Journal of Maps

Structural map of the Variscan metamorphic complexes in the central transect of the Posada-Asinara Line (SW Gallura region, Northern Sardinia, Italy)

Journal:	Journal of Maps
Manuscript ID:	TJOM-2014-0030.R2
Manuscript Type:	Special Issue
Date Submitted by the Author:	n/a
Complete List of Authors:	Frassi, Chiara; Università di Pisa, Dipartimento di Scienze della Terra
Keywords:	Sardinia, Variscan belt, Mylonites, Posada-Asinara Line

SCHOLARONE^{**} Manuscripts

Journal of Maps

2	
3	
٨	
+	
5	
б	
_	
ſ	
8	
~	
9	
1	0
	4
ľ	1
1	2
	2
Ŀ	3
1	4
1	5
B	5
1	6
1	7
1	8
1	9
-	~
2	0
2	1
~	
2	2
2	3
~	1
2	4
2	5
2	6
~	0
2	7
2	Q
~	0
2	9
3	0
-	4
~	1
3	1
3	2
3	2
3 3 3	2 3
3 3 3	2 3 4
333	2 3 4
3 3 3 3 3	2 3 4 5
3 3 3 3 3 3 3	- 2 3 4 5 6
33333	2 3 4 5 6 7
3 3 3 3 3 3 3 3 3	2 3 4 5 6 7
3 3 3 3 3 3 3 3 3 3	- 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 5 6 7 8 9
33333333333	- 2 3 4 5 6 7 8 9
3333333334	- 2 3 4 5 6 7 8 9 0
3333333344	- 2345678901
3333333444	- 2 3 4 5 6 7 8 9 0 1
33333333444	- 2 3 4 5 6 7 8 9 0 1 2
333333334444	- 234567890123
3333333344444	2345678901234
3333333344444	2345678901234
33333333444444	23456789012345
333333334444444	-234567890123456
3333333344444444	234567890123456
333333334444444444	-2345678901234567
3333333334444444444444444444444444444	-23456789012345678
3333333333444444444444444444444444444	-234567890123456789
3333333333444444444444444444444444444	-234567890123456789
	-2345678901234567890
	-23456789012345678904
	-23456789012345678901
33333333344444444445555	-234567890123456789012
333333333444444444445555	-2345678901234567890122
3333333334444444444455555	-2345678901234567890123
3333333334444444444555555	- 23456789012345678901234
333333334444444444555555	-234567890123456789012345
333333334444444444555555	- 234567890123456789012345
333333333444444444455555555555555555555	- 2345678901234567890123456
333333333444444444455555555555555555555	- 23456789012345678901234567
333333333444444444455555555555555555555	-23456789012345678901234567
333333333444444444455555555555555555555	- 234567890123456789012345678
333333333444444444555555555555555555555	- 2345678901234567890123456789

60

Structural map of the Variscan metamorphic complexes in the 1 central transect of the Posada-Asinara Line (SW Gallura region, Northern Sardinia, Italy) 3

Chiara Frassi

Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria 53, 56126 Pisa, Italy. 6 chiarafrassi@gmail.com 7

8

2

4

5

9

Abstract 10

11 This study represents the first detailed tectono-metamorphic map of the metamorphic complexes cropping out in the inner portion of the Variscan belt in north-central Sardinia Island 12 (Italy). The map is at 1:30.000 scale and covers an area of c. 148 km². It is based on 1: 10.000 13 14 scale classic field mapping and represents an overview of the lithological and structural 15 complexities documented in the metasedimentary and migmatite domes cropping out along the central transect of the Posada-Asinara Line (PAL). The PAL is a crustal scale discontinuity that 16 divides migmatites from the metasedimentary sequences affected by greenschist- to 17 amphibolite-facies metamorphism. The map shows the orientations of the superimposed 18 19 foliations, fold axes and mineral lineations on the basis of geometric crosscutting relationships and, for the first time, the location of ductile-brittle and brittle shear zones developed during the 20 long-lived activity of the Posada-Asinara Line. 21

