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This article shows that endogenous fluctuations are prevented in a general equilib-
rium economy with overlapping generations and endogenous fertility.
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1 Introduction

In two influential works, de la Croix (1996) and de la Croix and Michel (1999) show that
standard-of-living aspirations may be responsible for endogenous and persistent fluctua-
tions in income in a general equilibrium economy with overlapping generations (OLG) and
finitely lived agents. Aspirations, in fact, are a negative externality affecting savings and
consumption of the working generation. In the words of de la Croix (1996, p. 89): ”If
children inherit life standard aspirations from their parents, then their savings are affected
and cycles may appear in OLG models with production. At some point of an expansion,
aspirations grow faster than wages, savings decrease, and a contraction begins.” However,
de la Croix (1996) and de la Croix and Michel (1999) do not include endogenous fertility
in their models. According to the most part of the recent literature stimulated by the new
home economics, the number of children comes from a rational choice based on a compari-
son between economic constraints and incentives. In a world where tastes are inherited the
issue of endogenous fertility becomes of particular importance given the existing influence
on consumption decisions of children caused by the behaviour of parents (external habits).
This article shows that by accounting for endogenous fertility (weak altruism towards chil-
dren), life standard aspirations are no more a source of instability and fluctuations as the
stationary equilibrium of the resulting two-dimensional discrete time map is globally stable
(i.e., there are no converging or ever lasting cycles). This is because aspirations reduce
saving and fertility in the same way, so that capital accumulation is independent of the
intensity of inherited tastes. In addition, standard-of-living aspirations may represent an
alternative explanation for the declining fertility observed in developed countries in the last
decades, as they are an element that favours the substitution of fertility for the consumption
of material goods. This is in line with the results recently obtained by Kaneko et al. (2016).

The rest of the paper proceeds as follows. Section 2 (resp. 3) characterises a model with
inherited tastes, endogenous fertility and logarithmic (resp. CIES) preferences. Section 4
concludes.

1



2 The model

The model is an extension of de la Croix (1996) augmented with endogenous fertility, as in
Galor and Weil (1996). The OLG closed economy is populated by rational and identical
individuals of measure Nt per generation (t = 0, 1, 2, ...). Life of the typical agent is divided
into childhood and adulthood. An individual makes economic decisions only when he is
adult. Labour supply is inelastic and normalised to one. The lifetime budget constraint of
an individual belonging to generation t is:

c1,t +
c2,t+1

Ret+1

= wt(1− qnt), (1)

where c1,t and c2,t+1 are material consumption when young and when old, Ret+1 is the
expected interest factor, 0 < q < 1 is the fraction of income required to care about one
child and nt is the number of children. Generation t inherits life standard aspirations (ht)
from the previous generation (parent). By assuming logarithmic preferences, the lifetime
utility function of the individual representative of generation t is given by:

Ut = ln(c1,t − γht) + β ln(c2,t+1) + ϕ ln(nt), (2)

where 0 < γ < 1 is the intensity of aspirations, 0 < β < 1 is the subjective discount factor
and ϕ > 0 is the relative taste for (the quantity of) children. Maximisation of (2) subject
to (1) yields:

nt =
ϕ(wt − γht)

qwt(1 + β + ϕ)
, (3)

and

st =
β(wt − γht)

1 + β + ϕ
. (4)

By looking at (3) and (4), it is clear that aspirations negatively affect saving and fertility.
Consumption when young is:

c1,t =
wt + γht(β + ϕ)

1 + β + ϕ
. (5)

As material consumption and fertility are normal goods, the presence of inherited tastes
makes the achievement of high standards in consumption important. This favours the
substitution of fertility for consumption to get higher utility. This result is in line with
Kaneko et al. (2016), who study an OLG model of endogenous growth with transitional
dynamics, aspirations and endogenous fertility.

