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Abstract

Reliable and efficient uncertainty propagation is crucial for the task of mon-

itoring possible impacts of Near Earth Asteroids with our planet. It is well

known that a switch of the primary body can greatly reduce the numerical

truncation error in the case of planetary flybys. In the present work, the ad-

vantages of performing a primary body switch in the uncertainty propagation

problem are explored. For this purpose, first we present the linear uncertainty

propagation using Dromo formulation, which has been shown in previous works

to have a satisfactory performance when propagating the orbit uncertainty of

Near Earth Asteroids. Next, we introduce the concept of primary body switch

for the uncertainty propagation problem. The algorithm is based on the fol-

lowing procedure. We sample the initial orbit uncertainty distribution and lin-

early propagate the samples, considering the N -body gravitational influence. A

primary body switch, which is a nonlinear mapping, is performed for all the

samples at a threshold distance from the approaching planet, the Earth. The

orbit of the samples is then linearly propagated with respect to the Earth using

the Dromo formulation until the threshold distance is reached again. Finally,

the propagation center is changed back to the heliocentric frame and the linear

propagation continues. We apply the proposed method to an extensive set of
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asteroids that approach the Earth. Results suggest that the average error of

the linear propagation can be reduced up to a factor of 30 when compared to a

purely heliocentric linear propagation using Dromo elements.

Keywords: Covariance Propagation, Dromo, State Transition Matrix, Near

Earth Asteroids, Primary body switch

1. Introduction

Orbit uncertainty propagation is a key aspect of Astrodynamics that has

been receiving increasing attention in the last years. For some applications, it

is not enough to just analyze the nominal orbit of an object, and it becomes

paramount to carefully consider the deviation from the real and the predicted5

orbit. In particular, in the context of planetary defense, reliable and efficient

uncertainty propagation is crucial for the task of monitoring possible impacts

of Near Earth Asteroids (NEAs) with our planet.

When the uncertainty is small, the probability distribution function (pdf)

is usually modeled as Gaussian because of the central limit theorem and be-10

cause its analytical properties, mainly preservation of Gaussianity under linear

transformations. Unfortunately, the orbital motion is strongly nonlinear and

the assumption of a Gaussian distribution propagated linearly eventually loses

validity. When this happens, in general one must obtain the pdf by solving

complicated partial differential equations, like the Fokker-Plank Equation [1,15

pp. 192-202], or use another method to accurately calculate the evolution of the

orbit pdf. For instance, Park et al. [2] proposed generalizing the state transition

matrix (STM) to higher orders by constructing state transition tensors. The

use of Differential Algebra (DA) has also been proposed [3] and applied to real

cases like the 2029 close approach of the asteroid Apophis. Another possibility20

is to model the orbit uncertainty as a sum of Gaussian kernels in the Gaussian

Mixture Model (GMM) [4].

There is a whole family of non-intrusive methods that exploit already exist-

ing orbit propagation tools. The most elementary method one could think of is
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a simple Monte Carlo (MC) method, which propagates random samples of the25

initial distribution. If the samples are not random but correspond to carefully

chosen points, computational time can be greatly reduced by the use of the

Unscented Kalman Filter [5]. The solution can be conveniently projected in an

orthonormal basis using Polynomial Chaos Expansions (PCE), and the compo-

nents in the new basis can be calculated from propagation of a reduced number30

of samples [6]. Vittaldev and Russell proposed a combination of GMM and PCE

[7]. Kriging, a method for interpolation from discrete data, has also been ap-

plied for orbit uncertainty propagation [8]. When studying the orbit uncertainty

of NEAs, Milani et al introduced the concept of Line Of Variations (LOV), a

one-dimensional sampling along a carefully chosen direction that accounts for35

most of the orbit uncertainty [9].

Some techniques are possible to extend the validity of linear methods, which

are usually faster than the methods mentioned above. Junkins et al. [10] pointed

out that the accuracy of the predicted covariance depends on the set of variables

that constitute the state vector. They proposed the use of equinoctial elements40

substituting the classical Cartesian representation, but curvilinear coordinates

have also been proven to ameliorate the problem (see [11, 12, 13, 14, 15] for

instance).

One relatively recent orbital motion formulation that may be very promising

for uncertainty propagation is Dromo, proposed by Peláez et al. in 2007 [16]45

and considerably improved in subsequent works by Urrutxua et al. [17], Baù et

al. in 2013 [18], 2014 [19], and 2015 [20]. It employs seven non-singular orbital

elements and a fictitious time derived from a second order Sundman transfor-

mation. It has been shown that Dromo exhibits an excellent performance in

terms of numerical propagation of orbits. Using this formulation, the linear50

propagation of the uncertainty of NEAs subject to N -body perturbation was

presented recently and shown to drastically improve its Cartesian counterpart

[21]. The method has been applied to Earth-bounded orbits as well, obtaining

satisfactory results [22].