22 23

24

1. Introduction

Because of the slightly occurrence of the alpine overprinting, the Sardinia represents a key 25 place where investigate the original architecture of the South European Variscan belt achieved 26 27 during the Lower Carboniferous age continental collision between Armorica and Gondwana plates (Carmignani et al., 1994 and references therein; Carosi et al., 2005). 28 29 From south to north the Variscan belt in Sardinia is classically divided into (Figure 1): 1) the External zone (i.e. the foreland of the belt). It is represented by Upper Precambrian (?) -30

31 Lower Carboniferous sedimentary sequences affected by a very low-grade metamorphism;

Journal of Maps

2) the Nappe zone (i.e. the thrust-and-fold zone). It crops out in the central part of the island
and it is made by Lower Cambrian-Devonian volcano-sedimentary sequence affected by thrusts
and folds indicating a SW tectonic transport. Mainly on the base of stratigraphy, it is divided
from the north-east to the south-west in the Internal and External Nappe Zone (for a complete
reviewer see Carmignani et al., 2001)

3) the Axial (or Inner) zone. It crops out in the north of the island and represents the roots of the chain. It consists of two metamorphic complexes: the High-Grade Metamorphic Complex (HGMC) and the Medium- to Low-Grade Metamorphic Complex (L-MGMC). The former, cropping out in the north-eastern sectors of the island, is made by migmatites derived from Ordovician magmatic and metasedimentary protholiths, associated to metre to decimetre-thick lenses of eclogite and granulite (Franceschelli et al., 2002; Giacomini et al., 2006; Cruciani et al., 2008a and b). The L-MGMC consists of a sedimentary sequence affected by a prograde Barrovian metamorphism, classically related to the collisional event, that increased toward northeast from the biotite up to the kyanite + biotite zone (Franceschelli et al., 2005 with references therein). A km-thick mylonitic belt, named Posada-Asinara Line (PAL in Figure 1; Elter et al., 1990; Cappelli et al., 1992) marked the boundary between the HGMC and the L-MGMC.

Since the early 1990s the presence along the PAL of amphibolites with eclogite-facies relicts with N-MORB affinity led Cappelli et al. (1992) and Carmignani et al. (1994) to suggest the existence of a palaeoocean between the HGMC (i.e. the Armorica plate) and the L-MGMC (i.e. the Gondwana plate). However, recent geochemical and petrographical data (e.g. Giacomini et al., 2006; Cruciani et al., 2010) suggest that most of amphibolites cropping out along the PAL could represent a mature stage of the rifting event that produced the opening of the periferical extensional basin (Protothetys) and the Hun Superterrane, a ribbon-like microplate proposed by Stampfli et al. (2002) and Von Raumer et al. (2003).

Whatever it is the geodynamic reconstruction, the mylonites of the PAL show geometry, kinematics and timing of shear activity comparable with those documented on shear zones cropping out in southern Corsica (Giacomini et al., 2008), in the Maures-Esterel massif (e.g. Corsini and Rolland, 2009) and in the External Crystalline Massifs of Western Alps (Guillot and Ménot, 2009). These analogies led Corsini and Rolland (2009) to suggest that the part of Gondwana margin, where those regions were located, was affected by an analogous tectono-metamorphic history related to the activity of a NNE-SSW trending lithosphere-scale shear zone, named East Variscan Shear Zone.

Journal of Maps

Detailed structural and kinematics studies across the PAL have been classically carried out along two main transects located in the Baronie region (Carosi and Palmeri 2002; Di Vincenzo et al., 2004), in the east, and in the Nurra-Asinara region (Carosi and Oggiano 2002; Carosi et al., 2004; Iacopini et al., 2008), in the west. More recently particular attention has been focused on the central sector of the PAL cropping out in the SW Gallura region (Figure 1).

Although in the last 5 years I published the results of my research (structural and metamorphic analyses: Carosi et al., 2009; quartz petrofabric and vorticity measurements: Frassi et al., 2009, geochronological analyses: Carosi et al., 2012) on both national and international peer-reviewed journals, I never presented the detailed original geological map from which the different research lines developed. For this reason, in this work I present the geological map of the metamorphic complexes cropping out in the SW Gallura region, focusing on the location of the mylonites of the Posada-Asinara Line.

