 

during the day. The second site is the urban park in the ancient city fortress, ca. 250 m as the crow flies from the first 

site.

2.2 Sampling design
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Ten lime trees (Tilia platyphyllos Scop.), which are frequent along avenues and in public parks of Siena, and are 

commonly used as phorophyte in lichen biomonitoring studies, were randomly selected at the two study sites. For each 

tree, the street-facing side (centered at 40°, NE), and the opposite side (centered at 220°, SW) were sampled. Tree boles 

were deemed suitable if well lit, with girth >70 cm, trunk almost straight, not damaged and with bryophytes covering 

less than 25%. 

2.3 Lichen diversity

The diversity of epiphytic lichens was measured using a 20×50 cm sampling grid, divided into 10 units of 10×10 cm 

each. The grid was placed 1 m above ground, respectively on the road- and the opposite side. For each tree, an Index of 

Lichen Diversity (ILD) was calculated as the sum of frequencies of epiphytic lichens, namely the number of grid units 

in which the species occurred. Nomenclature follows the on-line database ITALIC (Nimis and Martellos 2008). 

2.4 Bioaccumulation of trace elements

Punctelia borreri (Sm.) Krog is a broad-lobed mesophilous lichen that grows in weakly eutrophicated environments, 

especially on subneutral barked-trees (Van Herk and Aptroot 2000; Nimis and Martellos 2008). The species is quite 

common on Tilia in Siena and it has been selected for elemental analysis being available in both the study sites. It was 

reported from previous lichen monitoring in the town included within Parmelia subrudecta group (Loppi et al. 2002).

At each site, up to 30 thalli growing on the bole of Tilia were harvested on road lining trees and in the urban park, 15 

from the street side and 15 from the opposite side, along a belt (45° width) between 100 and 200 cm from ground.

In the laboratory, samples were carefully cleaned under a binocular microscope to remove extraneous material 

deposited onto the surface, such as moss samples, bark pieces and soil particles. 

Only the peripheral parts of the thalli (up to 5 mm from lobe tips) were selected for the analysis; in P. borreri this part 

roughly corresponds to the biomass produced during the last year and can be easily separated from the bark. 

The content of trace elements was measured according to standard procedures (Bettinelli et al. 1996). Unwashed 

samples were air-dried to constant weight, pulverized and homogenized with a ceramic mortar and pestle and liquid 

nitrogen. About 200 mg of powdered lichen material was mineralized with a mixture of 6 mL of 70% HNO3, 0.2 mL of 

60% HF and 1 mL of 30% H2O2 in a microwave digestion system (Milestone Ethos 900) at 280°C and 55 bars. 

Concentrations of 13 selected elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn) were determined by ICP-

MS (Perkin Elmer – Sciex, Elan 6100) and expressed on a dry weight basis (μg/g dw). 

Analytical quality was checked by analyzing the Standard Reference Material IAEA-336 ‘lichen’. Precision of analysis 

was found to be within 8% for all elements. For each experimental condition, three independent aliquots were prepared 

for analysis and three replicates of measurements were run.

 

2.5 Statistical analysis

For ILD values, species frequencies and element concentrations, a two-way analysis of variance (ANOVA) was run to 

investigate the effects of site (roadside trees and urban park) and angular exposure to traffic (street-facing and sheltered 

side of the bole) and their possible interactions. Results of ANOVA are shown as F (significance ratio) and P 

(significance level) values. Significance of differences was set at P<0.05. Prior to analysis, data not matching a normal 

distribution (Kolmogorov-Smirnov test at the 95% confidence interval) were log-transformed. The Pearson r moment 

was used to seek for correlations among different elements. 
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3. Results

3.1 Influence of site on lichen diversity

The diversity of epiphytic lichens, expressed in terms of ILD, increased with distance from vehicle traffic (Tab. 1). 

Approaching car traffic, overall species richness decreased from 24 to 20 species, non-nitrophilous lichens decreased 

and nitrophilous ones increased. Figure 1 shows that the presence of traffic enhances nitrophilous and toxitolerant 

lichens: 83% of lichen frequencies on roadside trees are determined by nitrophilous species on both sides of the bole. In 

the urban park this percentage falls to 53% (exposed side) and 56% (sheltered side), respectively.

