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Abstract. In this paper we expand the theory of weighted sheaves over posets,

and use it to study the local homology of Artin groups. First, we use such
theory to relate the homology of classical braid groups with the homology of
certain independence complexes of graphs. Then, in the context of discrete

Morse theory on weighted sheaves, we introduce a particular class of acyclic
matchings. Explicit formulas for the homology of the corresponding Morse
complexes are given, in terms of the ranks of the associated incidence matrices.
We use such method to perform explicit computations for the new affine case
C̃n, as well as for the cases An, Bn and Ãn (which were already done before

by different methods).
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1. Introduction

The topological theory of Artin groups started in the 60’s with classical braid
groups [FN62, Arn69, Arn70], and was broadened to general Artin groups in the 70’s
[Fuc70, BS72, Del72, Bri73, Coh76, Wei78, Gor78]. It has received much attention
in connection with problems in singularity theory, homotopy theory, hyperplane
arrangements, and combinatorics (see [Par14] for some references), up to recent
applications of some special cases to conjectures about hyperbolic groups [AGM13].

This work was partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca,
and by University of Pisa, Project no. PRA 67.
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Thanks to a good topological model for the K(π, 1) space of Artin groups
[Sal87, Sal94], a combinatorial free resolution for these groups was found [DCS96],
and several (co)homology computations were carried out [DCPSS99, DCPS01, CS04,
Cal05, Cal06, CMS08a, CMS08b, CMS10] (equivalent resolutions also appeared in
[Squ94] and [Ozo17, Pao17a]). The computational methods used in these papers
are essentially based on filtering the algebraic complex and using the associated
spectral sequence.

In [SV13] a more combinatorial method of calculation was introduced, based
on the application of discrete Morse theory to a particular class of sheaves over
posets (called weighted sheaves). It is interesting to notice that similar ideas were
considered later in [CGN16], even if there the authors were mainly interested in
computational aspects.

In this paper we expand the theory of weighted sheaves. First, we observe a
surprising relationship between some twisted (co)homology of the classical braid
groups and the (co)homology of certain independence complexes, which in their
simplest form have already been studied in a combinatorial context (see for example
[BK07, Koz07, Eng09]). This relationship is obtained in an indirect way, after
localization. The exact formula we are going to prove is the following (it was
announced in [Sal15] without proof).

Theorem 3.4.

H∗(Brn+1;R)ϕd
∼= H̃∗−d+1

(
Indd−2(An−d);

R

(ϕd)

)
.

Here on the left we have the homology with local coefficients of the classical braid
group and on the right we have the homology of some independence complex with
trivial coefficients (we indicate by ϕd the d-th cyclotomic polynomial).

As said before, our method is based on the notions of weighted sheaves over
posets and of weighted matchings, which are interesting objects by themselves.
In our situation, the d-weight vd(σ) of a simplex σ is the maximal power of the
d-th cyclotomic polynomial which divides the Poincaré polynomial of the (finite)
parabolic subgroup generated by the vertices of the simplex. We allow matchings
between simplices of the same weight. Applying discrete Morse theory, one obtains
a Morse complex which still computes the local homology.

Then, by applying these methods to other Coxeter graphs (in particular to finite
and affine type cases), we come up with the notion of precise matching. In all
the cases we consider, it is possible to produce acyclic weighted matchings such
that the Morse complex turns out to have a very nice property: the boundary of a
critical p-simplex σ has a non-zero coefficient along a critical (p− 1)-simplex τ if
and only if vd(σ) = vd(τ) + 1. Then the homology of the Morse complex reduces
to the computation of the ranks of the incidence matrices among critical simplices
(Theorems 4.2 and 4.4). We show that the existence of precise matchings can also
be interpreted in terms of second-page collapsing of a spectral sequence which is
naturally associated to the weighted sheaf (Proposition 4.3).

As we discuss at the beginning of Section 5, the existence of precise matchings
for a certain Artin group has strong implications for its homology. In particular we
want to highlight the following non-trivial result.

Theorem 5.2. Let GW be an Artin group (corresponding to some finitely generated
Coxeter group W) that admits a ϕ-precise matching for all cyclotomic polynomials
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ϕ = ϕd (with d ≥ 2). Then the homology H∗(XW;R) does not have ϕk-torsion for
k ≥ 2.

Here XW (introduced in Section 2.4) is a finite CW-complex which is a deformation
retract of the orbit space associated to W, and π1(XW) = GW. When W is finite
and in a few other cases XW it is known to be a K(GW, 1), whereas this property
is only conjectured in general [Del72, Bri73, Oko79, VdL83, Hen85, Sal87, Sal94,
CD95, CMS10, Par14].

Theorem 5.2 can be seen as a result about the homology of the infinite cyclic
covering of XW and its monodromy. It is known that the conclusion of this theorem
holds for all Artin groups of finite type, due to geometric reasons (see Remark 5.3).
Our construction provides a new combinatorial condition that applies to a wider
class of Artin groups (including, among others, the affine groups of type Ãn and
C̃n).

The methods we develop allow explicit and complete computations, in general in
a more direct way compared to other known methods. We use them to compute
the twisted homology in the case of affine Artin groups of type C̃n, obtaining the
following result.

Theorem 5.20. Let GW be an Artin group of type C̃n. Then the ϕd-primary
component of H∗(GW;R) is trivial for d odd, and for d even is as follows:

Hm(GW;R)ϕd
∼=

{
(R/(ϕd))

⊕m+k−n+1
if n− k ≤ m ≤ n− 1,

0 otherwise,

where n = k d2 + r.

We also carry out complete computations in the cases An, Bn and Ãn: these cases
were already done before by different methods [Fre88, DCPSS99, DCPS01, CMS08a],
but we need them to perform computations of more complicated cases.

In a recent preprint [Pao17b], the first author succeeded in constructing precise
matchings for all remaining Artin groups of finite and affine type. Therefore precise
matchings seem to be a suitable and effective tool for studying the homology of
Artin groups.

The paper is structured as follows. In Section 2 we recall the most important
definitions and results of [SV13]. In particular we introduce the general framework
of weighted sheaves over posets, and then explain how it can be used to compute the
homology of Artin groups. In Section 3 we study the case of braid groups (i.e. Artin
groups of type An), and relate their homology with that of certain independence
complexes. In Section 4 we introduce precise matchings and derive a general formula
for the homology of the Morse complex. In Section 5 we apply the theory developed
in Section 4 to the case of Artin groups. We construct precise matchings for Artin
groups of type An, Bn, Ãn and C̃n, and use such matchings to explicitly compute
the homology.

2. Preliminaries

In this section we are going to recall some definitions and constructions from
[SV13] (see also [MSV12]).
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2.1. Weighted sheaves over posets. Let (P,�) be a finite poset.

Definition 2.1. Define a sheaf of rings over P (or a diagram of rings over P ) as a
collection

{Ax | x ∈ P}
of commutative rings together with a collection of ring homomorphisms

{ρx,y : Ay → Ax | x � y}
satisfying

ρx,x = idAx ;

x � y � z ⇒ ρx,z = ρx,y ρy,z.

In other words, a sheaf of rings over P is a functor from P op to the category of
commutative rings.

Fix a PID R; usually we take R = Q[q±1]. The divisibility relation

p1 | p2 ⇔ (p1) ⊇ (p2)

gives R the structure of a small category, and to R/R∗ the structure of a poset
(where R∗ is the group of units in R) with minimum element the class of the units
and maximum element 0. Any functor w : (P,�)→ (R, |), which maps every x ∈ P
to some w(x) ∈ R \ {0}, defines a sheaf over P by the collection

{R/(w(x)) | x ∈ P}
and

{ix,y : R/(w(y))→ R/(w(x)) | x � y}
where ix,y is induced by the identity of R.

Definition 2.2. Given a poset P , a PID R and a morphism w : (P,�)→ (R, |) as
above, we call the triple (P,R,w) a weighted sheaf over P and the coefficients w(x)
the weights of the sheaf.

Remark 2.3. Consider the poset topology over P , where a basis for the open sets is
given by the upper intervals B = {P>p, p ∈ P}. Let (P,R,w) be a weighted sheaf.
Then one can see w as a functor from (B,⊇) to (R, |) and thus a weighted sheaf
defines a sheaf in the usual sense.

From now on our poset will be a simplicial complex K defined over a finite set S,
with the partial ordering

σ � τ ⇔ σ ⊆ τ.
We adopt the convention that K contains the empty simplex ∅. A weighted sheaf
over K is given by assigning to each simplex σ ∈ K a weight w(σ) ∈ R, with

σ � τ ⇒ w(σ) | w(τ).

Let C0
∗(K;R) be the 1-shifted standard algebraic complex computing the simplicial

homology of K, i.e.

C0
k(K;R) =

⊕
σ∈K
|σ|=k

Re0
σ

where e0
σ is a generator associated to a given orientation of σ (C0

0 (K;R) = Re0
∅).

The boundary is given by

∂0(e0
σ) =

∑
|τ |=k−1

[σ : τ ] e0
τ ,
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where [σ : τ ] is the incidence number (which is equal to ±1 if τ ≺ σ, and otherwise
is equal to 0).

Definition 2.4. The weighted complex associated to the weighted sheaf (K,R,w)
is the algebraic complex L∗ = L∗(K) defined by

Lk =
⊕
|σ|=k

R

(w(σ))
ēσ,

with boundary ∂ : Lk → Lk−1 induced by ∂0:

∂(aσ ēσ) =
∑
τ≺σ

[σ : τ ] iτ,σ(aσ) ēτ .

There is a natural projection π : C0
∗(K;R)→ L∗ which maps a generator eσ in

C0
∗ to the generator ēσ in L∗.

Remark 2.5. The diagram {R/(w(σ)) | σ ∈ K} also defines a sheaf over the poset
K in the sense of Remark 2.3. The sheaf cohomology associated to the open covering
given by the upper segments coincides with the homology of the weighted sheaf.

2.2. Decomposition and filtration. Let S = (K,R,w) be a weighted sheaf. For
any irreducible ϕ ∈ R, we define the ϕ-primary component Sϕ = (K,R,wϕ) of the
weighted sheaf S by setting

wϕ(σ) = ϕvϕ(σ),

where

vϕ(σ) = maximal r such that ϕr divides w(σ).

Since R is a PID and w(σ) 6= 0, such a maximal value exists. Notice that Sϕ
is a weighted sheaf. The weighted complex (L∗)ϕ associated to Sϕ is called the
ϕ-primary component of the weighted complex L∗. In degree k one has:

(Lk)ϕ =
⊕
|σ|=k

R

(ϕvϕ(σ))
ēσ.

The complex (L∗)ϕ has a natural increasing filtration by the following subcom-
plexes:

F s(L∗)ϕ =
⊕

vϕ(σ)≤s

R

(ϕvϕ(σ))
ēσ.

This filtration is associated to an increasing filtration of the simplicial complex K:

Kϕ,s = {σ ∈ K | vϕ(σ) ≤ s}.
Then F s(L∗)ϕ is the weighted complex associated to the weighted sheaf

(Kϕ,s, R, wϕ|Kϕ,s).

Theorem 2.6 ([SV13]). Let (K,R,w) be a weighted sheaf, with associated weighted
complex L∗. For any irreducible ϕ ∈ R, there exists a spectral sequence

Erp,q ⇒ H∗((L∗)ϕ)

that abuts to the homology of the ϕ-primary component of the associated algebraic
complex L∗. Moreover the E1-term

E1
p,q = Hp+q(F

p/F p−1) ∼= Hp+q(Kϕ,p,Kϕ,p−1;R/(ϕp))
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is isomorphic to the relative homology with trivial coefficients of the simplicial pair
(Kϕ,p,Kϕ,p−1).

2.3. Discrete Morse theory for weighted complexes. Given x, y in a poset
(P,≺), the notation xC y means that y covers x, i.e. x ≺ y and there is no other
z ∈ P such that x ≺ z ≺ y.

Recall the basic facts of discrete Morse theory (see for example [For98, Koz07]).
A matching in a poset P is a set M ⊆ P × P such that (x, y) ∈ M ⇒ x C y and
each x ∈ P belongs to at most one pair of M. An alternating path is a sequence

y0 B x1 C y1 B x2 C y2 B · · ·B xm C ym(Bxm+1)

such that each pair xi C yi belongs to M and no pair xi C yi−1 belongs to M. A
cycle is a closed alternating path with y0 = ym. An acyclic matching over P is
a matching with no cycles. We are going to describe a variant of discrete Morse
theory which is suitable for our situation.

Definition 2.7. A weighted acyclic matching on a weighted sheaf (P,R,w) over P
is an acyclic matching M on P such that

(x, y) ∈M ⇒ (w(x)) = (w(y))

(in [SV13] we required w(x) = w(y), but the above generalization does not change
the results).

The standard theory generalizes as follows. Let S = (K,R,w) be a weighted
sheaf over a finite simplicial complex K, and let M an acyclic weighted matching.
A critical simplex of K is a simplex σ which does not belong to any pair ofM. The
following definition is equivalent to [SV13, Definition 3.3].

Definition 2.8. The Morse complex of S with respect to M is defined as the
torsion complex

LM∗ =
⊕

σ critical

R

(w(σ))
ēσ

with boundary

∂M(ēσ) =
∑

τ critical
|τ |= |σ|−1

[σ : τ ]M ēτ ,

where [σ : τ ]M ∈ Z is given by the sum over all alternating paths

σ B τ1 C σ1 B τ2 C σ2 B · · · B τm C σm B τ
from σ to τ of the quantity

(−1)m[σ : τ1][σ1 : τ1][σ1 : τ2][σ2 : τ2] · · · [σm : τm][σm : τ ].

The boundary map ∂M is extended by R-linearity, where some care should be taken
since each ēτ lives in a component with a possibly different torsion (∂M is the same
as the boundary map of [SV13]).

Theorem 2.9 ([SV13]). Let S = (K,R,w) be a weighted sheaf over a simplicial
complex K. Let M be an acyclic matching for S. Then there is an isomorphism

H∗(L∗, ∂) ∼= H∗(L
M
∗ , ∂

M)

between the homology of the weighted complex L∗ associated to S and the homology
of the Morse complex LM∗ of S.
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Remark 2.10. If we forget about the weights, the matching M is in particular an
acyclic matching for the simplicial complex K. Therefore the algebraic complex
C0
∗(K;A), which computes the (shifted and reduced) simplicial homology of K with

coefficients in some ring A, admits a “classical” algebraic Morse complex

C0
∗(K;A)M =

⊕
σ critical

A ēσ

with boundary map

δM(ēσ) =
∑

τ critical
|τ |= |σ|−1

[σ : τ ]M ēτ .

