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Abstract—The problem of the evaluation of eddy currents
induced in a conductive cylinder is here reconsidered under
the light of possible application in the electromagnetic launch
context. In particular we derive an analytical solution when the
system is excited by a sinusoidal current flowing in a saddle
coil moving in the axial direction. Subsequently we consider an
arrangement of such coils distributed in the axial and azimuth
direction. When properly fed they produce a travelling wave of
flux distribution which is able to exert a thrust force on the
conductive cylinder. Since the governing vector field equation is
not separable in the cylindrical coordinates, an approach based
on the second order vector potential (SOVP) formulation has
been here adopted. Scalar field equations are obtained whose
solutions are expressed in terms of Bessels functions.

I. INTRODUCTION

In recent papers [1], [2] a revisited version of the recon-
nection launcher [3] has been presented under the name of
Multipole Field Electromagnetic Launcher. This launcher is
an induction device and as a consequence is free from the
drawbacks related to the sliding contacts that affect the rail
launchers. With respect to the conventional Linear Induction
Launcher (LIL), it is characterized by a better ratio of the
radial compression force to the axial thrust force. Currents
in the armature of LIL are induced by the variation of the
axial component of the flux density, but this component of
the flux density produces an intense radial force [4]. The
axial thrust force is associated with the radial components of
the flux density which is smaller than the axial component.
In the multipole configuration each driving coils produces
a magnetic field that is mainly directed along the radius of
the cylinder. The resultant effect of the action of the coils
distributed in the azimuth direction is the production of a loop
current around the cylinder. Interaction of the radial magnetic
flux density with this loop eddy current produces a large
axial thrust force, while the radial compressive force becomes
smaller [1]. Other interesting features are contactless magnetic
suspension, potential super-velocity launch and large mass
driven. This last feature makes this launcher a candidate for
vehicle propulsion and for space transportation development.
The analysis performed in [1], [2] is purely numerical and
refers to a three-stages device operating in pulse mode. In this
paper we propose an analytical model of the device operating
in a travelling wave mode. The armature is a conductive hollow
cylinder indefinitely extended in the direction of the motion,
while the stator coils are substantially arranged as shown

in [1]. In the proposed analysis the number of coils in the
motion direction, as well as in the azimuth direction can be
arbitrary. The analytical model is based on the evaluation of
the electromagnetic quantities (fields everywhere and induced
current in the conductive cylinder) produced by a single stator
coil (saddle shaped) when it carries a sinusoidal current and
moves at constant velocity in the axial direction with respect to
the cylinder. When dealing with 3D problems and especially
in curvilinear coordinated the separation of variables is not
always possible. In these cases the use of the second-order
vector potentials appropriately approaches the problem [6]-
[9]. The problem is reformulated by using scalar equations
and the solutions are written in terms of ordinary and modified
Bessels functions of the first and second kind. The availability
of an analytical solution has a twofold utility: 1) allows a
deep understanding of the operation of the device and of its
potentialities and drawbacks; 2) constitutes a benchmark for
the validation of numerical codes that are indispensable in the
analysis of real devices [5], [10].
However, the proposed formulation can be used also for the
investigation of magnetic levitation systems [11].
The paper is organized as follows: in Section II the problem
setup is discussed in detail. Section III reports the formulation
and the solution of the governing equation in terms of SOVP
and Section IV reports an example of an application.

Fig. 1. The analyzed system.



(a) coil arrangement (b) current profile (schematic)

Fig. 2. Schematic view of the system with a single exciting coil.
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where J is the current density magnitude, and the terms cϕ and kz = cz + vzt are used to properly locate the current sheet along the ϕ and z directions
and to take into account its movement along the z-direction.