Identical and competitive firms produce output Qt by employing a technology encom-
passing the case of constant-returns-to-scale in production and the AK set up. For doing
this, we adopt a kind of production function formerly introduced by Jones and Manuelli
(1990) and subsequently used, amongst others, by Rebelo (1991). By following the formu-
lation used by Barro and Sala-i-Martin (2003), the production function is:

Qt = AKα
t L

1−α
t +BKt, A > 0, B ≥ 0, 0 < α < 1, (6)

where Kt and Lt = Nt are capital and labour inputs. Notice that when B = 0 then
(6) boils down to the standard Cobb-Douglas technology with constant-returns-to-scale
adopted by de la Croix (1996). Production function (6) allows to get endogenous growth
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with transitional dynamics, as the growth rate diminishes as the economy develops. Profit
maximisation allows to get the usual equilibrium conditions:

wt = (1− α)(Akαt +Bkt), (7)

Rt = α(Akα−1
t +B), (8)

where kt = Kt/Nt is capital per worker.
Aspirations of generation t are ht = c1,t−1, reflecting ”the idea that children become

habituated to a certain life standard when they still live with their parents” (de la Croix,
1996, p. 91). This statement makes the difference depending on whether one assumes
exogenous fertility or endogenous fertility. In fact, given the market clearing condition in
the capital market ntkt+1 = st (Nt+1 = ntNt), endogenous fertility implies that capital
accumulation is independent of aspirations. By taking the couple of non-negative initial
endowments (k0, h0) as given, equilibrium implies

T =

{
kt+1 =

βq
ϕ wt =

βq
ϕ (1− α)[Akαt +Bkt]

ht+1 = c1,t =
wt+γht(β+ϕ)

1+β+ϕ =
(1−α)[Akαt +Bkt]+γht(β+ϕ)

1+β+ϕ

. (9)

The most important difference between a model with endogenous fertility and a model
with exogenous fertility is that in the former case aspirations do not affect the accumulation
of capital, whereas in the latter case they do. This is because aspirations reduce saving and
fertility and promote an increase in consumption to maintain high standards. The reduction
in saving reduces capital accumulation, whereas the reduction in fertility increases capital
accumulation. These two opposite forces cancel exactly each other out so that aspirations
are neutral on capital accumulation.

2.1 Global convergence

Let us rewrite the continuous and differentiable map T : R2
+ → R2

+ as follows:

T =

{
x′ = f(x) = m0x

α +m1x

y′ = g(x, y) = m2xα+m3x+γ(β+ϕ)y
1+β+ϕ

, (10)

where x′ = kt+1, x = kt, y
′ = ht+1, y = ht, m0 = βq

ϕ (1 − α)A > 0, m1 = βq
ϕ (1 − α)B ≥ 0,

m2 = (1− α)A > 0 and m3 = (1− α)B ≥ 0.

Proposition 1. Let T be given by (10) and define x∗ =
(

m0
1−m1

) 1
1−α

. Set I0 = {(x, y) ∈
R2
+ : x = 0} is invariant for T ; if B < ϕ

βq(1−α) = B̄ also set Ix∗ = {(x, y) ∈ R2
+ : x = x∗} is

invariant for T .

Proof. The proof simply follows from by considering that T is triangular and that x = 0
is a fixed point of map f for all parameter values while x = x∗ is the unique positive fixed
point of f iff B < B̄. Hence the restriction of system T to the vertical lines x = 0 and
x = x∗ is trapping on that lines.

Let us assume that B < B̄ (i.e. B is fixed at not too high a level, as in the case of
Cobb-Douglas production function). Proposition 1 states that if at t = 0 capital per worker
x(0) is equal to zero or equal to x∗ then it will not change over time. Therefore, long-term
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dynamics of T on the two sets I0 and Ix∗ are fully obtained by the one-dimensional maps
g0 = g(0, y) and gx∗ = g(x∗, y) describing the evolution of aspirations. Since x = 0 and
x = x∗ are fixed points of f , if T admits steady states, then they must belong to I0 or to
Ix∗ . One can verify that g0 admits a unique fixed point given by y = 0, whereas gx∗ admits
a unique fixed point

y∗ =
m2(x

∗)α +m3x
∗

1 + (1− γ)(β + ϕ)
.