While linearization with the original Dromo formulation is possible [23],55
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it leads to problems of time synchrony in the propagated pdf [24]. The first

step in order to make the formulation applicable to covariance propagation in

time was to choose time as the independent variable. This is crucial when the

covariance propagation process involves time-dependent perturbations whose

time-derivative needs to be evaluated. The propagation of asteroid orbits, for60

instance, requires the computation of N -bodies gravitational perturbations ob-

tained from time-dependent ephemerides. Next, one has to construct a state

transition matrix (STM) in Dromo elements and obtain the fundamental (linear)

differential equation that governs its time evolution by computing the partial

derivatives of the perturbing accelerations with respect to the Dromo state vari-65

ables. Once the time evolution of the state transition matrix is obtained, the

covariance matrix propagation can be carried out analytically, effectively propa-

gating the initial orbit uncertainty into the future. The details of this approach

can be found in [21] and [22].

It is well known that a primary body switch can greatly reduce the nu-70

merical truncation error in the cases of planets flybys. Recently, Amato et al.

[25] showed that the distance at which the primary body switch is performed

when using a Dromo formulation strongly affects the accuracy of the calcula-

tions. The existence of a non-trivial optimum switch distance was also reported.

This distance does not coincide with the size of the Sphere of Influence of the75

approached planet, but is actually greater.

In the present work, the advantages of a primary body switch on the propa-

gation of orbit uncertainty are explored, under the assumption of a deterministic

dynamical system. When propagating the uncertainty of the orbital motion, a

primary body switch seeks reducing the third-body gravity linearization error80

pointed out by Hernando-Ayuso and Bombardelli [21]. To highlight the benefit

of the switch, we employ a Monte Carlo method with random sampling of the

initial pdf. Each sample is propagated linearly around the mean orbit, and the

nonlinear function that describes the primary body switch in Dromo elements

allows reducing the uncertainty propagation error. Without loss of generality,85

this strategy can be combined with other methods introduced above (LOV,
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GMM, STT, PCE, DA, etc) reducing the number of terms or samples needed

for a given accuracy, or decreasing the error for an equivalent computational

time.

We present the Dromo formulation and the linear propagation around a90

reference orbit in sections 2 and 3, respectively. We then introduce in section

4 the concept of primary body switch for the uncertainty propagation problem.

Finally, in sections 5 and 6, we present and discuss the results of the primary

body switch when propagating the uncertainty of a group of selected asteroids.

2. Dromo formulation95

Let us consider a particle of negligible mass orbiting around a primary of

gravitational parameter µ. Let us employ, from now on and unless specified,

r̃ “ 1 au as unit of distance, and 1{ñ as unit of time (τ), where ñ is the angular

rate of a circular orbit with radius equal to the reference radius r̃:

ñ “

c

µ

r̃3
. (1)

In this canonical system of units, the gravitational parameter of the primary

becomes unity.

2.1. Fictitious time

The Dromo formulation is characterized by the use of a fictitious time σ as

independent variable as given by the second-order Sundman transformation:

dτ

dσ
“
r2

h
(2)

where h is the angular momentum and r corresponds to the orbital radius. The

fictitious time σ is related to the osculating true anomaly ν by

σ “ ν ` β. (3)

That is, the fictitious time evolves as the osculating true anomaly plus a drift

β caused by orbital perturbations. Without any loss of generality, we can set100
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the value of β for the initial epoch equal to zero. Note that for the uncertainty

propagation problem we justified in [21] the convenience of using the real time τ

as independent variable. Therefore, we will consider σ as a variable that depends

on time, and propagate it together with the rest of the Dromo elements.

2.2. Dromo elements105

To avoid singularities in the description of the orbital motion, seven gener-

alized orbital elements are used in this formulation.

The first three Dromo elements are defined as:

q1 “
e

h
cosβ, (4)

q2 “
e

h
sinβ, (5)

q3 “
1

h
, (6)

where e corresponds to the magnitude of the eccentricity vector e.

The four remaining generalized orbital elements are the Euler-Rodrigues pa-

rameters characterizing the rotation associated to the matrix P . This rotation

brings an intermediate frame P (having two axes constantly lying in the instan-

taneous orbital plane of the particle) to overlap with a reference inertial frame

(I). In the classical Dromo formulation [16], the intermediate frame was chosen

to coincide with the local-vertical local-horizontal (LVLH) orbital frame R at

τ “ 0. Here we choose P in such a way that it coincides with the perifocal

frame at τ “ 0, as done in Ref. [17]. The matrix P reads

P “

»

—

—

—

–

1´ 2
`

q25 ` q
2
6

˘

2 pq4q5 ´ q6q7q 2 pq4q6 ` q5q7q

2 pq4q5 ` q6q7q 1´ 2
`

q24 ` q
2
6

˘

2 pq5q6 ´ q4q7q

2 pq4q6 ´ q5q7q 2 pq5q6 ` q4q7q 1´ 2
`

q24 ` q
2
5

˘

fi

ffi

ffi

ffi

fl

. (7)

An additional rotation matrix Q brings the orbital frame R to overlap with

the intermediate frame P through a rotation of ´σ around the common z-axis,

which is oriented towards the angular momentum vector:

Q “

»

—

—

—

–

cosσ ´ sinσ 0

sinσ cosσ 0

0 0 1

fi

ffi

ffi

ffi

fl

. (8)
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Finally, the rotation from the I to the R frame can be built as the composi-

tion of the rotations previously introduced, and is characterized by the matrix

R given by

R “ P Q. (9)

The Euler-Rodrigues parameters can be related to the classical orbital elements

(i inclination, Ω right ascension of the ascending node, and ω argument of

periapsis) as follows:

q4 “ sin
i

2
cos

Ω ´ ω ` β

2
, (10)

q5 “ sin
i

2
sin

Ω ´ ω ` β

2
, (11)

q6 “ cos
i

2
sin

Ω ` ω ´ β

2
, (12)

q7 “ cos
i

2
cos

Ω ` ω ´ β

2
, (13)

where β was introduced in Eq. (3).