In particular, the frequencies of the following nitrophilous lichens significantly increased on road lining trees: 

Hyperphyscia adglutinata, Lecanora chlarotera and Lecidella elaeochroma and, to a lesser extent, also Candelariella 

reflexa. On the contrary, the frequencies of the non-nitrophilous lichens Candelariella xanthostigma, Flavoparmelia 

caperata, Parmelia sulcata, Parmelina tiliacea, Parmotrema perlatum and Punctelia borreri significantly decreased. 

The fruticose lichens Evernia prunastri, Ramalina farinacea and Ramalina fastigiata, regarded as species sensitive to 

air pollution, disappeared from tree trunks in proximity of vehicular traffic; however, several small thalli were observed 

at heights > 2.5 m also on road lining trees, where they could probably find enough shelter from dust resuspended by 

vehicles.

3.2 Influence of angular exposure on lichen diversity

On the whole, lichen diversity in terms of ILD did not show significant variations according to angular exposure to 

traffic (Tab. 2). On roadside trees, 17 species were recorded on the street-facing side (NE) and 18 on the opposite side 

(SW). Although C. reflexa and Physconia grisea tended to decrease and some nitrophilous lichens, namely L. 

chlarotera and X. parietina were more abundant on the traffic-exposed side, none of the recorded species had a marked 

variation of its frequency according to the angular exposure to traffic (P>0.05).

In the urban park, 22 species were recorded on the street-facing side and 18 on the opposite side (SW). Frequencies of 

the non-nitrophilous lichen P. sulcata were markedly higher at the street-facing side of the bole (P<0.05).

The following non nitrophilous and mesophilous species were recorded only at the NE side in the urban park: 

Pertusaria albescens (crustose lichen) Physconia perisidiosa, P. servitii (foliose lichens) E. prunastri, R. farinacea and 

R. fastigiata (fruticose lichens). In the drier (SW) side of the bole, the xerophilous crustose Amandinea punctata and the 

foliose species Physcia biziana were exclusive species, while C. xanthostigma and H. adglutinata were more abundant. 

3.3 Influence of site on metal accumulation

Metal concentrations were generally low at both sites and according to the interpretative scale suggested by Bargagli 

and Nimis (2002) are indicative of a moderately polluted environment. 

Mean concentrations of Ba, Cr, Cu, Mn, Sb and Zn were significantly higher (P<0.05) in samples from roadside trees 

(Tab. 3). Positive reciprocal correlations among the above elements (Tab. 4) pinpoint traffic as a common source for 

these elements that, as a consequence, can be regarded as TREs. On the other hand, higher levels of Al (soil-related 

element) and V were recorded at the urban park. 

3.4 Influence of angular exposure on metal accumulation
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On road lining trees, TREs were similar at both trunk sides, irrespective of angular exposure to traffic, while on trees in 

the urban park (250 m away) statistically significant differences (P<0.05) emerged for Cu and Sb (Tab. 5). Of the other 

elements, Al and Pb were differentiated by side at both sites, and Fe was significantly higher at the sheltered site only 

on road lining trees.

4. Discussion

4.1 Lichen diversity

Epiphytic lichen diversity depends on the joint effects of interacting variables, which play a main role also in the 

vicinity of busy roads. These variables include airborne pollutants (Nimis et al. 2002), microclimate (Barkman 1958), 

dust depositions (Loppi and Pirintsos 2000), habitat eutrophication (Seaward and Coppins 2004; Paoli et al. 2006), 

artificiality of the environment (Gombert et al. 2004) and bark properties (Van Herk 2002; Loppi and Frati 2004).

Different pollutants may have contrasting effects on lichen communities. It is well-known that the lichen diversity is 

more influenced by gaseous pollutants like SO 2 (Seaward 1993) and NOx (Davies et al. 2007) originating from 

combustion processes than by heavy metals and particulate matter. In fact, lichens can accumulate trace elements at 

levels far above their physiological requirements without suffering damaging effects. In many urban areas, NOx is now 

considered the major pollutant in proximity of areas subjected to intense vehicular traffic (Wolseley et al. 2004). 

Increasing NOx level has led to a parallel increase of nitrophilous lichen species in urban environments (Gombert et al. 