Methods 2.

The metamorphic rocks cropping out in SW Gallura region, are mapped mainly considering their mineral composition and, where possible, the rocks protholiths. Structural elements documented in the field (i.e. foliation, Sn, fold axes, An, mineral lineation, Ln, shear zone) are represented in the map using a synoptic representation that allows to differentiate chronologically each deformation phase. To highlight their spatially orientation, each family of structural elements recognized in the field is also represented using stereographic projections (differentiate for each metamorphic complex). The map is correlated by a schematic structural map of the Sardinia Island and by geological cross-sections through the boundary between Migmatite Complex (HGMC) and amphibolites-facies metasedimentary sequences (MGMC). Furthermore I inserted two tables of pictures representing at the mesoscopic scale the different mylonitic fabrics documented along the PAL. The description of mylonitic fabrics is completed by stereographic projections of ductile-brittle and brittle shear planes, mylonitic foliations and stretching lineations measured in the field.

Autonomous Region of Sardinia released the topographic maps at 1:10.000 scale (Carta Tecnica Regionale, Regione Autonoma della Sardegna, UTM ED 1950) used during the fieldwork (carried out during years 2003-2004).

99	
100	
101	3. The metamorphic complexes in SW Gallura
102	3.1 Rock lithotypes
103	Three main metamorphic complexes have been classically described in SW Gallura region
104	(Oggiano and Di Pisa, 1992). They crop out as isolated metamorphic domes within the late-
105	Variscan granitoids and the post-Permian vulcanites (for a detailed description of those
106	lithotypes see Carmignani et al., 2001). The HGMC mainly crops out in the northern complex
107	and in the easternmost portion of the southern complex meanwhile the MGMC crops out
108	exclusively in the southern complex.
109	The northern complex is mainly made by metatexites with thin melanocratic layers around
110	thicker leucosomes (Figure 2(a) and (b)). Rare diatexites with nebulitic (Figure 2(c)) and
111	schlieren structures, foliated biotite- and muscovite- bearing granitoids (Figure 2(e)) (Oggiano
112	and Di Pisa 1987; Macera et al., 1989), augen migmatitic gneisses and garnet-bearing
113	orthogneisses (Figure 2(d)) have been also documented. Cm-thick pegmatitic veins cross cut the
114	main foliation (Figure 2(f)). Mylonitic fine-grained gneisses with a sillimanite + muscovite
115	mineral assemblage and centimetre-scale quartz-feldspathic boudins, mylonitic pegmatite veins
116	and mylonitic quartzites crop out in the easternmost sector of the southern complex (Carosi et al.,
117	2009; Frassi et al., 2009). The same mineral assemblage and lithologies have been documented
118	in the small complex cropping out in the north-weastern sector of the study area (i.e. near Badesi
119	village).
120	Cm- to dm-thick layers of micaschists, paragneisses (Figure 3(a)) and quartzites (Figure 3(b))
121	with occasionally m-thick lenses of eclogites cropping out in the western portion of the southern
122	complex (i.e. L-MGMC). They recorded metamorphic conditions that increases moving toward
123	E/NE from greenschist- to amphibolite-facies.
124	The transition between fine-grained gneisses, belonging to the HGMC, and the
125	metasedimentary sequences of the MGMC, occurs thought a sequence of mylonitic rocks
126	(highlighting the PAL) developed during different strain, kinematic and metamorphic conditions.
127	
128	3.2 Tectono-metamorphic history
129	The three metamorphic complexes were affected by 4 contractional deformational phases
130	followed by later extensional tectonics. The last event produced F5 folds and both high- and low-
131	angle normal faults (Carosi et al., 2009). D1 deformation phase is documented by S1 foliation,