Remark 2.11. Set C0
∗ = C0

∗(K;R) and let π : C0
∗ → L∗ be the natural projection.

The composition with the projection L∗ → (L∗)ϕ, for some fixed irreducible element
ϕ ∈ R, yields a natural projection πϕ : C0

∗ → (L∗)ϕ. Similarly at the level of Morse
complexes we have the projection π̄ϕ : (C0

∗)
M → (L∗)

M
ϕ which sends a generator ēσ

in (C0
∗)
M to the generator ēσ in (L∗)

M
ϕ . Then, by construction, the maps induced

in homology by the projections πϕ and π̄ϕ commute with the Morse isomorphisms
of [Koz07] and [SV13]:

H∗(C
0
∗) H∗((L∗)ϕ)

H∗((C
0
∗)
M) H∗((L∗)

M
ϕ ).

(πϕ)∗

∼= ∼=

(π̄ϕ)∗

Let ϕ ∈ R be an irreducible element, and let M be a weighted acyclic matching
on Sϕ. Then the filtration on the weighted complex induces a filtration on the
Morse complex:

F p(L∗)
M
ϕ =

⊕
σ critical
vϕ(σ)≤p

R

(ϕvϕ(σ))
ēσ.

Consider also the following quotient complex:

Fp(L∗)Mϕ = F p(L∗)
M
ϕ /F p−1(L∗)

M
ϕ
∼=

⊕
σ critical
vϕ(σ)=p

R

(ϕp)
ēσ.

Theorem 2.12 ([SV13]). Let S and ϕ be as above and letM be an acyclic matching
for Sϕ. Then the E1-page of the spectral sequence of Theorem 2.6 is identified with

E1
p,q
∼= Hp+q(Fp(L∗)Mϕ ),

where (L∗)
M
ϕ is the Morse complex of Sϕ. The differential

d1
p,q : E1

p,q → E1
p−1,q

is induced by the boundary of the Morse complex, and thus it is also computed by
using alternating paths.
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2.4. Weighted sheaves for Artin groups. We use the constructions given above
in the context of Artin groups. Let (W, S) be a Coxeter system, with |S| = n finite,
and let Γ be the corresponding Coxeter graph (with S as vertex set). Recall that
W can always be realized as a group of reflections in some Rn (for example through
the Tits representation, see [Bou68, Vin71], see also [Par14]), so that it has the
following naturally associated objects:

(i) a hyperplane arrangement in Rn

A = {H | H is the fixed point set of some reflection in W};
(ii) configuration spaces

Y = (int(U) + iRn) \
⋃
H∈A

HC,

YW = Y/W

where U = W · C0 is the Tits cone (here C0 is a fixed chamber of the
arrangement, and C0 is its topological closure);

(iii) a simplicial complex (defined over the finite set S)

K = KW = {σ ⊆ S | the parabolic subgroup Wσ generated by σ is finite}.
One can define the Artin group GW of type W as the fundamental group π1(YW).

It has a presentation

GW = 〈 gs, s ∈ S | gsgs′gsgs′ . . . = gs′gsgs′gs . . . 〉
(both the products have m(s, s′) factors, where m(s, s′) is the order of ss′ in W).
Recall also the following results [Sal94, Theorems 1.4 and 1.8].

(i) The orbit space YW deformation retracts onto a finite CW -complex XW

given by a union

Q =
⋃

σ∈KW

Qσ

of convex polyhedra with explicit identifications of their faces.
(ii) Consider the action of the Artin group GW on the ring R = Q[q±1] given by

gs 7→ [multiplication by − q] ∀s ∈ S.
Then the homology H∗(XW;R) is computed by the algebraic complex

Ck =
⊕
σ∈KW
|σ|=k

Reσ

with boundary

∂(eσ) =
∑
τCσ

[σ : τ ]
Wσ(q)

Wτ (q)
eτ ,

where Wσ(q) =
∑

w∈Wσ

ql(w) is the Poincaré polynomial of Wσ.

Remark 2.13. The R-module structure on H∗(XW;R) is given by the transforma-
tion µq induced by q-multiplication. If the order of µq is n, then the homology groups
decompose into cyclic factors which are either free, of the form Rk, or torsion, of
the form R/(ϕd), where ϕd is the d-th cyclotomic polynomial with d | n. Therefore
we are interested in localizing to cyclotomic polynomials.
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Theorem 2.14 ([SV13]). To a Coxeter system (W, S) we can associate a weighted
sheaf (K,R,w) over the simplicial complex K = KW, by setting w(σ) = Wσ(q).
Also, for any cyclotomic polynomial ϕ = ϕd, the map

wϕ(σ) = maximal power of ϕ which divides Wσ(q)

defines a weighted sheaf (K,R,wϕ) over K = KW.

The homology of the associated weighted complex is strictly related to the
homology of XW. Specifically, set C0

∗ = C0
∗(K;R) and consider the diagonal map

∆: C∗ → C0
∗ , eσ 7→Wσ(q) e0

σ.

By the formula for the boundary map it follows that ∆ is an injective chain-complex
homomorphism, so there is an exact sequence of complexes:

0 −→ C∗
∆−−→ C0

∗
π−−→ L∗ −→ 0,

where

Lk =
⊕
σ∈KW
|σ|=k

R

(Wσ(q))
ēσ

is the quotient complex. Passing to the associated long exact sequence we get:

(1) . . .
π∗−→ Hk+1(L∗)→ Hk(C∗)

∆∗−−→ Hk(C0
∗)

π∗−→ Hk(L∗)→ Hk−1(C∗)
∆∗−−→ . . .

Then the homology of L∗ can be used to compute the homology of C∗.
The orbit space YW (and thus the CW-complex XW ' YW) is conjectured to

be a classifying space for the Artin group GW [Del72, Bri73, VdL83, Par14]. This
conjecture was proved for Artin groups of finite type [Del72], for affine Artin groups

of type Ãn, B̃n and C̃n [Oko79, CMS10], and for some other families of Artin groups
[Hen85, CD95]. Whenever the conjecture holds (in particular this is true for all
the cases we consider in this paper), the homology H∗(XW;R) coincides with the
twisted homology H∗(GW;R) of the Artin group GW.

3. Homology of braid groups and independence complexes

In this section we are going to show how the twisted homology of braid groups
(i.e. Artin groups of type An) is related to the homology of suitable independence
complexes. Recall that a Coxeter graph of type An is a linear graph with n vertices,
usually labeled 1, 2, . . . , n (see Figure 1), and that the corresponding Artin group is
the braid group on n+ 1 strands (which we denote by Brn+1). With a slight abuse
of notation, by An we will sometimes indicate the graph itself.

1 2 3 4 n− 1 n
. . .

Figure 1. A Coxeter graph of type An.

The homology of Brn+1, with coefficients in the representation R = Q[q±1]
described in the previous section, has been computed in [Fre88, DCPS01]. See also
[Cal06] for coefficients in Z[q±1] (but we will not address this case).
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Theorem 3.1 ([Fre88, DCPS01]). The ϕd-primary component of the twisted ho-
mology of a braid group is given by

H∗(Brn+1;R)ϕd =

{
R/(ϕd) if n ≡ 0 or −1 (mod d),

0 otherwise,

where the non vanishing term is in degree (d− 2)k if n = dk or n = dk − 1.

Recall that, if G is a graph with vertex set V G, an independent set of G is a
subset of V G consisting of pairwise non-adjacent vertices. Also, the independence
complex Ind(G) of G is the abstract simplicial complex with V G as set of vertices
and whose simplices are all the non-empty independent sets of G. Thus Ind(G) is
the clique complex of the complement graph of G. In contrast with the simplicial
complex K introduced in Section 2, the simplicial complex Ind(G) does not contain
the empty simplex, and the dimension of a simplex σ ∈ Ind(G) is given by |σ| − 1.
The homotopy type of Ind(An) has been computed in [Koz07] by means of discrete
Morse theory, and the result is the following.

Proposition 3.2 ([Koz07, Proposition 11.16]).

Ind(An) '

{
Sk−1 if n = 3k or n = 3k − 1,

{pt} if n = 3k + 1.

By comparing this with Theorem 3.1 we obtain the following relation between
the homology of the independence complex of An and the ϕ3-primary component of
the twisted homology of Brn+1.

Corollary 3.3.

H∗(Brn+1;R)ϕ3
∼= H̃∗−2

(
Ind(An−3);

R

(ϕ3)

)
,

where on the left we have local coefficients and on the right we have trivial coefficients.
�

In general, following [Sal15], define the r-independence complex of a graph G as

Indr(G) = {full subgraphs G′ ⊆ G such that each connected component
of G′ has at most r vertices} .

So Indr(G) is an abstract simplicial complex on the set of vertices V G of the graph
G, which coincides with Ind(G) for r = 1. The case r = 0 also makes sense:
Ind0(G) = ∅ for any graph G. We are going to prove the following generalization
of Corollary 3.3.

Theorem 3.4.

H∗(Brn+1;R)ϕd
∼= H̃∗−d+1

(
Indd−2(An−d);

R

(ϕd)

)
,

where on the left we have local coefficients and on the right we have trivial coefficients.

From the expression of the ϕd-primary component of the local homology of the
braid group (Theorem 3.1) we obtain the following consequence.

Corollary 3.5.

H̃∗(Indd−2(An)) ∼=

{
H̃∗(S

dk−2k−1) for n = dk or n = dk − 1,

0 otherwise.
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Therefore the knowledge of the twisted homology of the braid group gives the
homology (with trivial coefficients) of Indd(An). Conversely the knowledge of the
homology of Indd(An) gives the twisted homology of the braid group.

The Poincaré polynomial of a Coxeter group of type Ak is given by

WAk(q) = [k + 1]q! where [k]q =
qk − 1

q − 1
=
∏
d|k
d≥2

ϕd

(see for example [BB06]). Consider now a simplex σ ⊆ S ∼= {1, . . . , n}. Denote by
Γ(σ) the subgraph of An induced by σ. Denote by Γ1(σ), Γ2(σ), . . . , Γm(σ) the
connected components of Γ(σ), and by n1, n2, . . .nm their cardinalities (see Figure
2). The i-th connected component is a Coxeter graph of type Ani , so the entire
Coxeter graph induced by σ has Poincaré polynomial

Wσ(q) = [n1 + 1]q! · [n2 + 1]q! · · · [nm + 1]q!

=

m∏
i=1

∏
d≥2

ϕ
bni+1

d c
d

=
∏
d≥2

ϕ
∑m
i=1b

ni+1

d c
d .

Then we are interested in the homology of the weighted complex (L∗)ϕ associated
to the weighted sheaf (K,R,wϕ), where ϕ = ϕd is a cyclotomic polynomial (with
d ≥ 2) and

wϕ(σ) = ϕvϕ(σ), vϕ(σ) =

m∑
i=1

⌊
ni+1
d

⌋
.

Notice that only the connected components with at least d− 1 vertices contribute to
the ϕ-weight. Therefore, the weighted complex (L∗)ϕ is generated by the subgraphs
having at least one component with ≥ d− 1 vertices.

1 2 3 4 5 6

Γ2(σ)

7 8 9

Γ3(σ)Γ1(σ)

Figure 2. An example with n = 9 and σ = {2, 3, 5, 6, 7, 9} ∈ Ind3(A9).
In this case |Γ1(σ)| = 2, |Γ2(σ)| = 3, |Γ3(σ)| = 1.

Theorem 3.6. There is a weighted acyclic matching M on K such that the set of
critical simplices is given by

Cr(M) = {σ | Γ(σ) = Γ1 t · · · t Γm−1 tAd−1, |Γi| ≤ d− 2} ∪ Indd−2(An)

= {τ tAd−1 | τ ∈ Indd−2(An−d)} ∪ Indd−2(An),

where Ad−1 is the linear graph on the vertices n− d+ 2, . . . , n.

Proof. First notice that removing the d-th vertex from an Ak component leaves the
ϕ-weight unchanged:

vϕ(Ak) =
⌊
k+1
d

⌋
= 1 +

⌊
k+1−d
d

⌋
= vϕ(Ad−1 tAk−d)

(see Figure 3).
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. . .

k vertices

. . .

d− 1 vertices

. . . . . .

k − d vertices

Figure 3. The ϕ-weight of an Ak component remains the same if we
remove the d-th vertex, splitting Ak into Ad−1 tAk−d.

Let K0 = Indd−2(An) ⊆ K (this is the set of the simplices σ ∈ K such that all
the connected components of the induced subgraph Γ(σ) have cardinality < d− 1).
Let us define on K ′ = K \ K0 the following matching M. For σ ∈ K ′, with
Γ(σ) = Γ1 t · · · t Γm, set

i(σ) = min{i | |Γi| ≥ d− 1}.