Proposition 2. The origin E0 = (0, 0) is a fixed point of T for all parameter values. T
admits a unique interior fixed point E∗ = (x∗, y∗) iff B < B̄.

About the interior equilibrium the following remark holds.

Remark 3. • The intensity of aspirations (γ) does not affect capital per worker at the
equilibrium, but it positively affects the equilibrium level of aspirations.

• The cost of children q (resp. the relative taste for children ϕ) positively affects (resp.
negatively affects) both capital and aspirations at the equilibrium.

The dynamics of T along the invariant lines I0 and Ix∗ (when B < B̄) are described
by the linear and strictly increasing maps g0 and gx∗ whose slopes are smaller than one.
Then, E0 (resp. E

∗) attracts all trajectories starting from I0 (resp. Ix∗) whatever the initial
value of aspirations. Notice that the speed of convergence increases as γ decreases. In order
to discuss the global dynamics of system (T,R2

+), we consider the Jacobian matrix J(x, y)
associated to T and we recall that, since T is triangular, the eigenvalues of J(x, y) are real
and given by:

λ1(x) = f ′(x) =
αm0

x1−α
+m1 and λ2(x, y) =

∂g

∂y
(x, y) =

γ(β + ϕ)

1 + β + ϕ
.

Proposition 4. The invariant set I0 is repelling.

Proof. Since limx→0+ λ1(x) = +∞ then I0 is repelling and consequently initial conditions
with positive capital per worked cannot converge to set I0.

Since economic meaningful initial states are those characterised by x(0) > 0 we also
observe that as long as x(0) > 0 then T (x(0), 0) = (x(1), y(1)) with x(1) > 0 and y(1) >
0, that is an initial condition taken on the x-axis exits the x-axis at the first iteration.
Furthermore, no interior points can be mapped on the x-axis as equation g(x, y) = 0 has a
unique solution given by E0. Then, we can restrict the study to system (T,D), where T is
given by (10) and D = (0,+∞)× (0,+∞).

Proposition 5. If B < B̄ then E∗ is globally stable for system (T,D) while ∀B ≥ B̄ system
(T,D) does not admit bounded trajectories.

Proof. If B < B̄ the fixed point x∗ is globally attracting for map f defined in (0,+∞) so
that the attractor of (T,D) must belong to set Ix∗ . The dynamics of (T,D) on the set
Ix∗ are described by the one-dimensional map gx∗ having a unique fixed point y∗ which is
globally stable. If B ≥ B̄ all initial conditions x(0) > 0 produce trajectories diverging to
+∞.
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Figure 1: (a) Phase portrait of T for B < B̄, the two fixed points are depicted in red. (b)
Capital per capita versus time. (c) Aspiration versus time for a given γ in blue and for a
greater γ in red.
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Notice that in our model fluctuations are avoided, while with Cobb-Douglas technology
the interior equilibrium attracts all economically meaningful trajectories (i.e., x(0) > 0).
Unbounded growth is obtained with larger values of B.

The qualitative dynamics of T on R2
+ are summarised in Figure 1 (a). Figures 1 (b)

and (c) depict the sequence of capital per worker and aspiration levels over time for a given
initial condition. When γ increases the trajectory in (b) does not change whereas the one
related to aspirations do.

3 CIES preferences and Cobb-Douglas technology

This section considers the maximisation problem of a representative individual with a Con-
stant Inter-temporal Elasticity of Substitution (CIES) utility function (describing prefer-
ences with respect to material consumption over the life cycle and fertility), and a repre-
sentative firm producing with a Cobb-Douglas technology (B = 0).1 Therefore,

max
c1,t,c2,t+1,nt

Ut =

[
1− 1

σ

]−1

(c1,t−γht)1−
1
σ +β

[
1− 1

σ

]−1

(c2,t+1)
1− 1

σ +ϕ

[
1− 1

σ

]−1

(nt)
1− 1

σ ,

(11)
subject to (1), where σ > 0 (σ ̸= 1). Then,

st =
βσ(Ret+1)