II. DESCRIPTION OF THE PROBLEM

The analyzed system is schematically shown in Fig. 1.
A conductive cylinder is located inside a fictitious coaxial
cylindrical surface; an array of moving coils (in the axial
direction) is attached on this surface. A number of these
arrays of coils can be located at different angular positions.
As a result a matrix of coils lying on this fictitious surface
surrounds the conductive cylinder. Coils at the same axial
position are fed with the same sinusoidal current. The phase
shift of the currents in coils at different axial positions
varies linearly with the z-coordinate and a traveling wave
of flux density is produced. As a result a thrust force is
exerted on the conductive cylinder in the direction of the
travelling wave. As known this force is a function of the
relative speed between cylinder and the coils and of the
travelling wave speed. The solution of the proposed problem

can be written by superposition of the solution obtained for
the elementary arrangement shown in Fig. 2, where only
one coil fed with a sinusoidal current is present and the
cylinder moves at constant speed in the axial direction. The
radial dimension of the coil is assumed to be negligible and
the coil is approximated by a ribbon whose geometry and
position is shown in figs. 2(a) and 2(b). However, if this
hypothesis falls, the coils system can be approximated by
stacking in the radial direction a proper number of ribbons.
Then, due to the linearity of the system, the solution of the
problem can be evaluated by using the superposition principle.

In cylindrical coordinates the current sheet is written as:

J (ϕ, z, t) = J̃ϕ (ϕ, z) ejωt · aϕ + J̃z (ϕ, z) ejωt · az (1)

where J̃ϕ and J̃z are shown in Fig. 2.



A double Fourier transform in the axial and in the azimuth
directions is then performed:

J̃ϕ (ϕ, z) =

+∞∑
m=−∞

+∞∑
n=−∞

K ′ϕmne
jαmϕejβnz

(2)

J̃z (ϕ, z) =

+∞∑
m=−∞

+∞∑
n=−∞

K ′zmne
jαmϕejβnz

where: αm = 2πm/Tϕ; βn = 2πn/Tz, Tz and Tϕ respec-
tively represent the axial and azimuth period of the current
distribution, and:
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As a result, the given current distribution can be considered
as a superposition of current sheets that are sinusoidal both in
time and space.
The profile of the current sheet can be obtained by summing
four ramps at different axial and azimuth positions. Exploiting
the well known property of the Fourier transform:

f(x)⇒ F (jζ) and f(x− x0)⇒ F1 (jζ) = F (jζ) e−jζx0 ,

it is possible to find the coefficients K ′ϕmn and K ′zmn in (2) as:
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In order to preserve the consistency of the mathematical
model, the divergence of the current sheet must be zero.
Substituting (3) and (4) in (2), and then in (5):

∇ · J (ϕ, z, t) = 0; (5)

⇓

∂J̃r (ϕ, z)

∂r︸ ︷︷ ︸
=0

+
J̃r (ϕ, z)

r︸ ︷︷ ︸
=0

+
1

r

∂J̃ϕ (ϕ, z)

∂ϕ
+
∂J̃z (ϕ, z)

∂z
= 0

we find:

r0∆ϕ = ∆z (6)

that is: if the width of the current ribbon along the ϕ and z
directions has the same value, then the condition of null diver-
gence is satisfied. Furthermore, this condition is automatically
verified by the adopted current shape in correspondence of the
corners (two overlapping ramps as shown in Fig. 2(b)).

III. FORMULATION IN TERMS OF SOVP

The governing equation in terms of magnetic vector poten-
tial constrained by the Coulomb gauge (∇ ·A = 0) for linear
isotropic medium is the Poisson’s Equation:

∇2A = −µσ∂A
∂t

(7)

Since the exciting current is harmonic with respect to the
time, the magnetic vector potential will be harmonic too; we
can write:

A (r, ϕ, z, t) = Ã (r, ϕ, z) · ej(ω−βnvz)t (8)

and as a consequence:

∂

∂t
(A (r, ϕ, z, t)) = j (ω − βnvz) ·A (r, ϕ, z, t) (9)

it is possible to rewrite the Poisson’s equation in the form of
the well known Helmholtz’s Equation:

∇2Ã + k2Ã = 0 (10)

where k2 = −jµσ (ω − βnvz) has been assumed.
When dealing with 3D problems and especially in curvi-

linear coordinates, the separation of variables is not always
possible. In these cases the use of the “second-order magnetic
potential” W̃ is the most appropriate way to solve the problem.
Since ∇ · Ã = 0, then: Ã = ∇× W̃, where:

W̃ = W̃aaz + az ×∇W̃b (11)



then, substituting (11) in (10), we have:

∇×
[(
∇2W̃a + k2W̃a

)
az + az ×∇

(
∇2W̃b + k2W̃b

)]
= 0

and finally:

∇2W̃a + k2W̃a = 0 (12)
∇2W̃b + k2W̃b = 0 (13)

that is: the vector Helmholtz’s Equation is replaced by two
scalar equations of the same form, in terms of second-order
magnetic potentials W̃a and W̃b.