Then match σ with the simplex τ obtained by adding or removing from σ the
(d − 1)-th vertex of the component Γi(σ). By the remark at the beginning of the
proof, M is a weighted matching. We prove that it is acyclic. In fact, suppose that
an alternating path contains some subpath

τ C σ B τ ′ C σ′

with τ 6= τ ′. Then either i(τ) < i(τ ′) or (set j = i(τ) = i(τ ′))

Γj(τ
′) = {a, a+ 1, . . . , a+ d− 2}, Γj(τ

′) = {a+ 1, . . . , a+ d− 1}

for some a ≤ n − d + 1. In this case the first vertex of Γj(τ
′) is greater than the

first vertex of Γj(τ). Therefore an alternating path in K ′ cannot be closed.
The set of critical elements of M in K ′ is given by

Cr(M) = {σ | Γ(σ) = Γ1 t · · · t Γm−1 tAd−1, |Γi| ≤ d− 2},

where Ad−1 is as in the statement of the theorem. �

Proof of Theorem 3.4. Consider the matching M of Theorem 3.6. Since K0 =
Indd−2(An) does not contribute to the weighted complex (L∗)ϕ, we concentrate
on the poset K ′ = K \K0. Notice that there are no non-trivial alternating paths
between critical elements of K ′. Therefore the boundaries between simplices in

Cr′(M) = {τ tAd−1 | τ ∈ Indd−2(An−d)}

are the same as the boundaries of Indd−2(An−d). In the long exact sequence (1) the
algebraic complex C0

∗ has vanishing homology in all degrees (because K is the full
simplicial complex on n vertices), so we have an isomorphism H∗+1(L∗) ∼= H∗(C∗).
Therefore

H∗(Brn+1;R)ϕd
∼= H∗(C∗)ϕd
∼= H∗+1(L∗)ϕd

∼= H̃∗−d+1

(
Indd−2(An−d);

R

(ϕd)

)
.
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In the last isomorphism there is a (d − 1)-shift in degree due to the loss of d − 1
vertices when passing from Cr′(M) to Indd−2(An−d); there is then a further 1-
shift in degree due to the fact that in L∗ a simplex σ has dimension |σ|, and in
Indd−2(An−d) it has dimension |σ| − 1; finally, it is necessary to pass to reduced
homology because the empty simplex is missing in Indd−2(An−d). �

For the sake of completeness we also determine the homotopy type of the r-
independence complex Indd−2(An) (obtaining again Corollary 3.5 as a consequence).
This is a straightforward generalization of the case d = 3 proved in [Koz07, Proposi-
tion 11.16].

Proposition 3.7.

Indd−2(An) '

{
Sdk−2k−1 if n = dk or n = dk − 1,

{pt} otherwise.

Proof. We denote here for brevity K0 = Indd−2(An). Let n = qd+r be the euclidean
division of n by d.

Let P = {cd > c2d > c3d > · · · > cqd > c∗} be a linearly ordered set, where c∗
is the minimum element. Define a map f : K0 → P as follows. If σ ∈ K0 does not
contain any multiples of d, then set f(σ) = c∗. Otherwise, set f(σ) = cjd if jd ∈ σ
but j′d 6∈ σ for j′ < j. Clearly f is a poset map (if we remove a vertex from σ, j
increases or remains the same).

In f−1(cd) consider the matchingM1 = {(σ \ {1}, σ∪{1}) | σ ∈ f−1(cd)}, which
is justified by:

σ ∈ f−1(cd) ⇒ {2, . . . , d− 1} 6⊆ σ.
Similarly, in f−1(cjd) for j ≤ q, consider the matching

Mj =
{(
σ \ {(j − 1)d+ 1}, σ ∪ {(j − 1)d+ 1}

) ∣∣ σ ∈ f−1(cjd)
}
,

justified by:

σ ∈ f−1(cjd) ⇒ {(j − 1)d+ 2, . . . , jd− 1} 6⊆ σ.
Each Mj is acyclic in f−1(cjd), thus

M =

q⋃
j=1

Mj

is an acyclic matching on K0 by the Patchwork Theorem (see for example [Jon08,
Lemma 4.2], [Koz07, Theorem 11.10]). Since each Mj is a perfect matching on
f−1(cjd) for j = 1, . . . , q, and K1 = f−1(c∗) is a subcomplex of K0, it follows that
K0 deformation retracts onto K1.

Notice now that K1 is the join of q copies of Indd−2(Ad−1) ∼= Sd−3 and one copy
of Indd−2(Ar). For r = 0 we get

K0
∼= (Sd−3)∗q ∼= Sq(d−3)+q−1 = Sqd−2q−1

and for r = d− 1 we get

K0
∼= (Sd−3)∗(q+1) ∼= S(q+1)(d−3)+q = S(q+1)d−2(q+1)−1,

which give the first case in the corollary. If r is not 0 or d− 1 then Indd−2(Ar) is a
full simplex ∆r−1 on r vertices, and therefore K0 is contractible. �
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4. Precise matchings

In this section we are going to introduce the notion of precise matching on a
weighted sheaf. The motivation comes from the study of the twisted homology of
some families of Artin groups, as we will show in the subsequent sections. For now
we go back to the general framework of weighted sheaves over simplicial complexes
(later we will specialize in the case of Artin groups).

Assume from now on that the PID R contains some field K. Our main case of
interest is K = Q and R = Q[q±1]. Let S = (K,R,w) be a weighted sheaf over the
finite simplicial complex K, with associated weighted complex L∗. Given a fixed
irreducible element ϕ of R, let Sϕ be the ϕ-primary component of S and let (L∗)ϕ
be its associated weighted complex. Let M be a weighted acyclic matching for Sϕ.

Let GM be the incidence graph of the corresponding Morse complex: the vertices
of GM are the critical simplices of K, and there is an (oriented) edge σ → τ
whenever [σ : τ ]M is not 0 in R (or equivalently in K), where [σ : τ ]M ∈ Z is the
incidence number between σ and τ in the Morse complex of K. In other words,
there is an edge σ → τ if [σ : τ ]M is not multiple of charK = charR. When K = Q,
this simply means that [σ : τ ]M 6= 0.

Let I be the set of connected components of GM (computed ignoring the orien-
tation of the edges). Recall that vϕ(σ) is the maximal k ∈ N such that ϕk divides
w(σ).

Definition 4.1. The matching M is ϕ-precise (or simply precise) if, for any edge
σ → τ of GM, we have that vϕ(σ) = vϕ(τ) + 1.

In other words M is precise if, for any two simplices σ and τ lying in the same
connected component i ∈ I, the following relation holds:

vϕ(σ)− vϕ(τ) = |σ| − |τ |.

Equivalently the quantity |σ| − vϕ(σ), as a function of σ, is constant within a
fixed connected component of GM. This definition is motivated by the fact that
precise matchings exist in many cases of interest (we will see this in Section 5), and
that the homology of the Morse complex is much simpler to compute (and takes a
particularly nice form) when the matching is precise. The name “precise” has been
chosen because for a generic matching one only has vϕ(σ) ≥ vϕ(τ) (when σ → τ is
an edge of GM), and we require vϕ(σ) to be precisely vϕ(τ) + 1.

Assume from now on in this section that M is a ϕ-precise matching. To simplify
the notation, set (A∗, ∂) = ((L∗)

M
ϕ , ∂M) and (V∗, δ) = (C0

∗(K,K)M, δM). Our
aim is to derive a formula for the homology of the Morse complex A∗. Since the
differential δ vanishes between simplices in different connected components of GM,
the complex (V∗, δ) splits as follows:

(V∗, δ) =
⊕
i∈I

(V i∗ , δ
i),

where

V i∗ =
⊕

σ critical
σ∈i

K ēσ

and the boundary map δi : V i∗ → V i∗ is the restriction of δ to V i∗ . The differential
∂ of A∗ is induced by δ, and thus it also vanishes between simplices in different
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connected components. Therefore we have an analogous splitting for (A∗, ∂):

(A∗, ∂) =
⊕
i∈I

(Ai∗, ∂
i),

where

Ai∗ =
⊕

σ critical
σ∈i

R

(wϕ(σ))
ēσ

and the boundary map ∂i : Ai∗ → Ai∗ is simply the restriction of ∂ to Ai∗.
Fix now a connected component i ∈ I. Since M is precise, there exists some

k ∈ Z (which depends on i) such that vϕ(σ) = |σ|+ k for all σ ∈ i. Therefore in
degree m we have

Aim =
⊕

σ∈Crim

R

(ϕm+k)
ēσ =

 ⊕
σ∈Crim

K ēσ

⊗K
R

(ϕm+k)
= V im ⊗K

R

(ϕm+k)
,

where Crim is the set of critical simplices σ such that σ ∈ i and |σ| = m. By
construction the boundary ∂im : Aim → Aim−1 factors accordingly:

∂im = δim ⊗K πm,

where

πm :
R

(ϕm+k)
→ R

(ϕm+k−1)

is the projection induced by the identity R→ R. Since im δim+1 ⊆ ker δim, each V im
splits (as a vector space over K) as a direct sum of linear subspaces:

V im = W i
m,1 ⊕W i

m,2 ⊕W i
m,3,

where W i
m,1 = im δim+1 and W i

m,1 ⊕W i
m,2 = ker δim. Then

ker(∂im) = ker(δim ⊗K πm)

=

((
W i
m,1 ⊕W i

m,2

)
⊗K

R

(ϕm+k)

)
⊕
(
W i
m,3 ⊗K

(ϕm+k−1)

(ϕm+k)

)
;

im (∂im+1) = im (δim+1 ⊗K πm+1)

= W i
m,1 ⊗K

R

(ϕm+k)
.

Therefore the homology of (Ai∗, δ
i) is given, as an R-module, by

Hm(Ai∗) =
ker(∂im)

im (∂im+1)

=

(
W i
m,2 ⊗K

R

(ϕm+k)

)
⊕
(
W i
m,3 ⊗K

(ϕm+k−1)

(ϕm+k)

)
∼=
(
Hm(V i∗ , δ

i)⊗K
R

(ϕm+k)

)
⊕
(
Krk δim ⊗K

R

(ϕ)

)
.

In the last isomorphism we used the fact that dimW i
m,3 = dimV im − dim ker δim =

rk δim.
Recall that the previous formula holds for a fixed connected component i ∈ I,

and k depends on i. Since we now need to take the direct sum over the connected
components, let ki be the value of k for the component i.
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Theorem 4.2. The homology of (L∗)ϕ is given, as an R-module, by

Hm((L∗)ϕ, ∂) ∼=

(⊕
i∈I

Hm(V i∗ )⊗K
R

(ϕm+ki)

)
⊕
(
Krk δm ⊗K

R

(ϕ)

)
.

Proof. By Theorem 2.9, Hm((L∗)ϕ, ∂) ∼= Hm((L∗)
M
ϕ , ∂M). Using what we have

done in this section, we have that

Hm((L∗)
M
ϕ , ∂M) = Hm(A∗, ∂)

=
⊕
i∈I

Hm(Ai∗, ∂)

∼=

(⊕
i∈I

Hm(V i∗ )⊗K
R

(ϕm+ki)

)
⊕

((⊕
i∈I

Krk δim

)
⊗K

R

(ϕ)

)

∼=

(⊕
i∈I

Hm(V i∗ )⊗K
R

(ϕm+ki)

)
⊕
(
Krk δm ⊗K

R

(ϕ)

)
. �

Let us see how the existence of a precise matching can be interpreted in terms of
the spectral sequence associated to the weighted sheaf (see Theorem 2.6).

Proposition 4.3. If a ϕ-precise matching M exists, then the spectral sequence
Erp,q associated to the weighted sheaf Sϕ collapses at the E2-page.

Proof. By Theorem 2.12, the E1-page can be computed through the Morse complex
of our matching M:

E1
p,q
∼= Hp+q(Fp(L∗)Mϕ ),

and the differential d1
p,q is induced by the boundary of the Morse complex. The

spectral sequence then splits as a direct sum over the connected components of GM:

Erp,q =
⊕
i∈I

Er,ip,q,

where E1,i
p,q
∼= Hp+q(FpAi∗). Since the matching is precise, for m 6= p− ki we have

FpAim = F pAim /F
p−1Aim = 0.

This means that the page E0,i
p,q
∼= E1,i

p,q is non-trivial only in the row q = −ki, and

the entire spectral sequence Erp,q collapses at the E2-page. �

What we have done so far in this section assumed ϕ to be some fixed irreducible
element of the PID R. In order to recover the full homology of L∗ we need to make
ϕ vary among all equivalence classes of irreducible elements of R modulo the units.
Suppose from now on to have a ϕ-precise matching Mϕ on Sϕ, for each ϕ. The
following results follows immediately from Theorem 4.2, provided that we add a “ϕ”
subscript (or superscript) to all the quantities that depend on the matching Mϕ.

Theorem 4.4. The homology of L∗ is given, as an R-module, by

Hm(L∗, ∂) ∼=
⊕
ϕ

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)

⊕ (Krk δϕm ⊗K
R

(ϕ)

)
. �
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For later applications, we finally need to study how the isomorphism of Theorem
4.4 behaves with respect to the projection π : C0

∗ → L∗ of Remark 2.11. This
projection is the direct sum over ϕ of the projections

πϕ : C0
∗ → (L∗)ϕ.

Instead of studying the induced map (πϕ)∗ : Hm(C0
∗)→ Hm((L∗)ϕ), we study the

map

(π̄ϕ)∗ : Hm((C0
∗)
M)→ Hm((L∗)

M
ϕ )

between the Morse complexes (here M =Mϕ is a precise matching which depends

on ϕ). For i ∈ Iϕ, let πi : (C0
∗)
M → V ϕ,i∗ ⊗K R ⊆ (C0

∗)
M be the projection on the

subcomplex corresponding to the connected component i, and let (πi)∗ be the map
induced in homology. Let [c] ∈ Hm((C0

∗)
M), for some cycle c ∈ ker δM ⊆ (C0

m)M.
Applying the map (π̄ϕ)∗ : Hm((C0

∗)
M)→ Hm((L∗)

M
ϕ ) we obtain

(π̄ϕ)∗([c]) = (π̄ϕ)∗

∑
i∈Iϕ

(πi)∗([c])


=
∑
i∈Iϕ

(π̄ϕ)∗

(
(πi)∗([c])

)
.

Applying the isomorphism of Theorem 4.2, this element is sent to∑
i∈Iϕ

(
(πi)∗([c])

)
⊗K [1] ∈

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)
.

We are going to use these computations to prove the following result which
describes the kernel and the cokernel of π∗.

Proposition 4.5. The cokernel of π∗ : Hm(C0
∗)→ Hm(L∗) is given by

cokerπ∗ ∼=
⊕
ϕ

(
R

(ϕ)

)⊕ rk δϕm

.

In addition, the kernel of π∗ is a free R-module isomorphic to Hm(C0
∗).

Proof. Throughout the proof, consider the following R-modules identified one with
each other, without explicitly mentioning the isomorphisms between them:

Hm(L∗) ∼=
⊕
ϕ

Hm((L∗)ϕ)

∼=
⊕
ϕ

Hm((L∗)
M
ϕ )

∼=
⊕
ϕ

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)

⊕ (Krk δϕm ⊗K
R

(ϕ)

)
.

Recall that the matching M depends on ϕ, although we write M instead of Mϕ

in order to make the notations more readable. Also recall that the isomorphisms
Hm((L∗)ϕ) ∼= Hm((L∗)

M
ϕ ) occur in the commutative diagram of Remark 2.11.
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We want to show that the image of π∗ : Hm(C0
∗)→ Hm(L∗) is given by

imπ∗ =
⊕
ϕ

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)

 ⊆ Hm(L∗).