60

Journal of Maps

2		
3	132	preserved inside D2 microlithons and F2 fold hinges, and by rare centimetre-scale isoclinal F1
4 5	133	folds. D2 deformation phase produced the main structures described in the field. It is
6 7	134	documented by chevron to isoclinal F2 folds (Figure 3(a)), L2 mineral lineation, S2 foliation
8	135	(that represents the main planar element recognized in each metamorphic complex) and by SC /
9 10	136	SC' mylonitic foliation (Figure 3(c) and (d)) (see section 3.3 for a complete description of D2
11	137	shear zones). The D2 structural elements show a main NW - SE orientation in all the
12 13	138	metamorphic complexes. More in detail, in the MGMC their orientations show a sigmoidal trend
14 15	139	in map view, varying from NW–SE to NNW - SSE to NW - SE again moving from W to the E.
16	140	S2 foliation shows a variable dip, both toward the SW and NE, but becomes steeper approaching
17 18	141	the phyllonites where it dips toward the NE. The F2 fold axes and L2 mineral lineations usually
19 20	142	plunge less than 25° mainly toward the NW. D3 deformation phase produced mainly F3 folds
21	143	with NW-SE trending axes and sub-vertical axial plane that have kink and chevron geometry. Finally
22 23	144	N-S trending F4 folds, with kink and box geometry deformed previous structures.
24 25	145	The presence of shallow dipping L2 object lineation parallel to the F2 fold axis and to the
26	146	main trend of the belt and the presence of D2 shear domains suggest that large part of
27		
28	147	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important
28 29 30	147 148	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009;
28 29 30 31	147 148 149	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009).
28 29 30 31 32 33	147 148 149 150	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009).
28 29 30 31 32 33 34 35	147 148 149 150 151	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that
28 29 30 31 32 33 34 35 36 27	147 148 149 150 151 152	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial
28 29 30 31 32 33 34 35 36 37 38	147 148 149 150 151 152 153	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry
28 29 30 31 32 33 34 35 36 37 38 39 40	147 148 149 150 151 152 153 154	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth
28 29 30 31 32 33 34 35 36 37 38 39 40 41	147 148 149 150 151 152 153 154 155	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P=
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	147 148 149 150 151 152 153 154 155 156	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	147 148 149 150 151 152 153 154 155 156 157	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006).
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	147 148 149 150 151 152 153 154 155 156 157 158	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz,
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	147 148 149 150 151 152 153 154 155 156 157 158 159	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz, plagioclase with mechanical twins, and rarely K-feldspar, constitute the leucosomes, whereas
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	147 148 149 150 151 152 153 154 155 156 157 158 159 160	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz, plagioclase with mechanical twins, and rarely K-feldspar, constitute the leucosomes, whereas biotite, muscovite and relicts of zoisite, garnet and plagioclase define the melanosomes. Quartz
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz, plagioclase with mechanical twins, and rarely K-feldspar, constitute the leucosomes, whereas biotite, muscovite and relicts of zoisite, garnet and plagioclase define the melanosomes. Quartz crystals present a strong crystal preferred orientation and polygonal shape whereas biotite,
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz, plagioclase with mechanical twins, and rarely K-feldspar, constitute the leucosomes, whereas biotite, muscovite and relicts of zoisite, garnet and plagioclase define the melanosomes. Quartz crystals present a strong crystal preferred orientation and polygonal shape whereas biotite, muscovite and garnet are often replaced by anisotropic flakes of fibrolite and by chlorite + rutile
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz, plagioclase with mechanical twins, and rarely K-feldspar, constitute the leucosomes, whereas biotite, muscovite and relicts of zoisite, garnet and plagioclase define the melanosomes. Quartz crystals present a strong crystal preferred orientation and polygonal shape whereas biotite, muscovite and garnet are often replaced by anisotropic flakes of fibrolite and by chlorite + rutile intergrowths. Sillimanite, documented in the HGMC cropping out east of the phyllonitic belt
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 55 55 55 55 55 55	147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	exhumation of the high-grade metamorphic rocks (HGMC) occurred during an important transpressive regime started since the post-collisional D2 deformation phase (Carosi et al., 2009; Frassi et al., 2009). Microstructural data carried out on the metasedimentary sequences of the MGMC suggest that the Barrovian mineral assemblage (Bt + Grt + St + Ky) grew from syn-/late-D1 to the initial stage of the D2 deformation phase (mineral abbreviations after Kretz, 1983). Mineral chemistry carried out on garnet and plagioclase constraint the initial stages of metamorphic growth (produced during the continental collision) between both temperature and pressure peaks (P= 0.9-1.1 GPa and T=600-650°C; Frassi, 2006). Temperature of <i>c</i> . 450-550°C and P of <i>c</i> . 0.3-0.6 GPa constraint the late syn-D2 metamorphic growth (Frassi, 2006). In the HGMC, a leucosomes - melanosome layering highlights the S2 foliation. Quartz, plagioclase with mechanical twins, and rarely K-feldspar, constitute the leucosomes, whereas biotite, muscovite and relicts of zoisite, garnet and plagioclase define the melanosomes. Quartz crystals present a strong crystal preferred orientation and polygonal shape whereas biotite, muscovite and garnet are often replaced by anisotropic flakes of fibrolite and by chlorite + rutile intergrowths. Sillimanite, documented in the HGMC cropping out east of the phyllonitic belt and classically related to the prograde collisional metamorphic blastesis, grew from syn- to post-