2004; Davies et al. 2007), whereas in rural environments the effects of agricultural practices still overbear the effects of 

NO2 and NH3 emitted by road traffic (Frati et al. 2006).

A study carried out in 1995 in the urban area of Siena (Monaci et al. 1997) reported the lowest lichen diversity at 

stations with the heaviest traffic and indicated car exhaust as the main source of air pollution. A successive lichen 

survey reported a general trend of ameliorating conditions as the result of an improvement in air quality over time 

(Loppi et al. 2002). Our data, interpreted in terms of air pollution (Paoli and Loppi 2008), confirm this trend, indicating 

low pollution at the busy site and negligible pollution at the urban park.

Our results showed that the lichen diversity was not influenced by angular exposure on the tree bole, but increased with 

distance from vehicular traffic, both in terms of ILD and species richness. 

A study on the angular distribution of epiphytic lichens on Tilia trunks in moderately polluted environments showed that 

nitrophilous species (i.e. Physcia adscendens, Candelaria concolor and X. parietina) and weakly basophilous lichens 

(such as P. subrudecta) were more abundant on the tree side facing vehicular traffic because of the eutrophication 

induced by dust and spray lifted by cars (Del Guasta 2000). On the contrary, meso-acidophilous lichens such as F. 

caperata, and P. tiliacea were scarce in proximity of vehicular traffic and did not show preferential distribution on the 

bole. It is well-known that in the Mediterranean area dust promotes nitrophilous lichens (Loppi and De Dominicis 1996; 

Loppi and Pirintsos 2000) and that the epiphytic lichen vegetation composed of communities dominated by F. caperata 

and P. perlatum, when influenced by sources of dust such as dirt roads, shifts towards communities dominated by X. 

parietina and P. adscendens (Loppi 1996).

Similarly, in the urban area of Siena we observed a shift from meso-acidophilous to xero-nitrophilous lichens 

approaching busy roads. Furthermore, with increasing distance from direct pollution sources, such as in the urban park, 

the frequency of mesophilous species increases on the street-facing side of tree trunks and that of xerophilous ones 

increases on the sheltered side. These evidences confirm that microclimatic conditions are the key factor that most 
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influences the composition of lichen vegetation far from direct pollution sources. In lichen monitoring for bioindication 

purposes, it should be taken into account that approaching the traffic source, non-nitrophilous lichens decrease while 

nitrophilous ones may increase. Oligotrophic, hygrophytic and acidophilous lichens are sensitive to pollution caused by 

traffic, and their richness declines markedly close to roads (Llop et al. 2011). These lichen groups are considered 

functional response groups – species that have a similar response to an environmental factor (Lavorel et al. 2002), and 

their use as indicators of air quality in urban environments seemed even more reliable than the total diversity for 

evaluating the impact of atmospheric pollution in small urban areas (Llop et al. 2011). This may have important 

consequences on the interpretation of ILD values and agrees with the conclusions of Loppi and Nascimbene (2010), that 

in the presence of nitrogen emissions, the response of nitrophilous species should be considered separately in the 

calculation of ILD values. 

4.2 Metal accumulation

It is well known that the chemical composition of lichens reflects the availability of elements in the environment (Garty 

1993;  Bačkor and Loppi 2009). In particular, several studies showed patterns of element accumulation related with 

distance from vehicle traffic.  Zechmeister et al. (2005) investigated element deposition from road traffic in Austria 

using mosses and identified, among others, TREs associated to particulate matter (Cr, Sb, Zn, Fe, V, Cu, Ni) that were 

mainly deposited within a distance of 250 m from major roads. Traffic density, distance from and elevation of the road  

were identified as the most influencing factors for the deposition of such elements. Cuny et al. (2001) found correlations 

between traffic and the accumulation of Pb, Zn and Cd in  F. caperata thalli transplanted in the neighborhood of a 

motorway in France.  Loppi et al. (1994; 1995) found heavy metal air pollution (Cd, Cr, Cu, Ni, Pb and Zn) in  F. 

caperata in urban areas of central Italy linked to vehicular traffic. However, our results showed that the accumulation of 

TREs in lichens on roadside trees was not influenced by angular exposure to traffic.