Let ψϕ : H∗(C
0
∗)→ H∗((L∗)

M
ϕ ) be the map defined as the composition

H∗(C
0
∗)

∼=−−→ H∗((C
0
∗)
M)

(π̄ϕ)∗−−−→ H∗((L∗)
M
ϕ ).

By commutativity of the diagram of Remark 2.11, the image of π∗ =
⊕

ϕ(πϕ)∗ is
the same as the image of⊕

ϕ

ψϕ : H∗(C
0
∗)→

⊕
ϕ

H∗((L∗)
M
ϕ ).

We have already proved that, for any [c] ∈ Hm((C0
∗)
M),

(π̄ϕ)∗([c]) =
∑
i∈Iϕ

(
(πi)∗([c])

)
⊗R [1] ∈

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)
,

which means in particular that

im (π̄ϕ)∗ ⊆
⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)
.

Therefore we immediately have the inclusion

im (π∗) ⊆
∑
ϕ

imψϕ =
∑
ϕ

im (π̄ϕ)∗ ⊆
⊕
ϕ

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)

 .

To prove the opposite inclusion, we show that any element of the form

[c]⊗K [1] ∈ Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)

is in the image of π∗ (for any fixed ϕ and i). To do so, choose α ∈ R such that
α ≡ 1 (mod ϕm+kϕ,i) and α ≡ 0 (mod ηm+kη,j ) for any irreducible element η 6= ϕ
which divides some weight w(σ), and for any connected component j ∈ Iη (there is
only a finite number of such η up to multiplication by units, because K is finite).
The element c⊗K α is a cycle in V ϕ,im ⊗K R ⊆ C0

m(K,K)M ⊗K R ∼= (C0
m)M. Then,

if [c̃] is the preimage of [c ⊗K α] under the isomorphism H∗(C
0
∗)

∼=−−→ H∗((C
0
∗)
M),

we have that:

ψϕ([c̃]) = (π̄ϕ)∗([c⊗K α]) = [c]⊗K [1] ∈ Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)
;

ψη([c̃]) = (π̄η)∗([c
′ ⊗K α]) = 0 for any η 6= ϕ,

where [c′] is the image of [c] under the isomorphism

H∗((C
0
∗)
Mϕ)

∼=−−→ H∗(C
0
∗)

∼=−−→ H∗((C
0
∗)
Mη ).

Therefore [c]⊗K [1] is in the image of π∗. We have thus proved that

imπ∗ =
⊕
ϕ

⊕
i∈Iϕ

Hm(V ϕ,i∗ )⊗K
R

(ϕm+kϕ,i)

 .
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Then the cokernel of π∗ can be easily computed:

cokerπ∗ =
Hm(L∗)

imπ∗
=
⊕
ϕ

(
Krk δϕm ⊗K

R

(ϕ)

)
=
⊕
ϕ

(
R

(ϕ)

)⊕ rk δϕm

.

The R-module Hm(C0
∗)
∼= Hm(C0

∗(K;K)) ⊗K R is free and finitely generated,
because Hm(C0

∗(K;K)) is a finite-dimensional vector space over K (recall that K is
a finite simplicial complex). The kernel of π∗ is a submodule of Hm(C0

∗), so it is
itself a free R-module with lower or equal rank. Let [c1], . . . , [ck] be an R-base of
Hm(C0

∗). Consider the non-zero ideal

I =
⋂
ϕ

⋂
i∈Iϕ

(ϕm+ki) ⊆ R,

where ϕ varies among the (finitely many) irreducible elements which divide some
weight w(σ) (for σ ∈ K). Fix any non-zero element α ∈ I. Then the ele-
ments α[c1], . . . , α[ck] generate a free submodule of kerπ∗ of rank k = rkHm(C0

∗).
Therefore kerπ∗ and Hm(C0

∗) have the same rank, so they are isomorphic as R-
modules. �

5. Precise matchings for Artin groups

Consider now the case of Artin groups, as in Section 2.4. For a Coxeter system
(W, S) we have constructed a weighted sheaf S = (K,R,w) with

K = {σ ⊂ S | the parabolic subgroup Wσ is finite}
and R = Q[q±1]. The associated weighted complex L∗ fits into the short exact
sequence

0→ C∗
∆−→ C0

∗
π−→ L∗ → 0,

which gives rise to the long exact sequence (1):

. . .
π∗−→ Hk+1(L∗)→ Hk(C∗)

∆∗−−→ Hk(C0
∗)

π∗−→ Hk(L∗)→ Hk−1(C∗)
∆∗−−→ . . .

In order to compute H∗(C∗) = H∗(XW;R), we split this long exact sequence into
the short exact sequences

0→ cokerπ∗ → Hm(C∗)
∆∗−−→ kerπ∗ → 0,

where on the left we have the cokernel of π∗ : Hm+1(C0
∗)→ Hm+1(L∗) and on the

right we have the kernel of π∗ : Hm(C0
∗)→ Hm(L∗). Since kerπ∗ is a free R-module,

these short exact sequences split:

Hm(C∗) ∼= cokerπ∗ ⊕ kerπ∗.

Recall that the only irreducible elements of R that occur in the factorization of
the weights are the cyclotomic polynomials ϕd for d ≥ 2. As in Section 4, suppose
from now on that we have constructed a ϕ-precise matchingMϕ for each cyclotomic
polynomial ϕ = ϕd (with d ≥ 2). Then we have an explicit description of cokerπ∗
and kerπ∗ thanks to Proposition 4.5, and we obtain the following result.

Theorem 5.1. Under the above hypothesis, the homology of XW with coefficients
in the representation R = Q[q±1] is given by

Hm(XW;R) ∼=

(⊕
ϕ

(
R

(ϕ)

)⊕ rk δϕm+1

)
⊕Hm(C0

∗). �
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In particular the term Hm(C0
∗) gives the free part of the homology, and the

other direct summands give the torsion part. The torsion part actually takes a very
particular form, and we are going to highlight this in the following result.

Theorem 5.2. Let GW be an Artin group that admits a ϕ-precise matching for
all cyclotomic polynomials ϕ = ϕd (with d ≥ 2). Then the homology H∗(XW;R)
does not have ϕk-torsion for k ≥ 2. �

We are particularly interested in Artin groups of finite and affine type. When GW

is an Artin group of finite type with n generators, K is the full simplicial complex
on S ∼= {1, . . . , n} and therefore C0

∗ has trivial homology in every dimension. Thus
the formula of Theorem 5.1 reduces to

Hm(XW;R) ∼=
⊕
ϕ

(
R

(ϕ)

)⊕ rk δϕm+1

.

When GW is an Artin group of affine type with n + 1 generators, K is obtained
from the full simplicial complex on S ∼= {0, 1, . . . , n} by removing the single top-
dimensional simplex. Then we have

Hm(XW;R) ∼=

R for m = n,⊕
ϕ

(
R

(ϕ)

)⊕ rk δϕm+1

for m < n.

Remark 5.3. When GW is an Artin group of finite type, the corresponding
reflection arrangement of hyperplanes A is finite. In this case it is well known
that there is an R-module isomorphism between the twisted homology H∗(XW;R)
and the homology with constant coefficients H∗(F ;Q) of the Milnor fiber F of A
[Cal05]. The q-multiplication on the homology of XW corresponds to the action
of the monodromy operator on the homology of F . If N = |A|, the square of
the defining polynomial of the arrangement is W-invariant, thus the order of the
monodromy of the Milnor fibration divides 2N . It follows that the polynomial
q2N − 1 must annihilate the homology. Since q2N − 1 is square-free in characteristic
0, the homology cannot have ϕk-torsion for k ≥ 2. So the conclusion of Theorem
5.2 is not surprising in the case of Artin groups of finite type.

In the rest of this paper we are going to construct precise matchings for Artin
groups of type An, Bn, Ãn and C̃n. For each of these cases we are then going to:
describe the critical simplices with respect to the constructed matching; find all
alternating paths and incidence numbers between critical simplices; determine the
ranks rk δϕ∗ and use Theorem 5.1 to compute the homology H∗(XW;R). The final
results are stated in Theorem 3.1 (case An), Theorem 5.13 (case Bn), Theorem 5.16
(case Ãn), and Theorem 5.20 (case C̃n).

Let us first introduce some notation. We will have S = {1, 2, . . . , n} for the finite
cases (An and Bn), and S = {0, 1, 2, . . . , n} for the affine cases (Ãn and C̃n). A
simplex σ ⊆ S will be also represented as a string of bits εi ∈ {0, 1} (for i ∈ S),
where εi = 1 if i ∈ S and εi = 0 if i 6∈ S. For example, if S = {1, 2, 3, 4}, the string
representation of σ = {1, 2, 4} is 1101. Also, for σ ⊆ S and v ∈ S, let

σ Y v =

{
σ ∪ {v} if v 6∈ σ,
σ \ {v} if v ∈ σ.
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(it can be regarded as the bitwise xor between the string representation of σ and
the string with εv = 1 and εi = 0 for i 6= v).

5.1. Case An. Many properties of the homology H∗(XW;R) in the case An have
been thoroughly discussed in Section 3. Using precise matchings we are going to
obtain a new proof of the formula for the homology of braid groups (Theorem 3.1).

Let S = {1, 2, . . . , n} be the set of vertices of the Coxeter graph of type An, as in
Section 3, Figure 1. In this case K is the full simplicial complex on S. Fix now an
integer d ≥ 2 and set ϕ = ϕd. The ϕ-weight of a simplex σ ∈ K has been computed
in Section 3 and is as follows:

vϕ(σ) =

m∑
i=1

ωϕ(Ani),

where ni is the size of the i-th (linear) connected component of the subgraph induced
by σ, and ωϕ(Ak) stands for the ϕ-weight of a connected component of type Ak,
given by

ωϕ(Ak) =

⌊
k + 1

d

⌋
.

Fix also an integer f with 0 ≤ f ≤ d− 1. Let KA
n,f ⊆ K be as follows:

KA
n,f = {σ ∈ K | 1, 2, . . . , f ∈ σ}.

Notice that KA
n,0 = K, and KA

n,f is not a subcomplex of K for f ≥ 1 (but it is

still a subposet of K, so it makes sense to define a matching on it). We are going
to construct a ϕ-precise matching on KA

n,f . In particular, for f = 0, we will get a
ϕ-precise matching for K. The precise matchings on KA

n,f for f ≥ 1 will become
useful when treating the cases Bn, Ãn and C̃n.

For a fixed d, the matching will be constructed recursively in n and f for n ≥ 0
and 0 ≤ f ≤ d − 1. We will write Kn,f for KA

n,f throughout Section 5.1. The
matching is as follows.

(a) If {1, . . . , d− 1} ⊆ σ then match σ with σ Y d (unless n = d− 1, in which case
σ is critical). Here σ is matched with a simplex which also occurs in case (a).
Notice that for f = d− 1 case (a) always applies, thus in the subsequent cases
we can assume f ≤ d− 2.

(b) Otherwise, if n = f then σ is critical.
(c) Otherwise, if f + 1 ∈ σ then match σ with σ \ {f + 1}. Notice that σ \ {f + 1}

occurs in case (d).
(d) Otherwise, if {f + 2, . . . , d− 1} * σ then match σ with σ ∪{f + 1}. Notice that

σ ∪ {f + 1} occurs in case (c).
(e) We are left with the simplices σ such that {1, . . . , f, f + 2, . . . , d− 1} ⊆ σ and

f + 1 6∈ σ. If we ignore the vertices 1, . . . , f + 1 we are left with the simplices
on the vertex set {f + 2, . . . , n} which contain f + 2, . . . , d− 1; relabeling the
vertices, these are the same as the simplices on the vertex set {1, . . . , n− f − 1}
which contain 1, . . . , d− 2− f . Then construct the matching recursively as in
Kn−f−1, d−2−f .

Example 5.4. For n = 5, d = 3 and f = 1, Kn,f contains 24 = 16 simplices
of which 14 are matched and 2 are critical. For instance, consider the simplex
σ = {1, 4, 5}. Case (e) applies because 1 ∈ σ and 2 6∈ σ; the recursion requires us to
consider the new simplex σ′ = {2, 3} ∈ K3,0. Again case (e) applies because 1 6∈ σ′
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and 2 ∈ σ′; the recursion requires us to consider the new simplex σ′′ = {1, 2} ∈ K2,1.
Finally case (a) applies because {1, 2} ⊆ σ′′, and σ′′ is critical because σ′′ = {1, 2}.
Therefore σ = {1, 4, 5} ∈ K5,1 is also critical. See Table 1 for an explicit description
of the matching for K5,1, d = 3.

Simplices vϕ(σ) Step

−→ 2 (a)

−→ 1 (a)

−→ 1 (a)

−→ 1 (a)

−→ 1 (e)  (a)

−→ 0 (e)  (c)/(d)

−→ 0 (e)  (c)/(d)

(critical) 1 (e)  (e)  (a)

(critical) 0 (e)  (e)  (e)  (b)

Table 1. Matching in the case An with n = 5, d = 3, f = 1. The last
columns indicates the case where simplices occur. When case (e) is
reached, the arrow “ ” indicates how the recursion continues (after
K5,1, the recursion involves K3,0, K2,1 and K0,0).

Remark 5.5. A peculiarity of this matching is that, if σ′ → τ ′ is in the matching,
then σ′ = τ ′ ∪ {v} with v ≡ f + 1 or v ≡ 0 (mod d). This can be easily checked by
induction.

Lemma 5.6. The matching described above is an acyclic weighted matching on
Kn,f .

Proof. Part 1: the matching is acyclic. The proof is by induction on n, the case
n = 0 being trivial. For n ≤ f , in Kn,f there are either 1 or 0 simplices. Assume
from now on n > f . Let P = {pa, pe, pc,d} be a three-element totally ordered poset,
with the order given by pa > pe > pc,d. Consider the map η : Kn,f → P which sends
σ ∈ Kn,f to the px such that σ occurs in case (x) (here cases (c) and (d) are united).
For instance, η(σ) = pa if and only if {1, . . . , d− 1} ⊆ σ. Notice that the map η is
compatible with the matching, i.e. two matched simplices lie in the same fiber of η.