The inertial reference frame I, the intermediate frame P and the LVLH110

frame R, as well as the rotations that relate them, are shown in figures 1 and 2.

Ω

ω−β
i

xI

zI

yP

yI

xP

zP

e

β

Figure 1: Inertial (I “ xxI , yI , zIy) and intermediate (P “ xxP , yP , zPy) frames.

An alternative derivation of Dromo elements from the inertial Cartesian

state is provided in Appendix A.
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xP

yP

yR

xR

e

β

ν

Figure 2: Intermediate (P “ xxP , yP , zPy) and LVLH (R “ xxR, yR, zRy) frames. Note that

zR ” zP .

2.3. Equations of Motion

After introducing the Dromo state vector q “ pq1, . . . , q7, σq
J

, the equations

of motion in the presence of a perturbing acceleration f pq, τq “ pfr, fθ, fhq
J

expressed in the R frame can be written as (see [22])

dq

dτ
“ g pq,f pq, τqq (14)

where

g1 “
dq1
dτ

“
fθ
s
ps` q3q cosσ ` fr sinσ, (15a)

g2 “
dq2
dτ

“
fθ
s
ps` q3q sinσ ´ fr cosσ, (15b)

g3 “
dq3
dτ

“ ´fθ
q3
s
, (15c)

g4 “
dq4
dτ

“
fh
2s
pq7 cosσ ´ q6 sinσq , (15d)

g5 “
dq5
dτ

“
fh
2s
pq6 cosσ ` q7 sinσq , (15e)

g6 “
dq6
dτ

“ ´
fh
2s
pq5 cosσ ´ q4 sinσq , (15f)

g7 “
dq7
dτ

“ ´
fh
2s
pq4 cosσ ` q5 sinσq , (15g)

g8 “
dσ

dτ
“ q3s

2. (15h)
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2.4. Dromo elements inverse transformations115

After obtaining the time evolution of the Dromo elements, it is convenient

to obtain a more intuitive representation of the state. To this end, we employ

the inverse of the transformation described by Eqs. (4–6) and Eqs. (10–13) to

express the classical orbital elements as a function of the Dromo elements:

a “
1

q23 ´ q
2
1 ´ q

2
2

, (16)

e “
1

q3

b

q21 ` q
2
2 , (17)

i “ cos´1
`

1´ 2
`

q24 ` q
2
5

˘˘

, (18)

Ω “ atan2 pq5, q4q ` atan2 pq6, q7q , (19)

ω “ atan2 pq2, q1q ` atan2 pq6, q7q ´ atan2 pq5, q4q , (20)

ν “ σ ´ atan2 pq2, q1q . (21)

It is also possible to express the inertial Cartesian position r “ px, y, zq
J

and

velocity v “ pvx, vy, vzq
J

as a function of the Dromo elements. This relation

can be written in compact form as

r “ R

¨

˚

˚

˚

˝

r

0

0

˛

‹

‹

‹

‚

“ rP

¨

˚

˚

˚

˝

cosσ

sinσ

0

˛

‹

‹

‹

‚

, (22)

v “ R

¨

˚

˚

˚

˝

u

s

0

˛

‹

‹

‹

‚

“ P

¨

˚

˚

˚

˝

´q2 ´ q3 sinσ

q1 ` q3 cosσ

0

˛

‹

‹

‹

‚

, (23)

where the orbital radius r takes the expression

r “
1

q3s
. (24)

Finally, s and u represent the transversal and radial components of the particle

velocity, respectively, and obey

s “ q3 ` q1 cosσ ` q2 sinσ, (25)

u “ ´
Bs

Bσ
“ q1 sinσ ´ q2 cosσ. (26)
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3. Linear propagation with Dromo

An orbit q close to a reference orbit qref can be linearly propagated via the

State Transition Matrix (STM) as

q pτq “ qref pτq `Φ pτ, τ0q pq pτ0q ´ qref pτ0qq . (27)

The evolution of the STM is given by

dΦpτ, τ0q

dτ
“ G pqref pτq , τqΦpτ, τ0q, Φpτ0, τ0q “ I8 (28)

which must be integrated together with Eq. (14), and where I8 is the eight-

dimensional identity matrix. The gradient matrix G corresponds to the follow-

ing total derivative evaluated on the reference orbit

G “
dg

dq
“
Bg

Bq
`
Bg

Bf

Bf

Bq
(29)

where f must be expressed in the R reference system.