The knowledge of W̃ in the regions of interest (characte-
rized by different values of electrical conductivity) allows the
knowledge of all the electromagnetic quantities. In particular:

Ã = ∇× W̃ =
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B̃ = ∇× Ã =
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∂z2
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(15)

Because of the cylindrical symmetry of the geometry and
of the harmonic behaviour of the currents in both axial and
azimuth direction, we can assume the following form of the
solution of the two scalar equations (12) and (13):

W̃a (r, ϕ, z) = Ŵa (r) ejf(ϕ,z) (16)
W̃b (r, ϕ, z) = Ŵb (r) ejf(ϕ,z) (17)

where: f (ϕ, z) = αm (ϕ− cϕ) + βn (z − cz).

In cylindrical coordinates system, the Helmholtz’s Equa-
tions (12) and (13) become:
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∂r2
+

1

r

∂W̃a

∂r
+
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m

r2
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r
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m

r2
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W̃b = 0 (19)

where: ξ2n = k2 − β2
n.

Fig. 3. Schematic view of the domain of interest, divided in four regions.

It is worthwhile to observe that similar equations would
have been obtained by assuming moving conductor and coil
at rest.

In the domain of interest, divided into four regions has
shown in Fig. 3, the solutions of the previous equations are
given in terms of Bessel’s functions [12].

In the region 2© with σ 6= 0 (i = 2):

W̃a =

+∞∑
m=−∞

+∞∑
n=−∞

[CiaJαm
(ξnr) + C ′iaYαm

(ξnr)] · ejf(ϕ,z)

(20)

W̃b =

+∞∑
m=−∞

+∞∑
n=−∞

[CibJαm
(ξnr) + C ′ibYαm

(ξnr)] · ejf(ϕ,z)

while in the regions 1©, 3©, 4© with σ = 0 (i = 1, 3, 4):

W̃a =

+∞∑
m=−∞

+∞∑
n=−∞

[CiaIαm
(βnr) + C ′iaKαm

(βnr)] e
jf(ϕ,z)

(21)

W̃b =

+∞∑
m=−∞

+∞∑
n=−∞

[CibIαm (βnr) + C ′ibKαm (βnr)] · ejf(ϕ,z)

where: Jαm
, and Yαm

, are the Bessel’s functions of order
αm of the first and second kind respectively; Iαm , and Kαm

are the modified Bessel’s function of order αm of the first
and second kind respectively; Cia, C ′ia, Cib, and C ′ib, are
integration constants which can be calculated from the normal
conditions and the boundary conditions on the interfaces γ1,
γ2, and γ3 (Fig. 3). Because of the asymptotic behavior of
the modified Bessel function we have: C ′1a = C4a = 0. In
order to determine the integration constants in (20) and (21),
we have to impose the continuity of the normal component
of the magnetic flux density B̃⊥ across the interfaces 1 − 2,
2 − 3, and 3 − 4. The tangential component of the magnetic
field H̃‖ must be continuous across the interfaces 1 − 2, and
2−3; furthermore, H̃‖ is necessarily discontinuous across the
interface 3− 4 containing the excitation current sheet:



B̃r1 (R1) = B̃r2 (R1) ; (22a)

B̃r2 (R2) = B̃r3 (R2) ; (22b)

B̃r3 (R3) = B̃r4 (R3) ; (22c)
1

µ0
B̃ϕ1 (R1) =

1

µ0µr
B̃ϕ2 (R1) ; (22d)

1

µ0
B̃z1 (R1) =

1

µ0µr
B̃z2 (R1) ; (22e)



1

µ0
B̃ϕ2

(R2) =
1

µ0µr
B̃ϕ3

(R2) ; (22f)

1

µ0
B̃z2 (R2) =

1

µ0µr
B̃z3 (R2) ; (22g)

1

µ0
B̃ϕ3

(R3) =
1

µ0µr
B̃ϕ4

(R3) + J̃z (R3) ; (22h)

1

µ0
B̃z3 (R3) =

1

µ0µr
B̃z4 (R3) + J̃ϕ (Ri) ; (22i)

where: H̃ = 1
µ0µr

B̃.