Let us prove that η is a poset map. Given two simplices σ ≥ τ , we want to prove
that η(σ) ≥ η(τ). If η(τ) = pa then {1, . . . , d − 1} ⊆ τ ⊆ σ, so η(σ) = pa also. If
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η(τ) = pe then {1, . . . , f, f + 2, . . . , d− 1} ⊆ τ ⊆ σ, thus η(σ) ∈ {pa, pe}. Finally, if
η(τ) = pc,d there is nothing to prove.

Since η is a poset map, our matching is acyclic if and only if it is acyclic on
each fiber of η. The restriction of the matching to η−1(pa) consists of edges σ → τ
with σ = τ ∪ {d}, so there is no alternating path of length ≥ 4 and the matching is
acyclic. The restriction to η−1(pc,d) is acyclic for the same reason (it is always the
vertex f + 1 which is added or removed). The restriction to η−1(pe) is acyclic by
induction.

Part 2: the matching is weighted. The proof is by induction on n, the case
n = 0 being trivial. In case (a), vϕ(σ) = vϕ(σ Y d) by what we have already said in
Section 3 (see the proof of Theorem 3.6). In cases (c) and (d), both the simplices σ
and σ Y (f + 1) do not contain {1, . . . , d− 1}. Thus the (possibly empty) connected
component of 1 has size ≤ d− 2 and does not contribute to the weight. Therefore
vϕ(σ) = vϕ(σ Y (f + 1)). Finally, suppose that σ and τ are simplices that occur in
case (e). Let σ̂, τ̂ ∈ Kn−f−1, d−2−f be the simplices obtained ignoring the vertices
1, . . . , f + 1, as described above. Since f ≤ d− 2 we have that

vϕ(σ) = vϕ(τ) if and only if vϕ(σ̂) = vϕ(τ̂),

so we are done by induction on n. �

The critical simplices of the matching on Kn,f are quite simple to describe. If
f ≤ d − 2, n > f and n ≡ f or −1 (mod d), there are 2 critical simplices, one of
weight 1 and one of weight 0. If n = f there is 1 critical simplex (in fact there is only
one simplex in Kn,f ). In all the other cases the matching has no critical simplices.
We are going to prove this in the following theorem. See Table 2, and Figures 4
and 5, for an explicit description of the critical simplices. Notice in particular that,
when there are 2 critical simplices, one is a face of the other in Kn,f .

Case Simplices |σ| vϕ(σ)

n = kd+ f (Fig. 4)
(1f01d−2−f0)k−11f01d−1 n− 2k + 1 1

n > f (1f01d−2−f0)k1f n− 2k 0

f ≤ d− 2
n = kd− 1 (Fig. 5)

(1f01d−2−f0)k−11d−1 n− 2k + 2 1

(1f01d−2−f0)k−11f01d−2−f n− 2k + 1 0

n = f 1f n 1 or 0

Table 2. Description of the critical simplices for An.

Theorem 5.7 (Critical simplices in case An). The critical simplices for the matching
on Kn,f are those listed in Table 2. In particular the matching is always precise,
and has no critical simplices if n 6≡ f,−1 (mod d) or n > f = d − 1. In addition,
when there are two critical simplices there is only one alternating path between
them (the trivial one).

Proof. Part 1: critical simplices. The proof is by induction on n, the case n = 0
being trivial (there is one critical simplex for f = 0, namely the empty simplex ∅,
and no critical simplices for f > 0). Let σ ∈ Kn,f be a simplex. Let us consider
each of the five cases that can occur in the construction of the matching.
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d− 2− f vertices

. . .. . .

f vertices

. . . . . .

f vertices d− 1 vertices

. . .

k − 1 times

d− 2− f vertices

. . .. . .

f vertices

. . . . . .

f vertices

k times

Figure 4. Critical simplices for f ≤ d− 2 and n = kd+ f (k ≥ 1).

d− 2− f vertices

. . .. . .

f vertices

. . .

d− 1 vertices

. . .

k − 1 times

d− 2− f vertices d− 2− f vertices

. . .. . .

f vertices

. . . . . .

f vertices

. . .

k − 1 times

Figure 5. Critical simplices for f ≤ d− 2 and n = kd− 1 (k ≥ 1).

(a) We have {1, . . . , d − 1} ⊆ σ. Then σ is critical if and only if n = d − 1. If
n = d − 1 then σ is indeed listed in Table 2, as the first of the two critical
simplices in the case n = kd − 1 (here k = 1). Conversely, the only simplex
of Table 2 which contains {1, . . . , d− 1} is the first one of the case n = kd− 1
when k = 1.

(b) We have n = f and σ = {1, . . . , f}. Then σ is critical, and it is indeed listed as
the second of the two critical simplices in the case n = kd+ f (here k = 0).

(c) We have {1, . . . , f + 1} ⊆ σ. Then σ is not critical. The only listed simplex
which contains {1, . . . , f + 1} is the first one of the case n = kd− 1 for k = 1,
but it is equal to {1, . . . , d− 1} and so it must be different from σ.

(d) We have f + 1 6∈ σ and {f + 2, . . . , d − 1} * σ. Then σ is not critical. It is
easy to check that all the listed simplices τ with n > f and f + 1 6∈ τ satisfy
{f + 2, . . . , d− 1} ⊆ τ , so none of them can be equal to σ.

(e) We have {1, . . . , f, f + 2, . . . , d− 1} ⊆ σ and f + 1 6∈ σ. Then σ is critical if and
only if the simplex σ̂ ∈ Kn−f−1, d−2−f is critical, where σ̂ is constructed from
σ by ignoring the first f + 1 vertices. By induction, σ̂ is critical if and only if
it is listed in Table 2. By taking the simplices of Table 2 for Kn−f−1, d−2−f
and adding 1f0 at the beginning, one obtains exactly the simplices of Table
2 for Kn,f (but the two cases are exchanged). This concludes the induction
argument.

For fixed n and f , the quantity |σ|−vϕ(σ) is constant among the critical simplices
σ. More precisely, it is equal to n− 2k for n = kd+ f (except for f = d− 1) and to
n− 2k + 1 for n = kd− 1. Therefore the matching is precise.

Part 2: alternating paths. We want to prove that the only alternating path
between critical simplices is the trivial one. Consider the case n = kd+ f for k ≥ 1
(the case n = kd− 1 is analogous). Let σ and τ be the two critical simplices (the
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ones of Figure 4). Notice that σ = τ ∪{n− f}. To establish a contradiction suppose
we have a non-trivial alternating path

σ B τ1 C σ1 B τ2 C σ2 B · · · B τm C σm B τ, m ≥ 1.

Since τ1 6= τ , we must have σ = τ1 ∪ {v1} with v1 6= n− f . Notice that n− f is the
only vertex v ∈ σ which satisfies v ≡ f + 1 or v ≡ 0 (mod d). Therefore, by Remark
5.5, the vertex v1 will never be recovered throughout the alternating path. This is a
contradiction since v1 ∈ τ . �

As a consequence we can compute the homology H∗(GW;R) for GW of type An.
This gives a proof of Theorem 3.1.

Proof of Theorem 3.1 (Homology in case An). We simply need to apply the formula
given by Theorem 5.1 using our precise matching on K = Kn,0. Since f = 0, there
are critical simplices for n = kd or n = kd− 1. The boundary δϕm+1 is non-trivial
only for {

m = n− 2k = k(d− 2) if n = kd,

m = n− 2k + 1 = k(d− 2) if n = kd− 1.

In both cases for m = k(d− 2) we have rk δϕm+1 = 1, and all the other boundaries
are trivial. Theorem 3.1 follows. �

Remark 5.8. A relation with independence complexes can be found for Kn,f also
when 1 ≤ f ≤ d− 2. Indeed, choosing a suitable weighted matching (similar to the
one of Theorem 3.6), the set of critical simplices of positive weight in Kn,f is

{σ tAd−1 | σ ∈ Indd−2(An−d) ∩Kn−d, f}.

5.2. Case Bn. Consider now a Coxeter graph of type Bn, as in Figure 6. In this
case K is again the full simplex on vertices {1, 2, . . . , n}. The Poincaré polynomial
of a Coxeter group of type Bk is given by

WBk(q) = [2k]q!! =

n∏
i=1

[2i]q =
∏
ϕ

ϕωϕ(Bk),

where, for a given cyclotomic polynomial ϕ = ϕd, we have

ωϕ(Bk) =

{ ⌊
k
d

⌋
if d is odd,⌊

k
d/2

⌋
if d is even

(see for example [BB06]). Then we can compute the ϕ-weight of any simplex σ ∈ K
by looking at the subgraph Γ(σ) induced by σ. Let Γ1(σ), . . . , Γm(σ) be the
connected components of Γ(σ), with cardinality n1, . . . , nm respectively, where
Γ1(σ) is the (possibly empty) component that contains the vertex 1 ∈ S. Then

vϕ(σ) = ωϕ(Bn1) +

m∑
i=2

ωϕ(Ani).

1 2 3 4 n− 1 n
4 . . .

Figure 6. A Coxeter graph of type Bn.
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The situation is quite different depending on the parity of d. If d is odd, the
ϕ-weight of a Bk+1 component is equal to the ϕ-weight of an Ak component:

ωϕ(Bk+1) =

⌊
k + 1

d

⌋
= ωϕ(Ak) (d odd).

For this reason it is possible to construct a very simple matching on K: match any
simplex σ ∈ K with σ Y 1.

Lemma 5.9. The matching constructed above for d odd is an acyclic weighted
matching on K, with no critical simplices.

Proof. Clearly the matching is acyclic and there are no critical simplices. Let us
proof that the matching is weighted. Let σ ∈ K. The only difference between Γ(σ)
and Γ(σ Y 1) is the leftmost connected component, which in one case is of type Bk+1

and in the other case is of type Ak. Therefore vϕ(σ) = vϕ(σ Y 1). �

Suppose from now on that d is even. The simplicial complex K is partitioned as

K =
⊔
q≥0

Kq, where Kq =

{
σ ∈ K

∣∣∣∣ ⌊ |Γ1(σ)|
d/2

⌋
= q

}
.

Here Γ1(σ) is the (possibly empty) connected component of Γ(σ) which contains the
vertex 1. Notice that each Kq is a subposet of K, but not a subcomplex in general.

For a given simplex σ ∈ Kq, let |Γ1(σ)| = q d2 + r with 0 ≤ r < d
2 . The matching on

Kq is as follows.

(a) If r ≥ 1 (i.e. q d2 + 1 ∈ σ) then match σ with σ \
{
q d2 + 1

}
.

(b) If r = 0 (i.e. q d2 + 1 6∈ σ) and
{
q d2 + 2, . . . , (q + 1)d2

}
* σ, then match σ with

σ ∪
{
q d2 + 1

}
(unless n = q d2 , in which case σ is critical).

(c) We are left with the simplices σ for which neither (a) nor (b) apply, i.e. with
r = 0 and

{
q d2 + 2, . . . , (q + 1)d2

}
⊆ σ. Ignore the first q d2 + 1 vertices and

relabel the remaining ones from 1 to n− q d2 − 1, so that we are left exactly with
the simplices of KA

n−q d2−1, d2−1
. Then construct the matching on KA

n−q d2−1, d2−1
as in Section 5.1.

Putting together the matchings on each Kq we obtain a matching on the full
simplicial complex K.

Example 5.10. For n = 4 and d = 4, the simplicial complex K contains 24 = 16
simplices of which 12 are matched and 4 are critical. For instance, consider σ =
{1, 2} ∈ K. Then q = 1 and r = 0. Since 4 6∈ σ, case (b) occurs. Therefore σ is
matched with σ ∪ {3} = {1, 2, 3}. See Table 3 for an explicit description of the
matching in this case.

Lemma 5.11. The matching constructed above for d even is an acyclic weighted
matching on K.

Proof. Part 1: the matching is acyclic. The map K → (N,≤) which sends σ to

q =
⌊
|Γ1(σ)|
d/2

⌋
is a poset map compatible with the matching, and its fibers are exactly

the subsets Kq for q ∈ N. Therefore we only need to prove that the matching on
each fiber Kq is acyclic.

Let P = {pc, pa,b} be a two-element totally ordered poset with pc > pa,b. For
a fixed q ∈ N, consider the map η : Kq → P which sends σ to the px such that
σ occurs in case (x) (here cases (a) and (b) are united). Clearly η is compatible
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Simplices vϕ(σ) q Step

4
−→

4
1 1 (a)/(b)

4
−→

4
0 0 (a)/(b)

4
−→

4
0 0 (a)/(b)

4
−→

4
0 0 (a)/(b)

4
−→

4
0 0 (a)/(b)

4
(critical) 2 2 (b)

4
(critical) 1 1 (c)

4
(critical) 1 0 (c)

4
−→

4
0 0 (c)

4
(critical) 0 0 (c)

Table 3. Matching in the case Bn with n = 4 and d = 4.

with the matching. We want to prove that it is a poset map, and for this we only
need to show that if η(τ) = pc and τ ≤ σ then η(σ) = pc also. We have that{

1, . . . , q d2 , q
d
2 + 2, . . . , (q + 1)d2

}
⊆ τ ⊆ σ. The simplex σ cannot contain the vertex

q d2 + 1, because otherwise we would have σ ∈ Kq+1. Therefore η(σ) = pc.
On the fiber η−1(pa,b) the matching is acyclic because the same vertex q d2 + 1 is

always added or removed. On the fiber η−1(pc) the matching is acyclic by Lemma
5.6. Therefore the entire matching on Kq is acyclic.

Part 2: the matching is weighted. Let σ ∈ Kq be a simplex which occurs
either in case (a) or case (b). We want to show that vϕ(σ) = vϕ

(
σ Y

(
q d2 + 1

))
.

Suppose without loss of generality that σ occurs in case (a), i.e. r ≥ 1 and q d2 +1 ∈ σ.

Let τ = σ \
{
q d2 + 1

}
. The only difference between Γ(σ) and Γ(τ) is that Γ(σ) has

a Bq d2 +r component, whereas Γ(τ) has a Bq d2
component and an Ar−1 component

instead. Since 1 ≤ r < d
2 , we have that

ωϕ(Bq d2 +r) = ωϕ(Bq d2
) = q

and ωϕ(Ar−1) = 0

(the second equality holds because r− 1 ≤ d
2 − 1 ≤ d− 2). Therefore vϕ(σ) = vϕ(τ).