The derivative Bg
Bq must be calculated for constant f :

Bg

Bq
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´
fθq3 cos2 σ

s2 ´
fθq3 cosσ sinσ

s2 fθ
s´q3
s2 cosσ 0 0 0 0 Bg1

Bσ

´
fθq3 cosσ sinσ

s2 ´
fθq3 sin2 σ

s2 fθ
s´q3
s2 sinσ 0 0 0 0 Bg2

Bσ

fθq3 cosσ
s2

fθq3 sinσ
s2 ´fθ

s´q3
s2 0 0 0 0 ´fθ

u
s
q3
s

´
g4 cosσ

s ´
g4 sinσ

s ´
g4
s 0 0 ´

fh sinσ
2s

fh cosσ
2s

g4u´g5s
s

´
g5 cosσ

s ´
g5 sinσ

s ´
g5
s 0 0 fh cosσ

2s
fh sinσ

2s
g5u`g4s

s

´
g6 cosσ

s ´
g6 sinσ

s ´
g6
s

fh sinσ
2s ´

fh cosσ
2s 0 0 g6u´g7s

s

´
g7 cosσ

s ´
g7 sinσ

s ´
g7
s ´

fh cosσ
2s ´

fh sinσ
2s 0 0 g7u`g6s

s

2q3s cosσ 2q3s sinσ s2 ` 2q3s 0 0 0 0 ´2q3s u

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

(30)

with
Bg1
Bσ

“ fr cosσ ` fθ

´u

s

q3
s

cosσ ´
´

1`
q3
s

¯

sinσ
¯

, (31)

Bg2
Bσ

“ fr sinσ ` fθ

´u

s

q3
s

sinσ `
´

1`
q3
s

¯

cosσ
¯

. (32)

10



The second derivative, Bg
Bf , is calculated considering a constant Dromo state

vector:

Bg

Bf
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

sinσ
`

1` q3
s

˘

cosσ 0

´ cosσ
`

1` q3
s

˘

sinσ 0

0 ´
q3
s 0

0 0 1
2s pq7 cosσ ´ q6 sinσq

0 0 1
2s pq6 cosσ ` q7 sinσq

0 0 ´ 1
2s pq5 cosσ ´ q4 sinσq

0 0 ´ 1
2s pq4 cosσ ` q5 sinσq

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (33)

Finally, the last derivative Bf
Bq depends on the nature of the perturbing ac-

celerations and must be calculated for each of them. Explicit expressions for

third-body perturbing accelerations are given in section 3.1.120

3.1. N -body perturbation

The N -body perturbing acceleration can be written as

f “ ´
N´1
ÿ

j“2

µj
r ´ rj
}r ´ rj}3

´

N´1
ÿ

j“2

µj
rj
}rj}3

(34)

where j “ 1 is the primary body already considered in the Dromo formulation

and j “ N is the propagated object, whose mass is considered negligible with

respect to the perturbing bodies. The quantities rj and µj are the position

vector and the gravitational parameter of the jth body respectively.125

It is important to underline that in order to derive analytical expressions for

the 3ˆ8 Jacobian matrix Bf
Bq , the perturbing acceleration f has to be projected

onto the R reference frame. The representation of the particle position vector

with respect to such frame is straightforward:

rR “

ˆ

1

q3s
, 0, 0

˙J

. (35)

The position of the jth body only depends on time and can be obtained us-

ing JPL’s DE ephemeris [26] or VSOP [27] (Variations Séculaires des Orbites
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Planétaires), for example. This position is usually expressed as a vector rIj with

respect to the inertial frame and can be projected onto R as follows

rRj “ RJrIj . (36)

The derivative of the force components in R can be obtained by applying

the chain rule, if we consider that f depends on q through r and rj :

Bf

Bq
“
Bf

BrR
BrR

Bq
`

N´1
ÿ

j“2

Bf

BrRj

BrRj
Bq

(37)

Reordering the terms in the summation, we obtain

Bf

Bq
“ ´

N´1
ÿ

j“2

µj

$

&

%

˜

I3
›

›rR ´ rRj
›

›

3 ´ 3

`

rR ´ rRj
˘ `

rR ´ rRj
˘J

›

›rR ´ rRj
›

›

5

¸˜

BrR

Bq
´
BrRj
Bq

¸

`

˜

I3
›

›rRj
›

›

3 ´ 3
rRj r

R
j
J

›

›rRj
›

›

5

¸

BrRj
Bq

,

.

-

(38)

where I3 is the 3-dimensional identity matrix, y yJ represents the outer product

of the vector y P R3 with itself, which results in a 3-dimensional matrix, and

BrR

Bq
“

»

—

—

—

–

´ cosσ
q3s2

´ sinσ
q3s2

´
s`q3
q23s

2 0 0 0 0 u
q3s2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

fl

, (39)

BrRj
Bq

“

»

—

—

—

–

0 0 0 | . . . | |

0 0 0 QJ BP
J

Bq4
RrRj . . . QJ BP

J

Bq7
RrRj

BQJ

Bσ QrRj

0 0 0 | . . . | |

fi

ffi

ffi

ffi

fl

, (40)
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with

BP

Bq4
“

»

—

—

—

–

0 2q5 2q6

2q5 ´4q4 ´2q7

2q6 2q7 ´4q4

fi

ffi

ffi

ffi

fl

,

BP

Bq5
“

»

—

—

—

–

´4q5 2q4 2q7

2q4 0 2q5

´2q7 2q6 ´4q5

fi

ffi

ffi

ffi

fl

,

BP

Bq6
“

»

—

—

—

–

´4q6 ´2q7 2q4

2q7 ´4q6 2q5

2q4 2q5 0

fi

ffi

ffi

ffi

fl

,

BP

Bq7
“

»

—

—

—

–

0 ´2q6 2q5

2q6 0 ´2q4

´2q5 2q4 0

fi

ffi

ffi

ffi

fl

.