166	
167	3.3 Mylonites from the Posada-Asinara Line
168	Two shear zone systems showing opposite sense of shear and a NW-SE trend are reported b
169	Carosi et al. (2009, 2012) and Frassi et al. (2009). There are in detail:
170	(1) a sinistral top-to-the NW shear belt developed within the fine-grained gneisses and/or
171	micaschists cropping out in the easternmost section of the southern complex (e.g. east of
172	Giagazzu village) and in the small complex located south of Badesi village (i.e. the HGMC).
173	They developed during the D2 post-collisional deformation phase.
174	(2) a dextral top-to-the SE shear belt that produced with time:
175	(a) ductile and brittle-ductile D2 mylonites (Figure 3(c) and (d)), developed within the
176	garnet - plagioclase \pm kyanite \pm staurolite - bearing metasedimentary sequences (i.e. the MGM
177	in the southern complex (e.g. Giagazzu area);
178	(b) high-strain phyllonites (marking the boundary between MGMC and HGMC; Figure
179	4(a)) and low-strain phyllonites (Figure 4(b) and (c)). The difference between high- and low-
180	strain phyllonites is mainly ascribed to an enrichment of phyllosilicate content during
181	retrogressive mylonitization. Low-strain phyllonites wrap lenses of sinistral mylonites;
182	(c) mm-thick cataclasites, overprinting on both early phyllonites and sinistral mylonites
183	(Figure 4(d)).
184	
185	Geometric crosscutting relationships indicate that the D2 sinistral shearing could have
186	began before the dextral kinematics. However, U/Th/Pb isotopic measurements carried out in
187	monazites and zircons constrain the D2 shear activity (both dextral and sinistral shearing) at c.
188	320 Ma (Carosi et al., 2012).
189	Dextral and sinistral mylonites overprint prograde Barrovian index minerals (garnet,
190	plagioclase, staurolite and kyanite) grew during the collisional stage (Franceschelli et al., 2005
191	with references therein) whereas sillimanite grew parallel or oblique to the sinistral shear plan
192	testifying its blastesis during the decompressive path that produced the exhumation of migmat
193	rocks (see Carosi et al., 2009 for more details).
194	
195	According to Frassi et al. (2009) deformation within both the sinistral and dextral shear zor
196	involved general non-coaxial flow with a contemporaneous contribution of pure and simple
197	shear. More in detail, the transpressional deformation produced initially sinistral mylonites un
198	a simple-shear-dominated regime (vorticity of flow $= 0.68-0.88$) and subsequently dextral

Journal of Maps

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 20	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
40	
11	
רד- ⊿ר∕	
42	
43	
44	
45	
46	
47	
48	
10	
43	
ວບ	
51	
52	
53	
54	
55	
55	
50	
5/ 5/	
58	
59	

60

mylonites during a pure-shear-dominate regime (vorticity of flow = 0.53-0.70). Microstructural
and quartz c-axis petrofabric results additionally constraint the shearing activity under
deformation temperatures ranging from 350-550° up to 450-600°C for the dextral and sinistral
shear belt respectively (Frassi et al, 2009).