For simplices occurring in case (c), the matching only involves changes in the
connected components not containing the first vertex (i.e. connected components of
type Ak). Therefore Lemma 5.6 applies. �
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Now we are going to describe the critical simplices. The matching has no critical
simplices when n is not a multiple of d

2 . On the other hand, if n = k d2 , we have two
families of critical simplices: σq (for 0 ≤ q ≤ k − 2) and σ′q (for 0 ≤ q ≤ k). See
Table 4 and Figure 7 for the definition of these simplices. For instance, in Example
5.10, the critical simplices are: σ0 = {2, 3, 4}, σ′2 = {1, 2, 3, 4}, σ′1 = {1, 2, 4} and
σ′0 = {1, 3}. See also Table 5, where the critical simplices are listed by dimension.

Simplices |σ| vϕ(σ)

σq = 1q
d
2 (01

d
2−1)k−q−201d−1 n− k + q + 1 q + 1 0 ≤ q ≤ k − 2

σ′q = 1q
d
2 (01

d
2−1)k−q n− k + q q 0 ≤ q ≤ k

Table 4. Description of the critical simplices for Bn, where d is even
and n = k d2 .

q d2 vertices d
2 − 1 vertices

. . . . . .
4

. . . . . .

d− 1 vertices

. . .

k − q − 2 times

q d2 vertices d
2 − 1 vertices

. . .
4

. . . . . .

k − q times

Figure 7. Critical simplices for Bn, where d is even and n = k d2 .
Above is the simplex σq (0 ≤ q ≤ k − 2) and below is the simplex σ′q
(0 ≤ q ≤ k).

|σ| vϕ(σ) Simplices

n k σ′k

n− 1 k − 1 σk−2, σ′k−1

n− 2 k − 2 σk−3, σ′k−2

...
...

...

n− k + 1 1 σ0, σ′1

n− k 0 σ′0

Table 5. Critical simplices for Bn by dimension, where d is even and
n = k d2 .
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Theorem 5.12 (Critical simplices in case Bn). The critical simplices for the
matching on K are those defined in Table 4. In particular the matching is always
precise, and has no critical simplices if d is odd or if d is even and n 6≡ 0

(
mod d

2

)
.

In addition, if d is even and n ≡ 0
(
mod d

2

)
, the incidence numbers between the

critical simplices in the Morse complex are as follows:

[σq : σq−1]M = (−1)(q−1) d2 ,

[σq : σ′q]
M = (−1)(k−1)( d2−1)+q,

[σ′q : σq−2]M = (−1)k( d2−1)+q,

[σ′q : σ′q−1]M = (−1)(q−1) d2 .

Proof. Part 1: critical simplices. For d odd there is nothing to prove. Suppose
from now on that d is even. For a given simplex σ ∈ K, let us consider each of the
three cases that can occur in the construction of the matching.

(a) We have q d2 + 1 ∈ σ, and σ is not critical. Indeed, none of the simplices of Table
4 contains the vertex q d2 + 1.

(b) We have q d2 + 1 6∈ σ and
{
q d2 + 2, . . . , (q + 1)d2

}
* σ. In this case σ is critical

if and only if n = q d2 . Indeed, the only simplex of this type in Table 4 is σ′k
(which occurs for q = k i.e. n = q d2 ).

(c) In the remaining case, we end up with the matching on KA
n−q d2−1, d2−1

. By

Theorem 5.7, this matching admits critical simplices if and only if

n− q d2 − 1 ≡ d
2 − 1 (mod d) or n− q d2 − 1 ≡ −1 (mod d),

i.e. for n ≡ 0
(
mod d

2

)
. Notice that if f = d

2 − 1 then d− 2− f = d
2 − 1 also.

Therefore, again by Theorem 5.7, for n ≡ 0
(
mod d

2

)
the critical simplices are

exactly the ones listed in Table 4.

For a fixed n = k d2 , the quantity |σ| − vϕ(σ) is constant among the critical
simplices and is equal to n− k. Thus the matching is precise.

Part 2: incidence numbers. We are going to show that there is exactly one
alternating path for each of the four pairs. Notice that, if σ → τ is in the matching
of Kq, then σ = τ ∪ {v} with v ≡ 1

(
mod d

2

)
and v ≥ q d2 + 1. In particular, if at a

certain point of an alternating path one removes a vertex v with v 6≡ 1
(
mod d

2

)
, then

that vertex will never be added again. But all the critical simplices contain every
vertex v with v 6≡ 1

(
mod d

2

)
, so any alternating path between critical simplices

cannot ever drop a vertex v with v 6≡ 1
(
mod d

2

)
.

Let us now consider each of the four pairs.

• (σq, σq−1). We have that σq = σq−1 ∪ {v} where v = (q − 1)d2 + 1, so there
is the trivial alternating path σq → σq−1 which contributes to the incidence
number [σq : σq−1]M by

[σq : σq−1] = (−1)|{w∈σq|w<v}| = (−1)(q−1) d2 .

Suppose by contradiction that there exists some other (non-trivial) alter-
nating path

σq B τ1 C ρ1 B τ2 C ρ2 B · · ·B τm C ρm B σq−1, m ≥ 1.
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Let σq = τ1 ∪ {u}. By the previous considerations, we must have u ≡
1
(
mod d

2

)
. If u = (k − 1)d2 + 1 then τ1 = σ′q, but this is not possible since

alternating paths stop at critical simplices. Similarly, if u = (q − 1)d2 + 1

then we would stop at τ1 = σq−1. Therefore we must have u ≤ (q− 2)d2 + 1.
But then τ1 ∈ Kq′ with q′ ≤ q − 2, and by induction all the subsequent
simplices in the alternating path must lie in⋃

q′′≤q−2

Kq′′ .

In particular σq−1 ∈ Kq′′ for some q′′ ≤ q − 2, but this is a contradiction
since σq−1 ∈ Kq−1.
• (σq, σ

′
q). This case is similar to the previous one, except for the fact that

σq = σ′q ∪ {v} for v = (k − 1)d2 + 1. So the only alternating path is the
trivial one, which contributes to the incidence number by

[σq : σ′q] = (−1)|{w∈σq|w<v}|

= (−1)q
d
2 +(k−q−1)( d2−1)

= (−1)(k−1)( d2−1)+q.

• (σ′q, σ
′
q−1). This case is also similar to the previous ones. Here we have

σ′q = σ′q−1 ∪ {v} with v = (q − 1)d2 + 1, so the contribution to the incidence
number due to the trivial alternating path is

[σ′q : σ′q−1] = (−1)|{w∈σ
′
q|w<v}| = (−1)(q−1) d2 .

• (σ′q, σq−2). This case is more complicated because the only alternating path
is non-trivial. Suppose we have an alternating path

σ′q B τ1 C ρ1 B τ2 C ρ2 B · · ·B τm C ρm B σq−2, m ≥ 1

(m must be at least 1 because σq−2 is not a face of σ′q in K). Let σ′q = τ1∪{v},
with v ≡ 1

(
mod d

2

)
. If v = (q − 1)d2 + 1 then τ1 = σ′q−1 and we must stop

because σ′q−1 is already critical. If v ≤ (q − 3)d2 + 1 we fall into some Kq′

with q′ ≤ q − 3 and it is not possible to reach σq−2 ∈ Kq−2. Therefore

necessarily v = (q − 2)d2 + 1. Then τ1 is matched with

ρ1 = τ1 ∪
{
q d2 + 1

}
.

Then again, τ2 = ρ1 \ {v2} and the only possibility for v2 (in order to have
τ2 6= τ1 and not to fall into some Kq′ with q′ ≤ q − 3) is v2 = (q − 1)d2 + 1.
Proceeding by induction we obtain that

τi = ρi−1 \
{

(q − 3 + i)d2 + 1
}
,

ρi = τi ∪
{

(q − 1 + i)d2 + 1
}
.

The path stops at τk−q+1 = σq−2, and its length is m = k − q. See Table 6
for an example. The contribution of this path to the incidence number is

(−1)k−q[σ′q : τ1][ρ1 : τ1] · · · [ρk−q : τk−q][ρk−q : σq−2]

where

[ρi−1 : τi] = (−1)(q−2) d2 +(i−1)( d2−1),

[ρi : τi] = (−1)(q−2) d2 +(i−1)( d2−1)+d−1
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= (−1)(q−2) d2 +(i−1)( d2−1)+1

(these formulas also hold for ρ0 = σ′q and τk−q+1 = σq−2). Then

[σ′q : σq−2]M = (−1)k−q

(
k−q∏
i=1

[ρi−1 : τi][ρi : τi]

)
[ρk−q : σq−2]

= (−1)k−q(−1)k−q(−1)(q−2) d2 +(k−q)( d2−1)

= (−1)k( d2−1)+q. �

Simplices vϕ(σ)

σ′2 =
4

2

τ1 =
4

1

ρ1 =
4

1

τ2 =
4

1

ρ2 =
4

1

τ3 =
4

1

ρ3 =
4

1

σ0 =
4

1

Table 6. The only alternating path from σ′q to σq−2 for n = 10, d = 4,
k = 5 and q = 2.

Having a complete description of a precise matching on K, we can now compute
the homology H∗(GW;R) for GW of type Bn. We recover the result of [DCPSS99].

Theorem 5.13 (Homology in case Bn [DCPSS99]). For an Artin group GW of
type Bn, we have

Hm(GW;R)ϕd
∼=

{
R/(ϕd) if d is even, n = k d2 and n− k ≤ m ≤ n− 1,

0 otherwise.

Proof. For a fixed ϕ = ϕd, we need to compute the boundary δϕm+1. Assume that

n = k d2 , otherwise there are no critical simplices. In top dimension (m + 1 = n)
we have rk δϕn = 1, because [σ′k : σ′k−1] 6= 0. For m ≤ n− k − 1 the boundary δϕm+1

vanishes, because there are no critical simplices in dimension ≤ n− k − 1. For m =
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n−k we have rk δϕm+1 = 1, because [σ′1 : σ′0] 6= 0. Finally, for n−k+ 1 ≤ m ≤ n− 2,
we have (set q = m− n+ k):

rk δϕm+1 = rk

(
[σq : σq−1] [σ′q+1 : σq−1]
[σq : σ′q] [σ′q+1 : σ′q]

)
= rk

(
(−1)(q−1) d2 (−1)k( d2−1)+q+1

(−1)(k−1)( d2−1)+q (−1)q
d
2

)
= 1,

because

det

(
(−1)(q−1) d2 (−1)k( d2−1)+q+1

(−1)(k−1)( d2−1)+q (−1)q
d
2

)
= (−1)

d
2 − (−1)

d
2 = 0.

To summarize, we have: rk δϕm+1 = 1 for n − k ≤ m ≤ n − 1, and rk δϕm+1 = 0
otherwise. We conclude applying Theorem 5.1. �

5.3. Case Ãn. Consider now the case of affine Artin groups of type Ãn (see Figure
8 for a picture of the corresponding Coxeter graph). Recall that, for affine Artin
groups, the simplicial complex K consists of all the simplices σ ⊆ S = {0, . . . , n}
except for the full simplex σ = {0, . . . , n}. For any σ ∈ K, the induced subgraph
Γ(σ) consists only of connected components of type Ak. The weight vϕ(σ) is then
computed as in Section 5.1.

0

1

2

3

4

5

6

n. . .

Figure 8. A Coxeter graph of type Ãn.

If σ is a simplex of K then σ misses at least one vertex of {0, 1, . . . , n}. Define
h to be the first vertex missing from σ reading counterclockwise from 0. Then σ
belongs to a unique

Kh = {σ ∈ K | h 6∈ σ and {0, . . . , h− 1} ⊆ σ}.

In other words, the subsets Kh form a partition of K:

K =

n⊔
h=0

Kh.

Construct a matching on a fixed Kh as follows. Let h = qd+ r with 0 ≤ r ≤ d− 1,
and let m = n− qd. Consider the following clockwise relabeling of the vertices: r− 1
becomes 1, r − 2 becomes 2, . . . , 0 becomes r, n becomes r + 1, . . . , h+ 2 becomes
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m− 1, h+ 1 becomes m (the vertices r, r+ 1, . . . , h are forgotten). This relabeling
induces a poset isomorphism

Kh

∼=−→ KA
m,r.

Then equip Kh with the pull-back of the matching on KA
m,r defined in Section 5.1

(for h = n the only simplex in Kh is critical).

Lemma 5.14. The matching defined above is an acyclic weighted matching on K.

Proof. Consider the map η : K → (N,≤) which sends σ ∈ K to min{h ∈ N | h 6∈ σ}.
Then η is a poset map with fibers η−1(h) = Kh. The matching on each Kh

∼= KA
m,r

is acyclic by Lemma 5.6, therefore the whole matching on K is acyclic.

Fix h ∈ {0, . . . , n}. The bijection Kh

∼=−→ KA
m,r is such that, if σ 7→ σ̂, then

vϕ(σ) = vϕ(σ̂) + q. Indeed, Γ(σ) is obtained from Γ(σ̂) by adding qd vertices to one
(possibly empty) connected component, and this increases the weight by q. Then,
since the matching on KA

m,r is weighted, its pull-back also is. �

Case Simplices |σ| vϕ(σ)

n = kd+ r τq n− 2(k − q) + 1 q + 1 0 ≤ q ≤ k − 1

6≡ −1 (mod d) τ ′q n− 2(k − q) q 0 ≤ q ≤ k

n = kd− 1

σq,r n− 2(k − q) + 2 q + 1 0 ≤ q ≤ k − 2, 0 ≤ r ≤ d− 2

σ′q,r n− 2(k − q) + 1 q 0 ≤ q ≤ k − 1, 0 ≤ r ≤ d− 2

σ̄ = 1n0 n k

Simplices

τq = 1qd+r01d−10(1r01d−2−r0)k−q−1

τ ′q = 1qd+r0(1r01d−2−r0)k−q

σq,r = 1qd+r01d−10(1d−2−r01r0)k−q−21d−2−r0

σ′q,r = 1qd+r0(1d−2−r01r0)k−q−11d−2−r0

Table 7. Description of the critical simplices for Ãn. Below, the
binary string notation is used.