(41)

Finally,

BQJ

Bσ
“

»

—

—

—

–

´ sinσ ´ cosσ 0

cosσ ´ sinσ 0

0 0 0

fi

ffi

ffi

ffi

fl

. (42)

4. Primary body switch

To overcome the limitations of a purely heliocentric linear propagation in

the presence of close approaches with planets, we introduce a primary body130

switch at a threshold distance from the encountering planet. Without loss of

generality, we assume that the encountering planet is the Earth.

When employing the primary body switch strategy, the linear propagation

is substituted with a hybrid Monte Carlo (MC) method. At the initial epoch,

we sample M “ 1000 random points from the Gaussian distribution described135

by the nominal orbit and the covariance matrix. For each asteroid, the nominal

orbit and covariance matrix are obtained from the NEODyS database, main-

tained by the University of Pisa and the SpaceDyS company. NEODyS offers

this information for two different epochs: Near middle of observational arc and

13



Near present day. We chose the former, aiming to minimize the deviations from140

Gaussianity caused by the orbital motion. We employ the uncertainty data of-

fered in equinoctial elements. The covariance matrix we use for the sampling

accounts for the uncertainty in the six equinoctial elements.

We propagate each sample using the STM of the nominal orbit of the object

of study (Eq. (27)). If the nominal orbit intrudes the sphere of a given radius

centered at the Earth, the heliocentric propagation is interrupted and all the MC

samples (i “ 1, . . . ,M) are transformed from the heliocentric to the geocentric

reference frame. In the geocentric phase, we consider a reference frame with

origin in the Earth center and having the same orientation of the heliocentric

inertial frame. We compute the relative positions and velocities with respect to

the Earth by

r̂i “ ri ´ r‘ (43)

v̂i “ vi ´ v‘ (44)

where we denote the geocentric variables with a hat (ˆ), and employ ‘ as the

Earth symbol.145

From r̂i, v̂i we obtain the geocentric Dromo representation of the MC sam-

ples, which are propagated again using linear theory until the distance between

the nominal orbit and the Earth is greater than the employed threshold. At that

point, another primary body switch back to the heliocentric frame is performed

using Eqs. (43, 44). The switch is repeated if needed in case the nominal orbit150

comes again close to the Earth. A scheme of this process is shown in Fig. 3.

The switch is calculated using Eqs. (22, 23, 43, 44) and the expressions

in Appendix A that provide the Dromo elements as a function of the inertial

Cartesian state vector. This set of equations is constituted by fully analytical

expressions involving the position and velocities of the asteroid and the Earth,155

and in general is nonlinear. When performing a switch, a Gaussian distribution

will remain Gaussian if the eigenvalues of its covariance matrix are sufficiently

small, because in that case the equations that define the switch can then be lin-

earized around the reference orbit with negligible error. A second switch under
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similar conditions will yield a final distribution that will also be approximately160

Gaussian. Moreover, for primary body switches that are well approximated by

a linear mapping, a combination of switches with heliocentric and geocentric

STMs will result in a STM which is mathematically equivalent to the purely

heliocentric STM. On the other hand, if the equations that govern the primary

body switch cannot be replaced by their linearized form, Gaussianity will not165

be conserved in general. We note that close orbits can still be propagated us-

ing a STM even if they follow a non-Gaussian distribution. That is, we can

combine linear propagation arcs with primary body switches, retaining with

a higher degree of fidelity the nonlinearities of the orbital motion. The un-

certainty distribution at a generic epoch is characterized by the dispersed MC170

states, and if necessary, the covariance matrix and other higher order moments

can be estimated [28, pp. 341-363].

Geocentric
linear

propagation

Heliocentric
linear

propagation

Switch at 
switch distance

(nonlinear)

Start
Initial epoch

End
Final epoch

Figure 3: Primary body switch flow chart.

We highlight that the primary body switch, when applied to the orbit uncer-

tainty propagation problem, is a technique that seeks reducing the third-body

gravitational perturbation linearization error of the orbital uncertainty disper-175

sion. This is different from the classical application of the primary body switch,

which aims to reduce the numerical error of a single orbit [25].
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5. Results