Geometric considerations point to a minimum vertical exhumation of *c*. 3.4-4.2 km and *c*. 15-205 20 km for the sinistral and dextral shear zones respectively (Frassi et al., 2009). The temporal 206 variation in kinematics, flow type and strain geometry may be produced by a change in the 207 regional stress field caused by the rotation of the convergence direction during continental 208 collision (Frassi et al., 2009) during the earlier stages of the East Variscan Shear zone.

203

209 210

4. Accuracy and Completeness of the Map

The fieldwork was performed using a 1:10.000 scale topographic map. To document the geometric and temporal relationship between brittle, brittle-ductile and ductile mylonites of the Posada-Asinara Line, enlarged map reaching 1:5.000 scale have been used during the fieldwork in the southern metamorphic complex.

No geological mapping has been carried out in the Permian vulcanites. For this reason small scale (1.250.000 scale, Carmignani et al., 2001) and geological sketch map previously published in literature (Oggiano and Di Pisa, 1992) have been used to complete the map area comprised between the metamorphic complexes. However, to emphasize the structures and complexities of the metamorphic complexes no differentiations have been mapped in vulcanites and quaternary covers.

222

223 5. Conclusions

224 This study represents the first detailed tectono-metamorphic map of the metamorphic 225 complexes cropping out in the inner portion of the Variscan belt in north-central Sardinia Island 226 (Italy). The map is based on 1: 10.000 scale classic field mapping and represents an overview of 227 the lithological and structural complexities present in the metasedimentary and migmatitic domes 228 cropping out in south-western Gallura region. It pays particular attention on the spatial and 229 temporal partition of the mylonitic fabrics, cropping out in the central sector of the Posada-230 Asinara Line that was active at different time and at different structural levels during the exhumation of the Migmatite Complex. 231

232	
233	
234	Software
235	Both topography and geological features have been drawn using Canvas X. Stereonet plots
236	were produced using the "old" free software StereoPlot by Neil Mancktelow.
237	
238	
239	Acknowledgements
240	I thank Giedre Beconyte for its comments on the map and Elena Druguet and Marcello
241	Franceschelli for their detailed comments on both the manuscript and the map. I also thank
242	Michele Zucali for editorial handling.
243	
244	Map design
245	The bad cartographic style led me to redraw all the topographic elements. The geological
246	fieldwork maps are then carefully scanned to avoid eventually distortions and then inserted in the
247	Canvas file and overlapped to the topographic layer previously created. The lithological contacts
248	and structural elements were then digitalized. Topographic labels, urban features and contour
249	levels are coloured in dark grey. Rivers and text that refer to water features are in dark blue. The
250	lithological contacts are in black. The signs and labels of UTM coordinates are in black.
251	
252	
253	References
254	CAPPELLI, B., CARMIGNANI, L., CASTORINA, F., DI PISA, A., OGGIANO, G. and
255	PETRINI, R. (1992) A Hercynian suture zone in Sardinia: geological and geochemical
256	evidences. Geodinamica Acta (Paris), 5, 101-118.
257	CARMIGNANI, L., OGGIANO, G., FUNEDDA, A., CONTI, P., PASCI, S., BARCA, S. (2001)
258	Carta Geologica della Sardegna in scala 1:250.000. Litografica Artistica Cartografica,
259	Firenze.
260	CAROSI, R., DI PISA, A., IACOPINI, D., MONTOMOLI, C. and OGGIANO, G. (2004) The
261	structural evolution of the Asinara Island (NW Sardinia, Italy), Geodinamica Acta, 17, 309-
262	329.
263	CAROSI, R., FRASSI, C., IACOPINI, D. and MONTOMOLI, C. (2005) Post collisional
264	transpressive tectonics in northern Sardinia (Italy). In: Carosi, R., Dias, R., Iacopini, D.,