Theorem 5.15 (Critical simplices in case Ãn). The critical simplices for the
matching on K are those listed in Table 7. The only non-trivial incidence numbers
between critical cells are:

[τq : τ ′q]
M = ±1 (for n = kd+ r with 0 ≤ r ≤ d− 2);

[σq,r : σ′q,r]
M = ±1,

[σ̄ : σ′k−1,r]
M = ±1 (for n = kd− 1).

In particular the matching is precise.
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Proof. Part 1: critical simplices. For n 6≡ −1 (mod d), the matching on Kh has
critical simplices only for h ≡ n (mod d). If we write n = kd+ r with 0 ≤ r ≤ d− 2,
then Kqd+r

∼= KA
n−qd, r has two critical simplices for 0 ≤ q ≤ k − 1 and one critical

simplex for q = k. These simplices are the ones listed in Table 7.
Suppose now that n = kd − 1. For any h = qd + r, with 0 ≤ r ≤ d − 2, the

complex Kqd+r
∼= KA

n−qd, r has two critical simplices because n− qd ≡ −1 (mod d).
Moreover, for h = n the complex Kn

∼= KA
d−1, d−1 has one critical simplex. In the

remaining cases the matching on Kh has no critical simplices. Again, the critical
simplices are those listed in Table 7.

Part 2: incidence numbers for n = kd + r. We want to find the incidence
numbers between critical simplices of consecutive dimensions. We start with the
case n = kd+ r, with 0 ≤ r ≤ d− 2. First, let us look for alternating paths from τq
to τ ′q (for 0 ≤ q ≤ k − 1). Set h = qd+ r. Suppose we have one such path:

τq B ζ1 C ρ1 B ζ2 C ρ2 B · · ·B ζm C ρm B τ ′q.

If at some point a vertex v ∈ {0, ..., h− 1} is removed, then the path falls into some
Kh′ with h′ < h and can never return in Kh. Therefore the path must be entirely
contained in Kh

∼= KA
n−qd, r, and by Theorem 5.7 it must be the trivial path τq B τ ′q.

Thus [τq : τ ′q] = ±1.
The other pairs of critical simplices in consecutive dimensions are (τ ′q+1, τq) for

0 ≤ q ≤ k − 1. There is a trivial path τ ′q+1 B τq which consists in removing the
vertex h = qd+ r, and contributes to the incidence number by

[τ ′q+1 : τq] = (−1)h.

Suppose we have some other (non-trivial) alternating path:

(2) τ ′q+1 B ζ1 C ρ1 B ζ2 C ρ2 B · · ·B ζm C ρm B τq, m ≥ 1.

Let ρm = τq ∪ {v}. If v = h then ρm = τ ′q+1, which is excluded. Then v must be
one of the other vertices that do not belong to τq. They are of the form v = n− sd
(for 0 ≤ s ≤ k − q − 1) or v = n − (d − 1 − r) − sd (for 0 ≤ s ≤ k − q − 2). If
v = n − (d − 1 − r) − sd, then ρm is matched with ρm ∪ {n − (s + 1)d}. This is
impossible because ρm must be matched with some ζmCρm. Similarly, if v = n−sd
with 0 ≤ s ≤ k − q − 2, then ρm is matched with ρm ∪ {n − (d − 1 − r) − sd}
and not with some ζm C ρm. The only remaining possibility is v = n − sd with
s = k−q−1, i.e. v = n− (k−q−1)d = (q+1)d+r. In this case ρm is matched with
ζm = ρm \ {qd+ 2r + 1}. Going on with the same argument, we have exactly one
way to continue the alternating path (from right to left in (2)), and we eventually
end up with τ ′q+1. From left to right, the obtained alternating path is the following:

ζ1 = τ ′q+1 \ {qd+ 2r + 1},
ρ1 = ζ1 ∪ {n},
ζ2 = ρ1 \ {qd+ r},
ρ2 = ζ2 ∪ {n− (d− 1− r)},
ζ3 = ρ2 \ {n},
ρ3 = ζ3 ∪ {n− d},
ζ4 = ρ3 \ {n− (d− 1− r)},

...
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ζm = ρm−1 \ {(q + 1)d+ 2r + 1},
ρm = ζm ∪ {qd+ 2r + 1},
τq = ρm \ {(q + 1)d+ r}.

The length of the path is m = 2(k − q). Apart from qd+ r, which is the vertex in
τ ′q+1 \ τq, the other vertices are added and removed exactly once during the path. If
a certain v is added in some ρi and removed in some ζj (the removal might possibly
come before the addition), then

[ρi : ζi][ρj−1 : ζj ] =

{
1 if v = n,

−1 otherwise.

This is true because, except for v = n, between the addition and the removal of v
exactly one vertex u with u < v has been added/removed. Namely, between the
addition and the removal of a vertex v = jd+ 2r + 1 (for q ≤ j ≤ k − 1) the vertex
u = jd+ r is added/removed, and between the addition of the removal of a vertex
v = jd+r (for q+1 ≤ j ≤ k−1) the vertex u = (j−1)d+2r+1 is added. Therefore
the alternating path (2) contributes to the incidence number by

(−1)m · (−1)m−1 · [ζ2 : ρ1] = (−1)qd+r+1 = (−1)h+1.

Finally, the incidence number is given by

[τ ′q+1 : τq]
M = (−1)h + (−1)h+1 = 0.

Part 3: incidence numbers for n = kd − 1. Consider a generic alternating
path starting from σ̄ = {0, . . . , n− 1}:

σ̄ B ζ1 C ρ1 B ζ2 C ρ2 B · · ·B ζm C ρm B ζm+1.

Let σ̄ = ζ1 ∪ {v}. If n − d + 1 ≤ v ≤ n − 1 then ζ1 = σ′k−1,r for r = n − 1 − v.

Therefore we have trivial alternating paths from σ̄ to any of the σ′k−1,r. If v ≤ n− d
then ζ1 ∈ Kh with h ≤ n− d = (k − 1)d− 1. None of these Kh’s contains critical
simplices ζm+1 with |ζm+1| = n− 1, and the alternating path cannot return in any
Kh′ with h′ ≥ (k− 1)d. Thus there are no other alternating paths from σ̄ to critical
simplices of K. Then the non-trivial incidence numbers involving σ̄ are:

[σ̄ : σ′k−1,r]
M = ±1.

Consider now a generic alternating path from σq,r1 to σ′q,r2 :

σq,r1 B ζ1 C ρ1 B ζ2 C ρ2 B · · ·B ζm C ρm B σ′q,r2 .
Let ρm = σ′q,r2∪{v}. Adding v to σ′q,r2 causes the creation of a connected component
Γi with |Γi| ≡ −1 (mod d). This means that ρm is matched with a simplex of higher
dimension, or is not matched at all (this happens for v = (q+1)d−1). Therefore the
alternating path must be trivial, and it occurs only for r1 = r2. Then the non-trivial
incidence numbers of the form [σq,r1 : σ′q,r2 ]M are:

[σq,r : σ′q,r]
M = ±1.

Finally consider a generic alternating paths from σ′q+1,r1 to σq,r2 :

(3) σ′q+1,r1 B ζ1 C ρ1 B ζ2 C ρ2 B · · ·B ζm C ρm B σq,r2 .
As before, we work backwards. Let ρm = σq,r2 ∪ {v}. Apart from the choices
v = qd+ r and v = (q + 1)d+ r, in all other cases ρm has a connected component
of size ≡ −1 (mod d) and this prevents the continuation of the alternating path.
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For v = qd+ r we obtain ρm = σ′q+1,r2 , so we have a trivial alternating path from
σ′q+1,r2 to σq,r2 . For v = (q + 1)d+ r, iterating the same argument, we have exactly
one way to continue the alternating path (from right to left in (3)) and we end up
with σ′q+1,r2 . From left to right, the path is as follows (set r = r2):

ζ1 = σ′q+1,r \ {(q + 1)d− 1},
ρ1 = ζ1 ∪ {n},
ζ2 = ρ1 \ {qd+ r},
ρ2 = ζ2 ∪ {n− (d− 1− r)},
ζ3 = ρ2 \ {n},
ρ3 = ζ3 ∪ {n− d},
ζ4 = ρ3 \ {n− (d− 1− r)},

...

ζm = ρm−1 \ {(q + 2)d− 1},
ρm = ζm ∪ {(q + 1)d− 1},
σq,r = ρm \ {(q + 1)d+ r}.

The length of the path is m = 2(k − q)− 1. As happened in the case n = kd+ r,
the contribution of this alternating path to the incidence number is given by

(−1)m · (−1)m−1 · [ζ2 : ρ1] = (−1)qd+r+1.

The contribution of the trivial path σ′q+1,r B σq,r is given by (−1)qd+r. Therefore

[σ′q+1,r : σq,r]
M = (−1)qd+r + (−1)qd+r+1 = 0. �

We are now able to recover the result of [CMS08b] about the homologyH∗(GW;R)
when GW is an Artin group of type Ãn.

Theorem 5.16 (Homology in case Ãn [CMS08b]). For an Artin group GW of type

Ãn, we have

Hm(GW;R)ϕd
∼=


(R/(ϕd))

⊕d−1
if n = kd− 1 and m = n− 2i+ 1 (1 ≤ i ≤ k),

R/(ϕd) if n = kd+ r and m = n− 2i (1 ≤ i ≤ k),

0 otherwise,

where 0 ≤ r ≤ d− 2 in the second case.

Proof. We apply Theorems 5.1 and 5.15. For n = kd + r (0 ≤ r ≤ d − 2), the
boundary map δϕm+1 has rank 1 when m+ 1 = n− 2(k − q) + 1 (for 0 ≤ q ≤ k − 1,
due to τq); it has rank 0 otherwise. For n = kd− 1, the boundary map δϕm+1 has
rank d− 1 if m+ 1 = n− 2(k − q) + 2 (for 0 ≤ q ≤ k − 2, due to the simplices σq,r)
or if m+ 1 = n (due to σ̄); it has rank 0 otherwise. �

5.4. Case C̃n. The last case we consider is that of Artin groups of type C̃n. The
corresponding Coxeter graph Γ is shown in Figure 9. As in the Ãn case, the
simplicial complex K consists of all the simplices σ ⊆ S = {0, . . . , n} except for
the full simplex σ = {0, . . . , n}. For any σ ∈ K, the subgraph Γ(σ) of Γ splits as a
union of connected components of type Bk (those containing the first or the last
vertex) and of type Ak (the remaining ones).
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0 1 2 3 n− 1 n
4 . . . 4

Figure 9. A Coxeter graph of type C̃n.

For each m with 1 ≤ m ≤ n, let KB
m be the full simplicial complex on {1, . . . ,m},

endowed with the weight function of Bm (see Section 5.2). We are going to construct

a precise matching for the case C̃n using the precise matching on KB
m.

For h ∈ {0, . . . , n} set

Kh = {σ ∈ K | h 6∈ σ and {0, . . . , h− 1} ⊆ σ}.
As in the Ãn case, since every simplex σ ∈ K misses at least one vertex, the subsets
Kh form a partition of K:

K =

n⊔
h=0

Kh.

Construct a matching on a fixed Kh as follows. Ignore the vertices 0, . . . , h and
relabel the remaining ones from right to left: n becomes 1, n− 1 becomes 2, . . . ,
h+ 1 becomes n− h. This induces a poset isomorphism

Kh

∼=−→ KB
n−h.

Then equip Kh with the pull-back of the matching on KB
n−h constructed in Section

5.2 (for h = n the single simplex in Kh is critical).

Remark 5.17. For d odd we are simply matching σ with σ Y n for all σ except
σ = {0, . . . , n− 1}.
Lemma 5.18. The matching defined above is an acyclic weighted matching on K.

Proof. As in the proof of Lemma 5.14, the subsets Kh are the fibers of a poset map
and the matching is acyclic on each Kh

∼= KB
n−h.

If a simplex σ ∈ Kh is sent to σ̂ by the isomorphism Kh

∼=−→ KB
n−h, then

vϕ(σ) = vϕ(σ̂) + ωϕ(Bh). Since the matching on KB
n−h is weighted, the matching

on Kh also is. �

Case Simplices |σ| vϕ(σ)

d odd σ̄ = 1n0 n 1 or 0

d even
σq1,q2 n− k + q1 + q2 + 1 q1 + q2 + 1 0 ≤ q1 + q2 ≤ k − 2

σ′q1,q2 n− k + q1 + q2 q1 + q2 0 ≤ q1 + q2 ≤ k

Simplices

σq1,q2 = 1q1
d
2 +r01d−10(1

d
2−10)k−q1−q2−21q2

d
2

σ′q1,q2 = 1q1
d
2 +r0(1

d
2−10)k−q1−q21q2

d
2

Table 8. Description of the critical simplices for C̃n. When d is even,
set n = k d2 + r.
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d− 1 vertices d
2 − 1 vertices q2

d
2 vertices

. . . . . . . . .
4

q1
d
2 + r vertices

. . . . . . . . . . . .
4

k − q1 − q2 − 2 times

d
2 − 1 vertices

. . . . . .
4

q1
d
2 + r vertices

. . . . . . . . .

q2
d
2 vertices

4

k − q1 − q2 times

Figure 10. Critical simplices for C̃n, with d even and n = k d2 + r.
The diagram for the simplex σq1,q2 is at the top and the diagram for
the simplex σ′q1,q2 is below it.

Simplices

σl−1,0 σ′l,0

σl−2,1 σ′l−1,1

...
...

σ1,l−2 σ′2,l−2

σ0,l−1 σ′1,l−1

σ′0,l

Table 9. Critical simplices for C̃n in dimension m = n− k + l (0 ≤
l ≤ k), where d is even and n = k d2 + r. For l = k only the second
column occurs.

Theorem 5.19 (Critical simplices in case C̃n). The critical simplices for the
matching on K are those listed in Table 8. In particular the matching is precise. In
addition the only non-trivial incidence numbers between critical simplices in the
Morse complex are as follows (for d even and n = k d2 + r):

[σq1,q2 : σq1, q2−1]M = (−1)α,

[σq1,q2 : σq1−1, q2 ]M = (−1)β+1,

[σq1,q2 : σ′q1,q2 ]M = (−1)β+ d
2 +1,

[σ′q1,q2 : σq1, q2−2]M = (−1)β+1,

[σ′q1,q2 : σq1−2, q2 ]M = (−1)β ,

[σ′q1,q2 : σ′q1, q2−1]M = (−1)α+1,

[σ′q1,q2 : σ′q1−1, q2 ]M = (−1)β+ d
2 ,

where α = (k − q2)
(
d
2 − 1

)
+ q1 + r + d

2 and β = q1
d
2 + r.