In urban environments, road dust entrained into the air by vehicle flow is a major source of ambient particulate matter   

(PM10) (Abu-Allaban et al. 2003). Oliveira et al. (2010) analyzed the ionic and elemental composition of the fine (PM2.5) 

and coarse (PM2.5-10) fraction of aerosol, comparing roadsides and urban backgrounds in the city of Oporto (Portugal) 

and found that direct car emissions and road dust resuspension contributed up to 66% of the fine aerosol and up to 55% 

of the coarse particles mass at both sites, showing typically highest loads at road side. They also demonstrated that as 

much as 80% of the dust present in Oporto can result from road traffic resuspension. Patra et al. (2008) found that 

resuspension accounts for 40% of the total material removed from a road segment in London and that coarse particles 

were resuspended faster and with a clear decay profile than the finer ones, with traffic flow and direction of prevailing 

winds being major factors in the distance-dependent distribution of particulate matter away from roadsides.

Focusing on the angular exposure of roadside Quercus ilex to TREs in Siena, Bargagli (1998) reported that Hg, Cd, Pb, 

Zn, Cu, Cr, Al, Fe, Mn, Ni were accumulated with similar efficiencies on both the trunk side directly exposed to traffic 

emissions and the sheltered side. Similar findings were observed analyzing one-year-old leaves from crown periphery 

of the same trees: locally, some differences involved Cd, Cr and Mn, chiefly entrapped by road facing leaves, and Cu, 

Hg and Zn, which were higher in leaves from the opposite side.

Our data showed a symmetrical distribution for almost all the elements, except for some TREs and some soil-related 

elements. In particular, lower levels of Cu and Sb were found in lichens from the sheltered side of trees distant from 

traffic; moreover, Sb was positively correlated with Ba, Cu, Cr and Mn. Antimony and Cu concentrations in airborne 

dust were found to be dependent on traffic density and distance from traffic (Dietl et al. 1997, Fujiwara et al. 2011). 
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Reciprocal correlations of Sb, Cu and Ba were found in PM10 and PM2.5 as a result of dust resuspension at the entrance 

and exit of tunnels in the USA (Lough et al. 2005) and vehicle emission (namely brake lining) was found as main Sb 

sources in tunnel aerosols in Sweden (Sternbeck et al. 2002).

The asymmetrical distribution of soil related elements (Al, Fe) and Pb in our study is likely determined by dust 

resuspension. In general, high concentrations of lithogenic elements (e.g. Al and Fe) measured in lichens and mosses are 

associated with high levels of deposition of airborne soil dust (Bargagli, 1998). In our study vanadium is suggested to 

be of soil origin since this element was highly correlated with Al (R=0.82, P<0.05) and negatively with TREs, 

suggesting that traffic is not a source of V in the area. In fact, although V, in association with Ni, is a common tracer of 

oil combustion, this element can also have a crustal origin (Bargagli 1998). On the other side, Pb concentrations were 

shown to decrease by 20% per year in particulate matter in central Italy (Monaci et al. 2000) and in Tuscany air 

pollution by Pb have drastically fallen owing to the ban of leaded gasoline (Loppi et al. 2004). The present levels of Pb 

recorded in Siena do not correlate with any of the TREs analyzed and indicate the lack of contamination sources.

Overall, our data indicated that the TRE content of lichens on the bole of road-lining trees is similar both on the side 

exposed to traffic emissions and particulate matter resuspension and on the sheltered side. This can be explained 

considering that pollutants do not have a sharp horizontal gradient during turbulent diffusion of particulate matter at 

street level due to urban traffic (Patra et al. 2008), and hence, a markedly different distribution of depositions between 

the two sides of the trunk does not occur. During lichen collection for bioaccumulation purposes, it is generally 

recommended that lichen material should be taken from all around the tree trunk to prevent any possible influence of 

cardinal exposure. However, this is not always possible owing to the lack of enough lichen material. Our results suggest 

that the angular exposure respect to the traffic source does not influence trace element accumulation. These results are 

important when using lichens for biomonitoring purposes, both for planning future studies and for the reliability of the 

interpretation of past surveys that do not report information about the angular exposure of the collected lichen material.

5. Conclusions

This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of 

epiphytic lichens and the bioaccumulation of traffic-related elements in the town of Siena, where vehicular traffic is the 

main source of air pollution and the air is only moderately polluted.