In this section we present examples of orbit uncertainty propagation for some

selected asteroids employing the primary body switch strategy.180

These asteroids were chosen as good candidates to perform the primary

body switch based on two criteria. First, all of them have their closest approach

before the year 2050 at a distance no much greater than 1 radius of the Sphere

of Influence of the Earth RSoI » 0.0062 au » 9.25 ˆ 105 km. For reference,

1 lunar distance corresponds to 384400 km » 0.42RSoI. Second, they have a

well determined orbit. Here, we employ the Orbit Condition Code (OCC) to

decide whether to apply the switch or not to a particular asteroid. The OCC

provides an estimate of how well determined is an orbit and takes integer values

from 0 to 9, where 0 is assigned to extremely well determined orbits and 9

represents very large uncertainties. It is mathematically defined as

OCC “

[

ln
9λ

9λ0
` 1

_

, (45)

where tyu is the floor function, 9λ0 » 1.49 and the longitude runoff 9λ is

9λ “

˜

e σTp
ˇ

ˇ

d
` 10 σP |d

1

P |y

¸

k
1

P |y
ˆ 3600ˆ 3. (46)

In this equation, σTp
ˇ

ˇ

d
is the standard deviation of the perihelion passage time

in days, P |y is the orbital period in years, σP |d is the standard deviation of the

orbital period in days and k “ 180
π 0.01720209895 deg is the Gaussian constant

in degrees. We note that the floor function can be dropped from Eq. (45), if

needed, to better quantify the uncertainty of an orbit [21]. We only selected185

asteroids with initial OCC equal to 0 or 1.

The selected asteroids are shown in Table 1. For all these asteroids, we

performed a parametric search on the switch distance to analyze its effect on

the propagation accuracy. We took as lower bound the minimum close approach

distance, and consider performing a switch as far as 3 radii of the Sphere of190

Influence of the Earth.
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Table 1: Significant data of the asteroids considered in the analysis.

Asteroid OCC
Closest approach

distance [RSoI]

Closest approach

epoch

Final propagation

epoch

2011AG5 1 1.17 2040-02-04 2050-01-01

2012AP10 1 0.51 2042-12-29 2050-01-01

2004RQ252 1 0.57 2043-04-01 2050-01-01

2001AV43 0 0.34 2029-11-11 2040-01-01

99942 Apophis 0 0.04 2029-04-13 2040-01-01

To better understand the effect of the primary body switch, we also con-

sidered cases where the initial standard deviations, expressed in equinoctial

elements, were scaled up or down by a factor of 10.

We used as a measure of the linearization error the position error averaged

over all the MC samples:

ε “
1

M

M
ÿ

i“1

b

pxi ´ x
˚
i q

2
` pyi ´ y

˚
i q

2
` pzi ´ z

˚
i q

2
(47)

where the true solution px˚i , y
˚
i , z

˚
i q
J

was calculated by integrating the equations195

of motion for each individual sample. Furthermore, for each asteroid and initial

uncertainty scaling factor, we normalized the average error with the maximum

position standard deviation estimated from the true solution at the final epoch.

5.1. 2011AG5

The orbit uncertainty propagation of 2011AG5, a Potential Hazardous As-200

teroid (PHA), was carried out using the primary body switch. 2011AG5 will

experience a close approach with the Earth in 2040 February 4 with a minimum

distance of about 0.007 au, which is slightly larger than the radius of the Sphere

of Influence. The propagation was performed from 2011 November 29, and the

average error was evaluated on 2050 January 1.205

Figure 4 shows the average error as a function of the switch distance for this

asteroid at the end of the propagation. If the switch distance is smaller than

17



the closest approach distance, the switch cannot be performed. However, for

distances of about 1.05 times the Earth closest approach distance, the average

error drops between one and two orders of magnitude. This behavior persists210

even when scaling up or down the initial uncertainty, which suggests that for

2011AG5, performing a switch may help to greatly reduce the uncertainty prop-

agation error. The gray region in Fig. 4 corresponds to a switch distance between

1.05 and 1.15 times the closest approach distance of the nominal orbit.
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Figure 4: Average position error for 2011AG5 at year 2050 as a function of the switch distance.

For the real initial covariance, the normalization factor is about 1.8ˆ106 km. The gray region

corresponds to a switch distance between 1.05 and 1.15 times the closest approach distance

of the nominal orbit.

5.2. 2012AP10215

2012AP10 is a 20 m asteroid that will flyby the Earth in 2042 December 29

at a nominal distance of about 1.4 lunar distances, but its minimum distance

with the Earth could be as low as 0.4 lunar distances. This is reflected in its

condition code of 1. We propagate from 2013 April 5 to 2050 January 1, and

evaluate the average error at the end of the propagation. As it can be seen in220
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Fig. 5, the average error is effectively reduced for the actual initial uncertainty,

as well as for its scaled-up initial covariance matrix. However, by lowering the

initial uncertainty the switch becomes less effective in this case.
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Figure 5: Average position error for 2012AP10 at year 2050 as a function of the switch

distance. For the real initial covariance, the normalization factor is about 1.3ˆ 105 km. The

gray region corresponds to a switch distance between 1.05 and 1.15 times the closest approach

distance of the nominal orbit.