Proof. As we have already said, for d odd there is exactly one critical simplex.
Suppose from now on that d is even. Let n = k d2 + r, with 0 ≤ r ≤ d

2 − 1.
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Part 1: the critical simplices. In Kh there are critical simplices if and only
if n− h ≡ 0

(
mod d

2

)
, i.e. when h = q1

d
2 + r for some q1 (with 0 ≤ q1 ≤ k). By

Theorem 5.12 there are two families of critical simplices: σq1,q2 (for 0 ≤ q1+q2 ≤ k−2)
and σ′q1,q2 (for 0 ≤ q1 + q2 ≤ k), as shown in Table 8 and Figure 10. In a fixed
dimension m = n− k + l (0 ≤ l ≤ k) there are 2l + 1 critical simplices if l ≤ k − 1
and l critical simplices if l = k. See Table 9.

Part 2: paths ending in σq1,q2 . Consider a generic alternating path starting
from any critical cell ρ0 and ending in a critical cell of the form σq1,q2 :

ρ0 B τ1 C ρ1 B τ2 C ρ2 B · · ·B τm C ρm B σq1,q2 .

Let ρm = σq1,q2 ∪ {v}. If v = q1
d
2 + r then ρm = σ′q1+2, q2 and the alternating path

stops. If v = n− q2
d
2 then the alternating path stops at ρm = σq1, q2+1. Suppose

q1 + q2 ≤ k − 3, otherwise there are no more cases. If q1
d
2 + r + d < v < n− q2

d
2 ,

then Γ(ρm) has at least one connected component of size d− 1 and therefore ρm is
matched with a simplex of higher dimension; thus the path stops without having
reached a critical simplex. If v = q1

d
2 + r + d then ρm is matched with

τm = ρm \
{
q1
d
2 + r + d

2

}
= 1q1

d
2 +r01

d
2−101d−10(1

d
2−10)k−q1−q2−301q2

d
2

in the binary string notation. From here the path can continue in many ways. Let
ρm−1 = τm ∪ {w}.

• If w = q1
d
2 + r, we end up with ρm−1 = σq1+1, q2 .

• If w = q1
d
2 + r + d

2 we would be going back to ρm.

• If w > q1
d
2 + r+ 3

2d, then Γ(ρm−1) has at least one connected component of
size d−1 and therefore ρm−1 is matched with a simplex of higher dimension.
• If w = q1

d
2 + r + 3

2d, then ρm−1 is matched with

τm−1 = ρm−1 \
{
q1
d
2 + r + d

}
= 1q1

d
2 +r01

d
2−101

d
2−101d−10(1

d
2−10)k−q1−q2−401q2

d
2 .

By induction, repeating the same argument as above, this path can be
continued in exactly one way and it eventually arrives at the critical simplex
σ′q1, q2+2. The path has length m = k − q1 − q2 − 2 and is as follows.

τ1 = σ′q1, q2+2 \
{
n− q2

d
2

}
,

ρ1 = τ1 ∪
{
n− q2

d
2 − d

}
,

τ2 = ρ1 \
{
n− q2

d
2 −

d
2

}
,

ρ2 = τ2 ∪
{
n− q2

d
2 −

3
2d
}
,

τ3 = ρ2 \
{
n− q2

d
2 − d

}
,

...

ρm−1 = τm−1 ∪
{
q1
d
2 + r + d

}
,

τm = ρm−1 \
{
q1
d
2 + r + 3

2d
}
,

ρm = τm ∪
{
q1
d
2 + r + d

2

}
,

σq1,q2 = ρm \
{
q1
d
2 + r + d

}
.
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Part 3: paths ending in σ′q1,q2 . Consider now a generic alternating path
starting from any critical cell ρ0 and ending in a critical cell of the form σ′q1,q2 :

(4) ρ0 B τ1 C ρ1 B τ2 C ρ2 B · · ·B τm C ρm B σ′q1,q2 .
As usual, let ρm = σ′q1,q2 ∪ {v}. For the same reasons as above, there are only three

possibilities: v = q1
d
2 + r, v = q1

d
2 + r+ d

2 , v = n− q2
d
2 ; in all the other cases, ρm is

matched with a simplex of higher dimension. If v = q1
d
2 + r then the path ends (to

the left in (4)) at ρm = σ′q1+1, q2 . If v = q1
d
2 + r + d

2 then the path ends at σq1,q2 .

Finally, if v = n− q2
d
2 then the path ends at σ′q1, q2+1.

Part 4: incidence numbers. We have seven families of incidence numbers to
compute, each coming from one of the alternating paths we have found.

• From σ′q1+2, q2 to σq1,q2 . The alternating path is trivial and consists in

removing the vertex v = q1
d
2 + r, so

[σ′q1+2, q2 : σq1,q2 ]M = (−1)|{w∈σq1,q2 |w<v}| = (−1)q1
d
2 +r,

=⇒ [σ′q1,q2 : σq1−2, q2 ]M = (−1)q1
d
2 +r = (−1)β .

• From σq1, q2+1 to σq1,q2 . Again the path is trivial, and it consists in removing

v = n− q2
d
2 . Therefore

[σq1, q2+1 : σq1,q2 ]M = (−1)|{w∈σq1,q2 |w<v}|

= (−1)n−q2
d
2−(k−q1−q2−1)

= (−1)k
d
2 +r−q2 d2−k+q1+q2+1

= (−1)(k−q2)
(
d
2−1
)

+r+q1+1,

=⇒ [σq1,q2 : σq1, q2−1]M = (−1)(k−q2+1)
(
d
2−1
)

+r+q1+1

= (−1)α.

• From σq1+1, q2 to σq1,q2 . The path consists in removing q1
d
2 + r, adding

q1
d
2 + r + d

2 , and removing q1
d
2 + r + d. Therefore

[σq1+1, q2 : σq1,q2 ]M = (−1)(−1)q1
d
2 +r(−1)q1

d
2 +r+ d

2−1(−1)q1
d
2 +r+d−1

= (−1)q1
d
2 +r+ d

2 +1,

=⇒ [σq1,q2 : σq1−1, q2 ]M = (−1)(q1−1) d2 +r+ d
2 +1

= (−1)β+1.

• From σ′q1, q2+2 to σq1,q2 . The path is the one we explicitly wrote at the
end of Part 2. Notice that from ρi−1 to τi one removes the vertex vi =
n− (q2− i+1)d2 , and from τi to ρi one adds the vertex v′i = n− (q2− i−1)d2 .
Therefore

[ρi−1 : τi][ρi : τi] = (−1)|{w∈τi|v
′
i<w<vi}| = (−1)d−1 = −1.

Then we can compute the incidence number in the Morse complex:

[σ′q1, q2+2 : σq1,q2 ]M = (−1)m

(
m∏
i=1

[ρi−1 : τi][ρi : τi]

)
[σq1,q2 : ρm]

= (−1)m(−1)m(−1)q1
d
2 +r+(d−1)
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= (−1)q1
d
2 +r+1,

=⇒ [σ′q1,q2 : σq1, q2−2]M = (−1)q1
d
2 +r+1

= (−1)β+1.

• From σ′q1+1, q2 to σ′q1,q2 . The path is trivial and consists of removing v =

q1
d
2 + r. Then

[σ′q1+1, q2 : σ′q1,q2 ]M = (−1)q1
d
2 +r,

=⇒ [σ′q1,q2 : σ′q1−1, q2 ]M = (−1)(q1−1) d2 +r = (−1)β+ d
2 .

• From σq1,q2 to σ′q1,q2 . The path is trivial and consists in removing v =

q1
d
2 + r + d

2 . Then

[σq1, q2 : σ′q1,q2 ]M = (−1)q1
d
2 +r+ d

2−1 = (−1)β+ d
2 +1.

• From σ′q1, q2+1 to σ′q1,q2 . The path is trivial and consists in removing

v = n− q2
d
2 . Then

[σ′q1, q2+1 : σ′q1,q2 ]M = (−1)n−q2
d
2−(k−q1−q2)

= (−1)k
d
2 +r−q2 d2−k+q1+q2

= (−1)(k−q2)
(
d
2−1
)

+r+q1 ,

=⇒ [σ′q1,q2 : σ′q1, q2−1]M = (−1)(k−q2+1)
(
d
2−1
)

+r+q1

= (−1)α+1. �

We can finally compute the homology H∗(GW;R) for Artin groups of type C̃n.

Theorem 5.20 (Homology in case C̃n). Let GW be an Artin group of type C̃n.
Then the ϕd-primary component of H∗(GW;R) is trivial for d odd, and for d even
is as follows:

Hm(GW;R)ϕd
∼=

{
(R/(ϕd))

⊕m+k−n+1
if n− k ≤ m ≤ n− 1,

0 otherwise,

where n = k d2 + r.

Proof. In order to apply Theorem 5.1 we need to find the rank the boundary maps
δϕm+1 of the Morse complex. For d odd there is only one critical cell, thus all the
boundaries vanish. Suppose from now on that d is even, and let n = k d2 + r. In
order to have a non-trivial boundary δϕm+1 we must have at least one critical simplex
both in dimension m and in dimension m+ 1, thus m = n− k+ l with 0 ≤ l ≤ k− 1
(see Table 9).

Case 1: l ≤ k − 2. We are going to prove that, for l ≤ k − 2, a basis for the
image of δ = δϕm+1 is given by

B =
{
δσq1,q2 | q1 + q2 = l

}
.

By Theorem 5.19 we obtain the following formula for δσq1,q2 :

δσq1,q2 = (−1)α σq1, q2−1 + (−1)β+1 σq1−1, q2 + (−1)β+ d
2 +1 σ′q1,q2 ,

where α = (k− q2)
(
d
2 − 1

)
+ q1 + r+ d

2 and β = q1
d
2 + r. In this formula the σq1, q2−1

(resp. σq1−1, q2) term vanishes if q2 = 0 (resp. q1 = 0). The term σ′q1,q2 appears in



42 GIOVANNI PAOLINI AND MARIO SALVETTI

δσq1,q2 but not in any other element of B, thus B is a linearly independent set. In
addition, if q1 + q2 = l + 1, we have that

δσ′q1,q2 = (−1)β+1σq1, q2−2 + (−1)βσq1−2, q2 + (−1)α+1σ′q1, q2−1 + (−1)β+ d
2 σ′q1−1, q2

= (−1)α+β+ d
2

(
(−1)α+ d

2 +1 σq1, q2−2 + (−1)β+1 σq1−1, q2−1 + (−1)β+ d
2 +1 σ′q1, q2−1

)
+ (−1)

d
2 +1
(

(−1)α+1 σq1−1, q2−1 + (−1)β+ d
2 +1 σq1−2, q2 + (−1)β+1 σ′q1−1, q2

)
= (−1)α+β+ d

2 δσq1, q2−1 + (−1)
d
2 +1 δσq1−1, q2 .

Therefore B generates the image of δϕm+1. Thus rk δϕm+1 = |B| = l + 1 for l ≤ k − 2.
Case 2: l = k − 1. For l = k − 1, i.e. m = n− 1, the situation is a bit different

because there are no critical simplices of the form σq1,q2 with q1 + q2 = l. However
we can still define

εq1,q2 = (−1)α σq1, q2−1 + (−1)β+1 σq1−1, q2 + (−1)β+ d
2 +1 σ′q1,q2

for q1 + q2 = l, and

B′ =
{
εq1,q2 | q1 + q2 = l

}
.

The term σ′q1,q2 appears in εq1,q2 but not in any other element of B′, thus B′ is a
linearly independent set. As above we have that, for q1 + q2 = l + 1,

δσ′q1,q2 = (−1)α+β+ d
2 εq1, q2−1 + (−1)

d
2 +1 εq1−1, q2 .

Then B′ generates (and so it is a basis of) the image of δϕn .
We have proved that, for 0 ≤ l ≤ k − 1, the rank of δϕm+1 is equal to l + 1 =

m+ k − n+ 1. Then we conclude applying Theorem 5.1. �

Concluding remarks

Future works will focus on other families of Artin groups. In particular it seems
that precise matchings can be constructed in all finite and affine cases (see [Pao17b]),
possibly allowing explicit homology computations.

The methods developed in this paper are particularly powerful when the coeffi-
cients are over a PID, but Artin groups with roots of different lengths (e.g. Bn, B̃n,
and C̃n) also admit natural representations over polynomial rings with more than
one variable. We believe that some of our theory can be extended to such cases,
and this can also be the aim of future works.
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Chap. 4, Groupes de Coxeter et systèmes de Tits; Chap. 5; Chap. 6, Systèmes de

racines, Hermann, 1968.
[Bri73] E. Brieskorn, Sur les groupes de tresses [d’après VI Arnol’d], Séminaire Bourbaki vol.

1971/72 Exposés 400–417, Springer, 1973, pp. 21–44.

[BS72] E. Brieskorn and K. Saito, Artin-gruppen und Coxeter-gruppen, Inventiones mathe-
maticae 17 (1972), no. 4, 245–271.

[Cal05] F. Callegaro, On the cohomology of Artin groups in local systems and the associated
Milnor fiber, Journal of Pure and Applied Algebra 197 (2005), no. 1, 323–332.

[Cal06] , The homology of the Milnor fiber for classical braid groups, Algebraic &

Geometric Topology 6 (2006), no. 4, 1903–1923.
[CD95] R. Charney and M. W. Davis, The K(π, 1)-problem for hyperplane complements

associated to infinite reflection groups, Journal of the American Mathematical Society

(1995), 597–627.
[CGN16] J. Curry, R. Ghrist, and V. Nanda, Discrete Morse theory for computing cellular sheaf

cohomology, Foundations of Computational Mathematics 16 (2016), no. 4, 875–897.

[CMS08a] F. Callegaro, D. Moroni, and M. Salvetti, Cohomology of affine Artin groups and
applications, Transactions of the American Mathematical Society 360 (2008), no. 8,

4169–4188.

[CMS08b] , Cohomology of Artin groups of type Ãn, Bn and applications, Geometry &
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