As far as distance is concerned, our results showed that the diversity of epiphytic lichens increases with distance from 

traffic emissions, either in terms of ILD and species richness. However, it should be taken into account that approaching 

the traffic source, non-nitrophilous lichens decreased while nitrophilous ones increased. This may have important 

consequences in the interpretation of ILD values and is consistent with the conclusions of Loppi and Nascimbene 

(2010), that in the presence of nitrogen emissions, the response of nitrophilous species should be considered separately 

in the calculation of ILD values, and hence, with the use of lichen functional groups as indicators of air quality in small 

urban environments as proposed by Llop et al. (2011).

The concentration of the traffic-related elements Ba, Cr, Cu, Mn, Sb and Zn accumulated in thalli of Punctelia borreri 

was higher on roadside trees than in trees from urban parks.

As far as angular exposure on the tree trunk is concerned, ILD and species richness were not affected by road exposure 

and also the bioaccumulation of traffic-related elements was similar in lichens from the side of the bole exposed to 

traffic emissions and particulate resuspension and from the opposite side.
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Table 1. Index of Lichen Diversity and average frequency of epiphytic lichens found during the study. Values in bold 

differ significantly (P<0.05) by site. Results of ANOVA are shown as F- and P- values.

Road lining 
trees

Urban park
250 m away

Site
Angular 
Exposure

Site*
Angular 
Exposure

Index of Lichen Diversity ± SD 108 ± 17 137 ± 25
F = 7.420 
P = 0.015

F = 0.000
P = 1.000

F = 0.693
P = 0.417

Candelaria concolora 8.2 9.2
F = 0.057 
P = 0.814

F = 0.138 
P = 0.715

F = 0.344
P = 0.565

Candelariella reflexaa 4.6 2.4
F = 0.464
P = 0.505

F = 1.898
P = 0.187

F = 3.163
P = 0.094

Candelariella xanthostigma 4.2 12.6
F = 5.226 
P = 0.036

F = 1.037
P = 0.324

F = 4.207
P = 0.057

Flavoparmelia caperata 1.4 7.6
F = 7.359
P = 0.015

F = 0.022
P = 0.885

F = 0.903
P = 0.356

Hyperphyscia adglutinataa 20 14.4
F = 4.942
P = 0.041

F = 0.000
P = 0.992

F = 0.000
P = 0.992

Lecanora chlaroteraa 5.6 0.4
F = 37.22
P = 0.000

F = 1.81
P = 0.197

F = 1.81
P = 0.197

Lepraria sp. 1.6 2.8
F = 0.127 
P = 0.726

F = 1.761
P = 0.203

F = 0.127
P = 0.726

Parmelia sulcata 1 8.4
F = 16.46
P = 0.001

F = 7.88
P = 0.013

F = 2.01
P = 0.176

Parmelina tiliacea 1.8 9.2
F = 13.28
P = 0.002

F = 3.35
P = 0.086

F = 0.002
P = 0.988

Phaeophyscia orbicularisa 4 4.4
F = 0.007
P = 0.933

F = 0.014
P = 0.908

F = 0.188
P = 0.670

Physcia adscendensa 18.6 18.4
F = 0.031
P = 0.863

F = 0.031
P = 0.863

F = 3.367
P = 0.085

Physconia griseaa 16 19.4
F = 4.709
P = 0.052

F = 4.307
P = 0.054

F = 3.258
P = 0.090

Punctelia borreri 7.4 13.8
F = 6.093
P = 0.025

F = 0.168
P = 0.687

F = 0.595
P = 0.642

Xanthoria parietinaa 6.4 6
F = 0.003
P = 0.957

F = 1.364
P = 0.260

F = 1.428
P = 0.249