5.3. 2004RQ252

2004RQ252 will flyby the Earth at a distance of about 8 ˆ 105 km in 2043225

April 1. Our integration starts in 2006 March 5, and is performed until 2050

January 1. Figure 6 shows the average position error at the final epoch. The

effectiveness of the switch with this asteroid resembles that of 2011AG5, with

a very high efficiency for a switch performed at a distance of about 1.05 times

the Earth closest approach distance.230

For 2004RQ252, we also provide a comparison between the Dromo linear

propagation without performing any switch, and a linear propagation in Carte-

sian coordinates. Figure 7 shows how the Dromo linear method outperforms
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Figure 6: Average position error for 2004RQ252 at year 2050 as a function of the switch

distance. For the real initial covariance, the normalization factor is about 1.6ˆ 105 km. The

gray region corresponds to a switch distance between 1.05 and 1.15 times the closest approach

distance of the nominal orbit.

its Cartesian counterpart until the 2043 flyby. After this close encounter, the

error of the two methods is comparable. By employing the primary body switch235

strategy, the final error can be reduced by a factor of 17.75.

5.4. 2001AV43

The propagation of the orbit uncertainty of 2001AV43 was performed start-

ing from 2012 October 14, and was carried out until 2040 January 1. In this

interval, 2001AV43 has an Earth flyby on 2029 November 11, approaching as240

close as 0.34RSoI.

Figure 8 shows the results of the primary body switch evaluated at the

final epoch. For the actual or the scaled-down initial orbit uncertainty, the

advantages of performing a primary body switch are not clear. This could

be explained by its well-determined orbit, which has an OCC of 0. When245

considering larger initial uncertainty, a switch at distances of about three times
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Figure 7: Average position error for 2004RQ252As a function of time.

the closest approach distance reduces the final error in more than half. We note

that for 2001AV43, the closest approach occurs at a distance of the same order

of magnitude as the Moon distance, whose gravity at close distances may affect

the accuracy of the linear propagation.250

5.5. 99942 Apophis

We applied the proposed primary body switch to the PHA Apophis. The

propagation starts on 2009 May 6 and is performed until 2040 January 1, when

we evaluate the average position error. In 2029, Apophis will fly by the Earth at

a nominal closest-approach distance of about 38000 km. During this close flyby,255

the nonlinear nature of the Earth’s gravitational force across the uncertainty

region may strongly affect the evolution of the orbit uncertainty of this asteroid.

Figure 9 shows the results of performing the primary body switch at different

distances from the Earth and for different scalings of the initial uncertainty. For

the actual initial uncertainty, the error can be reduced by 40% if a switch is per-260

formed at about 0.6RSoI. Similar results are obtained when considering larger

initial uncertainties, where the reduction increases to almost 70%. However, a
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Figure 8: Average position error for 2001AV43 at year 2040 as a function of the switch

distance. For the real initial covariance, the normalization factor is about 2.9ˆ 105 km.

scaled-down initial uncertainty does not seem to benefit from the primary body

switch.

6. Discussion265

Figure 10 shows the optimum distance that minimizes the final average error.

Figure 11 shows the switch error-reduction factor, which is defined as the ratio

of the error that we have without performing the switch to the minimum error

that we obtain among all the possible switch distances. That is, a higher value

of the error-reduction factor means that the switch is a more effective way of270

decreasing the error for that particular case. The results are summarized in

Table 2. In Table 3, we provide the closest approach distance with respect to

the Earth and the Moon for each asteroid. For 2001AV43 and Apophis, the

switch did not reduce the error for a scaling factor of 1. We indicated this in

Table 2 as N/A (not applicable).275
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Figure 9: Average position error for 99942 Apophis at year 2040 as a function of the switch

distance. For the real initial covariance, the normalization factor is about 2.9ˆ 105 km.
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Figure 10: Optimum switch distance. For 2001AV43 and Apophis, the switch did not reduce

the error for a scaling factor of 1.
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Figure 11: Switch error-reduction factor. For 2001AV43 and Apophis, the switch did not

reduce the error for a scaling factor of 1.

2011AG5, 2012AP10 and 2004RQ252 are characterized by having an opti-

mum switch distance that does not vary significantly with the initial uncertainty

scaling factor, and corresponds to a switch distance slightly larger than the clos-

est approach distance. The optimum switch distance lays between a 5% and

a 15% larger than the minimum close approach distance with respect to the280

Earth. For these asteroids, performing the switch over very short propagation

arcs improves drastically the result of the uncertainty propagation. This is jus-

tified because near the close approach is where the linearization error of Earth’s

gravity becomes critical [21]. However, longer geocentric propagation arcs are

not beneficial in these cases because the Sun gravity linearization error would285

become dominant.

On the other hand, a less clear behavior is observed for Apophis and 2001AV43.

In the case of Apophis, the nonlinearity of its very close flyby causes multiple

local minima in the curve of average error for some of the initial uncertainty

scaling factors. Additionally, during the 2029 close encounter, Apophis comes290

as close to the Moon as 6.5 ˆ 10´4 au, which further complicates the propaga-

24



Table 2: Summary of the results. For 2001AV43 and Apophis, the switch did not reduce the

error for a scaling factor of 1.