Let us observe that the potential W̃b contributes to the
expression of the solution in the conductive region only. Once
normal conditions have been considered, eight integration con-
stants have to be determined by imposing the above equations
whose total number is nine. However, under the condition
r0∆ϕ = ∆z we will demonstrate that the last two boundary
conditions involving the discontinuity of the magnetic field
strength (eqs. (22h) and (22i)) are not linearly independent.
This implies that one of them can be discarded. Expressing
the components of B̃ in terms of SOVPs it yields:

B̃ϕ3
(R3) =

1

r

∂2W̃a3

∂ϕ∂z
= − 1

R3
αmβnW̃a3 ; (23a)

B̃ϕ4
(R3) =

1

r

∂2W̃a4

∂ϕ∂z
= − 1

R3
αmβnW̃a4 ; (23b)

B̃z3(R3) =
∂2W̃a3

∂z2
= −β2

nW̃a3 (23c)

B̃z4(R3) =
∂2W̃a4

∂z2
= −β2

nW̃a4 (23d)

(24)

and substituting in (22h) and (22i), we have:

1

µ0

1

R3
αmβn

(
W̃a4 − W̃a3

)
= J̃z (25a)

 1

µ0
β2
n

(
W̃a4 − W̃a3

)
= J̃ϕ (25b)

Then, dividing (25a) by (25b) and recalling (2), we can write:

1
µ0

1
R3
αmβn ·

(
W̃a4 − W̃a3

)
1
µ0
β2
n ·
(
W̃a4 − W̃a3

) =
J̃z

J̃ϕ
=
K ′zmn
K ′ϕmn

(26)

Finally, taking into account (3), (4) and (6), eq. (26) gives:

αm
R3 · βn

=
αm∆ϕ

βn ·∆z
=⇒ 1 = 1 q.e.d. (27)

The remaining eight equations can be solved to obtain the
eight integration constants C1a, C2a, C

′
2a, C2b, C

′
2b, C3a, C

′
3a,

and C ′4a.
All the electromagnetic quantities of interest can be evalua-

ted; in particular, the induced eddy currents are found as:

J̃ = σẼ = −jσ (ω − βnvz) · Ã; (28)

and the total thrust force is obtained by:

F =
1

2

∫
V

<
(
J̃× B̃∗

)
dv; (29)

where V is the conductive cylinder.

IV. APPLICATION EXAMPLE

We considered an infinitely long cylinder (see Fig. 4) with
internal radius R1 = 5.1 cm and external one R2 = 6.1 cm.
Eight equally spaced coils are distributed in the azimuth
direction on a cylinder with a radius R3 = 6.45 cm; this
configuration is repeated 12 times along the axial direction.
The width of the coil is 4z = R34ϕ = 6.0 mm and the
average length of both the sides is ∆` = 24 mm. The distance
along the axial direction of the centers of two adjacent coils
is Lz = 4.2 cm.

The coils sharing the same axial position characterized by
zn are fed with the current i(t) = IM sin(ω0t−k(zn−z0)) [A],
with IM = 50 kA, ω0 = 314.16 rad/s, k = 2π/(6 · 0.042) =
24.933 m−1, while z0 is the position of the first group of
coils. A travelling wave of magnetic flux density with two
pole pairs moves in the axial direction at the speed vs =
ω0/k = 12.6 m/s. If vz is the speed of the mover, the slip
is defined as: s = (vs − vz)/vs. We evaluated the current
density distribution on the cylinder and the thrust force on it
in correspondence to s = 1 and s = 0.5.