Melanelixia subaurifera 0.2 1.4
F = 1.400
P = 0.254

F = 0.019
P = 0.893

F = 0.274
P = 0.608

Parmotrema perlatum 0.8
F = 3.455
P = 0.082

F = 0.675
P = 0.423

F = 0.675
P = 0.423

Amandinea punctata 2
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

Physcia bizianaa 0.6
F = 2.457
P = 0.137

F = 2.457
P = 0.137

F = 2.457
P = 0.137

Evernia prunastri 1.2
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

Pertusaria albescens 0.8
F = 2.250
P = 0.153

F = 2.250
P = 0.153

F = 2.250
P = 0.153

Physconia perisidiosa 0.2
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

Ramalina fastigiata 0.4
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

Ramalina fraxinea 0.2
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

Physconia servitii 0.2 0.2
F = 0.000
P = 1.000

F = 0.000
P = 1.000

F = 2.000
P = 0.176

Lecidella elaeochromaa 5.8
F = 7.961
P = 0.012

F = 0.128
P = 0.725

F = 0.128
P = 0.725

Caloplaca cerinellaa 0.4 F = 1.000 F = 1.000 F = 1.000
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Road lining 
trees

Urban park
250 m away

Site
Angular 
Exposure

Site*
Angular 
Exposure

P = 0.332 P = 0.332 P = 0.332

Phaeophyscia hirsutaa 0.4
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

Lecanora carpinea 0.2
F = 1.000
P = 0.332

F = 1.000
P = 0.332

F = 1.000
P = 0.332

a nitrophilous species (Nimis and Martellos, 2008)
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Table 2. Influence of the angular exposure to traffic (exposed and sheltered sides of the bole) on Index of Lichen 

Diversity and average frequency of recorded epiphytic lichens. Within each site, values in bold differ significantly 

(P<0.05) by bole side.

Road lining trees Urban park - 250 m away

Street side Sheltered side Street side Sheltered side

Index of Lichen Diversity ± SD 52 ± 8 56 ± 10 71 ± 9 66 ± 17

Candelaria concolora 3.4 4.8 6 3.2

Candelariella reflexaa 0.4 4.2 1.4 1

Candelariella xanthostigma 2.2 2 4.2 8.4

Flavoparmelia caperata 0.4 1 4.6 3

Hyperphyscia adglutinataa 10 10 6.4 8

Lecanora chlaroteraa 3.6 2 0.2 0.2

Lepraria sp. 1.2 0.4 2.4 0.4

Parmelia sulcata 0.8 0.2 6.4 2

Parmelina tiliacea 0.4 1.4 3.4 5.8

Phaeophyscia orbicularisa 1.8 2.2 2.4 2

Physcia adscendensa 9.8 8.8 8.6 9.8

Physconia griseaa 6.8 9.2 9.6 9.8

Punctelia borreri 3.2 4.2 8 5.8

Xanthoria parietinaa 4.4 2 3 3

Melanelixia subaurifera 0.2 0.4 1

Parmotrema perlatum 0.6 0.2

Amandinea punctata 2

Physcia bizianaa 0.6

Evernia prunastri 1.2

Pertusaria albescens 0.8

Physconia perisidiosa 0.2

Ramalina fastigiata 0.4

Ramalina fraxinea 0.2

Physconia servitii 0.2 0.2

Lecidella elaeochromaa 3 2.8

Caloplaca cerinellaa 0.4

Phaeophyscia hirsutaa 0.4

Lecanora carpinea 0.2
a nitrophilous species (Nimis and Martellos, 2008)
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Table 3. Element concentrations (ppm dw) in lichen samples growing on road lining trees and in the urban park. Values 

in bold differ significantly (P<0.05) by site. Results of ANOVA are shown as F- and P- values.