σ−1(wt − γht)

1 + βσ(Ret+1)
σ−1 + ϕσ(qwt)1−σ

, (12)

nt =
ϕσ(wt − γht)

(qwt)σ
[
1 + βσ(Ret+1)

σ−1 + ϕσ(qwt)1−σ
] , (13)

c1,t =
wt + γht

[
βσ(Ret+1)

σ−1 + ϕσ(qwt)
1−σ]

1 + βσ(Ret+1)
σ−1 + ϕσ(qwt)1−σ

, (14)

c2,t+1 = Ret+1st. (15)

The dynamic system becomes:

TCIES =

 kt+1 =
st
nt

=
(
β
ϕ

)σ
(Ret+1)

σ−1 (qwt)
σ

ht+1 = c1,t =
wt+γht[βσ(Re

t+1)
σ−1+ϕσ(qwt)1−σ]

1+βσ(Re
t+1)

σ−1+ϕσ(qwt)1−σ

, (16)

where wt = (1 − α)Akαt in the Cobb-Douglas case. Perfect foresight implies that Ret+1 =
αAkα−1

t+1 . Then,

kt+1 =

(
βq

ϕ

) σ
σ(1−α)+α

α
σ−1

σ(1−α)+α (1− α)
σ

σ(1−α)+α A
2σ−1

σ(1−α)+αk
ασ

σ(1−α)+α

t = f1(kt). (17)

Define

V :=

(
βq

ϕ

) σ
σ(1−α)+α

α
σ−1

σ(1−α)+α (1− α)
σ

σ(1−α)+α A
2σ−1

σ(1−α)+α .

Then, the evolution of aspirations is described by

1In this section we do not consider positive values of B as it is not possible to obtain a closed-form
expression for the dynamics of capital, kt+1 = f(kt), in such a case. An analysis of more general production
functions may be the subject of future research.
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ht+1 = g1(kt, ht) =
(1− α)Akαt + γhtψ(kt)

1 + ψ(kt)

where
ψ(kt) = βσ(αAV α−1k

a(α−1)
t )σ−1 + ϕσ(q(1− α)Akαt )

1−σ.

By using the same notation introduced in the previous section one yields:

T1 =

{
x′ = f1(x) = V xa

y′ = g1(x, y) =
(1−α)Axα+γyψ(x)

1+ψ(x)

. (18)

Observe that a = ασ
σ(1−α)+α ∈ (0,+∞) and that ψ(x) > 0, ∀x > 0. We analyse the global

dynamics of system (18) restricted to D = (0,+∞)× (0,+∞).

Proposition 6. If α ≤ 1/2 or α > 1/2 whenever σ < α
2α−1 then system (T1, D) admits a

unique globally stable fixed point.

Proof. Consider (T1, D) and assume that (α, σ) ∈ Ω where

Ω =

{
(α, σ) ∈ (0, 1)× (0,+∞) : (α ≤ 1/2) or

(
α > 1/2 and σ <

α

2α− 1

)}
.

Then a ∈ (0, 1) and x = f1(x) admits a unique positive solution x∗1. Being ψ(x
∗
1) > 0, then

y = g1(x
∗
1, y) admits a unique positive solution y∗1. The point E∗

1 = (x∗1, y
∗
1) is the unique

fixed point of (T1, D). To prove the global stability of E∗
1 the same arguments used to prove

Proposition 5 can be considered.

According to Proposition 6,

(i) if α ≤ 1/2 for any given values of σ, or

(ii) if σ < 1 + 1−α
2α−1 for any α > 1/2,

all economic meaningful trajectories converge to the unique interior steady state. When
the conditions on parameters stated in Proposition 6 are not fulfilled, the dynamics of
(T1, D) have less economic interest as the interior equilibrium disappears or divergent pat-
terns are produced.

4 Conclusions

This article has shown that an OLG economy with aspirations augmented with endogenous
fertility is globally stable. This is in sharp contrast with the exogenous fertility model
developed by de la Croix (1996) and de la Croix and Michel (1999).
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