Results
Fig. 5 shows the current distribution at the average radius

of the cylinder. The vertical axis indicates the distance taken
on the azimuth direction from a line parallel to the axis and
located in the middle of two adjacent arrays of coils. The
distribution on one quarter of the cylinder is shown.
Fig. 6 shows the current density components along a line
parallel to the z-axis in correspondence of the centers of the
portion of the coils whose current is directed along the z-axis.
The presence of two pole pairs is easily identified. The thrust
force on the mover evaluated by eq. (29) is F = 3.4 kN .
Fig. 7 shows the current density in the same region as in Fig.
5 but in correspondence of s = 0.5, while Fig. 8 shows the
same quantity as Fig. 6.



Fig. 4. Application example.

Fig. 5. Current density distribution on one quarter of the cylindrical surface: s = 1.

Fig. 7. Current density distribution on one quarter of the cylindrical surface: s = 0.5.
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Fig. 6. Distribution of the current density on a line A − B (see fig. 4)
parallel to the axis of the cylinder under the stright side of the coil (s = 1).
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Fig. 8. Distribution of the current density on a line A−B (see fig. 4) parallel
to the axis of the cylinder under the stright side of the coil (s = 0.5).
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Fig. 9. Time waveform of the current densities on a point P (see fig. 4) on
the conductive cylinder (s = 0.5).

Fig. 9 reports the waveforms with respect to the time of
the axial and azimuth components of the current density on a
point on the cylinder. At t = 0 this point (labeled with P in
fig. 4) was in correspondence of the middle of the stright side
of one of the coils in the second ring. As expected because
of the slip s = 0.5 the frequency of the fundamental of these
waveforms is halved with respect to the frequency f = 50 Hz
of the exciting currents. The thrust force on the cylinder is
F = 12.0 kN . The results have been compared with those
obtained by an integral formulation described in [13] - [18],
showing an excellent agreement. It is worthwhile to note that
the equivalent circuit adopted in the above formulation allows
for a quick and accurate evaluation of the sensitivity with
respect to the design parameters [19]. This may be a valuable
help in the design of the device when optimization by gradient
based methods is adopted.

Fig. 10. Current density distribution on one quarter of the cylindrical surface: s = 0.5 with coil ]1.

Fig. 11. Current density distribution on one quarter of the cylindrical surface: s = 0.5 with coil ]4.

We also consider the effect of changes in the excitation
coil geometry. With reference to the inset of Fig. 4, which
describes the coil geometry, we performed a number of

TABLE I
COIL DIMENSIONS

Coil Lz ∆` ∆z Fz (s = 0.5) Fz (s = 1)

type [cm] [mm] [mm] [kN ] [kN ]

]1 4.2 24 6 12.2 3.45
]2 4.2 22 8 10.9 3.08
]3 4.2 26 4 12.6 3.25
]4 4.2 18 4 9.65 2.77
]5 4.2 20 6 10.6 2.85

simulations maintaining the same armature characteristics,
the same distance Lz between the coils, while varying ∆`
and ∆z according to table I.

Figs. 10 and 11 show the current distribution on the cylin-
drical surface in correspondence of excitation system based on
coil ]1 and ]4 respectively. As reported in table I, the thrust
force on the armature is the highest with coil ]1 and the lowest
with coil ]4.

Figs. 12 and 13 show the comparison of the azimuth and
axial component of the current density along a line parallel
to the line A − B (see fig. 4) at a radius r = 5.925 cm and
an angle of 9o with respect to the middle line between two
adjacent coils in the azimuth direction. The results have been
obtained at slip s = 0.5.

Figs. 14 and 15 show the same quantities obtained at a slip
s = 1. It is worth to observe that in both cases (s = 0.5
and s = 1), the highest force corresponds to the most intense
current density (the one marked with circles). Similarly the
lowest force correspond to the weakest current density marked
by squares.
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Fig. 12. Comparison of the armature current density @ s = 0.5.
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Fig. 13. Comparison of the armature current density @ s = 0.5.
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Fig. 14. Comparison of the armature current density @ s = 1.

V. CONCLUSION

An analytical model for the evaluation of the eddy current
induced in a conductive cylinder by a set of saddle shaped
coils moving in the axial direction has been considered. The
problem has been approached by a double Fourier transform
and the SOVP; the solution has been expressed in terms of
a double series of Bessels functions. The proposed model
has been used to analyzed a recently proposed induction
launcher named multipole field electromagnetic launcher in
its travelling wave configuration.
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