Road lining trees
Urban park - 250 

m away
Site Angular Exposure

Site *Angular 
Exposure

Ba 5.3 ± 0.5 4.4 ± 0.4
F = 27.04
P = 0.001

F = 0.510
P = 0.095

F = 14.25
P = 0.005

Cr 1.4 ± 0.2 1.1 ± 0.2
 F = 7.254 
P = 0.027

F = 1.434
P = 0.265

F = 1.877
P = 0.208

Cu 7.6 ± 0.4 6.0 ± 1.0
F = 55.36
P = 0.000

F = 15.81
P = 0.004

F = 17.28
P = 0.003

Mn 12.3 ± 0.2 9.8 ± 0.3
F = 222.7
P = 0.000

F = 0.001
P = 0.985

F = 0.500
P = 0.509

Sb 0.52 ± 0.07 0.26 ± 0.11
F = 103.1
P = 0.000

F = 7.400
P = 0.026

F = 31.80
P = 0.000

Zn 41.5 ± 5.1 35.6 ± 6.0
F = 12.20
P = 0.010

F = 1.820
P = 0.219

F = 0.130
P = 0.726

Al 211 ± 18 275 ± 41
F = 23.81 
P = 0.001

F = 0.020
P = 0.881

F = 13.14 
P = 0.007

V 1.06 ± 0.13 1.58 ± 0.11
F = 74.96 
P = 0.000

F = 2.790 
P = 0.134

F = 2.510
P = 0.152

Cd 0.20 ± 0.01 0.19 ± 0.01
F = 1.385
P = 0.273

F = 3.668
P = 0.092

F = 0.238
P = 0.639

Ce 0.56 ± 0.142 0.79 ± 0.26
F = 4.481
P = 0.067 

F = 2.592
P = 0.146

F = 0.652
P = 0.453

Fe  228 ± 37 236 ± 27
F = 0.620
P = 0.455

F = 1.950
P = 0.200

F = 11.08
P = 0.010

Ni 2.2 ± 0.7 2.1 ± 1.0
F = 0.085
P = 0.778

F = 0.314
P = 0.590

F = 0.080
P = 0.784

Pb 5.8 ± 0.8 6.0 ± 0.6
F = 0.882
P = 0.375

F = 9.661
P = 0.014

F = 0.191
P = 0.673
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Table 4. Pearson correlation coefficients among trace elements in lichen samples. Only significant (P<0.05) values are 

given (n.s. not significant).

Al V Cr Mn Fe Ni Cu Zn Cd Sb Ba Ce Pb

Al −

V 0.82 −

Cr n.s. n.s. −

Mn -0.61 -0.87 0.66 −

Fe 0.68 n.s. n.s. n.s. −

Ni n.s. n.s. n.s. n.s. n.s. −

Cu n.s. -0.63 0.81 0.80 n.s. n.s. −

Zn n.s. n.s. n.s. n.s. n.s. 0.65 0.59 −

Cd n.s. n.s. 0.63 n.s. n.s. n.s. n.s. n.s. −

Sb n.s. -0.68 0.74 0.78 n.s. n.s. 0.91 n.s. n.s. −

Ba n.s. -0.66 0.68 0.85 n.s. n.s. 0.84 n.s. n.s. 0.93 −

Ce n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. −

Pb n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. −

Table 5. Element concentrations (ppm dw) in lichen thalli growing on road lining trees and in the urban park as a 

function of angular exposure to vehicular traffic. Within each site, values in bold differ significantly (P<0.05) by bole 

side.

Road lining trees Urban park - 250 m away

Street side Sheltered side Street side Sheltered side

Ba 5.04 ± 0.29 5.47 ± 0.55 4.66 ± 0.41 4.21 ± 0.22

Cr 1.35 ± 0.18 1.37 ± 0.20 1.23 ± 0.14 1.01 ± 0.11

Cu 7.60 ± 0.30 7.65 ± 0.52 6.81 ± 0.52 5.19 ± 0.22

Mn 12.33 ± 0.04 12.20 ± 0.35 9.72 ± 0.37 9.81 ± 0.22

Sb 0.477 ± 0.034 0.565 ± 0.078 0.355 ± 0.051 0.163 ± 0.004

Zn 43.9 ± 6.2 39.1 ± 3.2 34.1 ± 2.6 37.0 ± 8.8

Al 192 ± 5 231 ± 26 304 ± 43 246 ± 13

V 0.98 ± 0.06 1.15 ± 0.12 1.58 ± 0.16 1.58 ± 0.04

Cd 0.202 ± 0.016 0.192 ± 0.004 0.197 ± 0.013 0.181 ± 0.010

Ce 0.663 ± 0.203 0.495 ± 0.054 0.682 ± 0.253 0.772 ± 0.237

Fe 199 ± 7 257 ± 31 249 ± 35 223 ± 10

Ni 2.43 ± 0.99 1.93 ± 0.11 2.20 ± 1.13 2.04 ± 0.95

Pb 5.2 ± 0.4 6.3 ± 0.7 5.6 ± 0.6 6.4 ± 0.2
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Figure 1. Total ILD and ILD by nitrophilous lichens on road lining trees and in the urban park - 250 m away.
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