Asteroid
Scaling

factor

Optimum switch

distance [RSoI]

Error-reduction

factor

Optimum switch distance
Minimum Earth distance

2011AG5

0.1

1

10

1.22

1.22

1.22

30.44

27.09

7.75

1.05

1.05

1.05

2012AP10

0.1

1

10

0.55

0.59

0.59

3.12

5.63

6.11

1.06

1.14

1.14

2004RQ252

0.1

1

10

0.60

0.61

0.61

4.80

17.75

13.51

1.04

1.06

1.06

2001AV43

0.1

1

10

0.34

0.99

1.21

N/A

1.13

2.51

N/A

2.92

3.57

99942 Apophis

0.1

1

10

0.04

0.63

0.57

N/A

1.66

2.99

N/A

15.04

14.11

tion of the uncertainty. For 2001AV43, the results suggest that the initial orbit

uncertainty could be too small to benefit from the switch, or that the lineariza-

tion error of the Moon gravity during the flyby has a non-negligible importance.

The closest approach distance of these two asteroids with the Earth is below295

2.5ˆ10´3 au (about the Earth-Moon distance), which could suggest that this is

a limiting factor on the applicability of the primary body switch technique with

the current formulation. To assess the frequency of such close Earth encounters,

we searched the NEODyS database for the number of encounters with different

maximum closest-approach distance. We carried out our query for encounters300

occurring at any epoch, and repeated the process for encounters only after the
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Table 3: Summary of closest approaches.

Asteroid
Earth-asteroid

minimum distance [au]

Moon-asteroid

minimum distance [au]

2011AG5 7.2ˆ 10´3 4.7ˆ 10´3

2012AP10 3.2ˆ 10´3 5.4ˆ 10´3

2004RQ252 3.5ˆ 10´3 1.3ˆ 10´3

2001AV43 2.1ˆ 10´3 1.7ˆ 10´3

99942 Apophis 2.5ˆ 10´4 6.5ˆ 10´4

current epoch. Our search reveals 1785 close encounters in the future with a min-

imum nominal distance from the Earth smaller than 3RSoI » 0.0185 au. Among

them, only 60 encounters occur closer than the Moon distance aK “ 0.00257 au.

The full result of our search is shown in Table 4.305

Table 4: Statistics of Earth encounters after a search in the NEODyS database.

Maximum

close-approach distance

Close encounters

(in the future)

Close encounters

(any epoch)

3RSoI “ 0.0185 au 1784 5369

2aK “ 0.00514 au 196 1046

aK “ 0.00257 au 60 455

Finally, from the summary in Tables 2 and 3, a larger Earth-asteroid mini-

mum distance seems to be correlated with a higher error-reduction factor. How-

ever, a more detailed study and a wider population of Earth-encountering as-

teroids are needed to understand this relation.

7. Conclusion310

In this work, we extended the domain of validity of linear propagation in

Dromo elements in the presence of planetary close encounters. We combined lin-

ear propagation in the heliocentric and geocentric frames with nonlinear trans-

formations of the Dromo elements between the two. By using this approach,
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the linearization error of the third body gravitational force can be reduced when315

linearly propagating the orbit uncertainty.

We applied the method to a list of asteroids that have a close approach with

the Earth before 2050, and with an Orbit Condition Code not greater than 1. We

also scaled up and down by a factor of ten the standard deviations at the initial

epoch to study how larger or smaller uncertainties affect the applicability of320

the method. We found that performing the primary body switch may improve

the result of the linear propagation up to a factor of 30, and that in many

cases a switch on very short arcs may drastically improve the orbit uncertainty

prediction.

In future works, we will consider a broader set of asteroids, both real and325

simulated, to better understand the role of the switch distance. An alternative

formulation for the geocentric arc, which could improve the accuracy of the

method, is also under study.
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[24] J. Roa, J. Peláez, The theory of asynchronous relative motion i: time trans-

formations and nonlinear corrections, Celestial Mechanics and Dynamical

Astronomy 127 (2017) 301–330.
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Appendix A. Cartesian coordinates to Dromo elements transforma-

tion

The inverse of the transformation given by Eqs. (22–23) constitutes an al-

ternative of Eqs. (16–21) for setting the initial values of the Dromo variables
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hyz ´ hzy

rh

˙

cosσ0

*

, (A.6)

q7 “ ˘
1

2

d

1`
hz
h
`

ˆ

x

r
`
hzx´ hxz

rh

˙

cosσ0 `

ˆ

y

r
´
hyz ´ hzy

rh

˙

sinσ0,

(A.7)

σ “ σ0 “ ν0 ` β “ atan2

ˆ

hu,
h2

r
´ 1

˙

` β, (A.8)

where h “ phx, hy, hzq
J
“ r ˆ v, and the radial velocity u reads

u “
r ¨ v

r
. (A.9)

If q7 “ 0, the following expressions may be used:

q4 “
1

2q6

hx
h
, (A.10)

q5 “
1

2q6

hy
h
, (A.11)

q6 “˘

d

1

2

ˆ

1`
hz
h

˙

. (A.12)
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For the case of q6 and q7 being both zero, the inclination corresponds to 180 deg

and the quaternion is defined by

q4 “˘

d

1

2

ˆ

1´

ˆ

y

r
sinσ0 `

hzx´ hxz

hr
cosσ0

˙˙

, (A.13)

q5 “
1

2q4

ˆ

x

r
sinσ0 `

hyz ´ hzy

hr
cosσ0

˙

. (A.14)

Finally if q4 “ q6 “ q7 “ 0, then q5 “ ˘1.
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