Journal of Maps

1		
2 3	265	Rosenbaum, G. (Eds.), The Southern Variscan Belt. Journal of the Virtual Explorer, Vol.
4 5	266	19. Paper 3.
6	267	CAROSI, R., MONTOMOLI, C., TIEPOLO, M. and FRASSI, C. (2012) Geochronological
7 8	268	constraints of early post-collisional exhumation of Variscan high-grade metamorphic rocks
9 10	269	of northern Sardinia (Italy), Terra Nova, 24, 42-51, , doi: 10.1111/j.1365-3121.2011.01035.x.
11	270	CAROSI, R., FRASSI, C. and MONTOMOLI, C. (2009) Deformation during exhumation of
12 13	271	medium- and high-grade metamorphic rocks in the Variscan chain in northern Sardinia
14 15	272	(Italy), Geological Journal, 44, 280-305, doi: 10.1002/gj.1137.
16	273	CAROSI, R. and OGGIANO, G. (2002) Structural evolution of North eastern Sardinia: insight
17 18	274	on the tectonic evolution of the Variscan Belt, C.R. Geoscience, 334, 287-294,
19 20	275	doi:10.1016/S1631-0713(02)01740-6.
21	276	CAROSI, R. and PALMERI, R. (2002) Orogen-parallel tectonic transport in the Variscan belt of
22 23	277	northeastern Sardinia (Italy): implications for the exhumation of medium-pressure
24 25	278	metamorphic rocks, Geological Magazine, 139, 497-511, doi:
26	279	10.1017/S0016756802006763.
27 28	280	CORSINI, M. and ROLLAND, Y. (2009) Late evolution of the southern European Variscan belt:
29 30	281	Exhumation of the lower crust in a context of oblique convergence, Comptes Rendus
31	282	Geosciences 341, 214-223.
32 33	283	CRUCIANI, G., FRANCESCHELLI, M., ELTER, F.M., PUXEDDU, M. and UTZERI, D.
34 35	284	(2007) Petrogenesis of Al-silicate-bearing trondhjemitic migmatites from NE Sardinia,
36 27	285	Italy, Lithos, 102, 554-574.
38	286	CRUCIANI, G., DINI, A., FRANCESCHELLI, M., PUXEDDU, M. and UTZERI, D. (2010)
39 40	287	Metabasite from the Variscan belt in NE Sardinia, Italy: within-plate OIB-like melts with
41 42	288	very high Sr and low Nd isotope ratios, European Journal of Mineralogy, 22, 509-523.
43	289	DI VINCENZO, G., CAROSI, R. and PALMERI, R. (2004) The relationship between tectono-
44 45	290	metamorphic evolution and argon isotope records in white mica: constraints from in situ
46 47	291	⁴⁰ Ar- ³⁹ Ar laser analysis of the Variscan basement of Sardinia, Journal of Petrology, 45,
48	292	1013-1043, doi: 10.1093/petrology/egh002.
49 50	293	ELTER, F.M., MUSUMECI, G. and PERTUSATI, P.C. (1990) Late Hercynian shear zones in
51 52	294	Sardinia, Tectonophysics, 176, 387-404, doi: 10.1016/j.bbr.2011.03.031.
53	295	FRANCESCHELLI, M., PUXEDDU, M. and CRUCIANI, G. (2005) Variscan Metamorphism
54 55	296	in Sardinia, Italy: review and discussion. In: Carosi, R., Dias, R., Iacopini, D.,
56 57	297	Rosenbaum, G. (Eds.), The Southern Variscan Belt. Journal of the Virtual Explorer,
58	298	Vol. 19. Paper 2.
59 60		

Journal of Maps

200	FRASSIC (2006) The Badesi Li Paùlis shear zones in the inner zone of the Variscan helt in
255	Sordinia (Italy): atmustral analysis and racional implications. Dh D Thesis, University of Dise
300	EPASSIC CAROSI B MONTOMOLI C and LAW P.D. (2000) Kinematics and verticity
301	FRASSIC., CAROSI, R., MONTOMOLI, C. and LAW, R.D. (2009) Kinematics and volticity
302	of now associated with post-confisional oblique transpression in the variscan inner Zone of $(1 - S_{con})^{1/2}$
303	northern Sardinia (Italy), Journal of Structural Geology, 31, 1458-14/1,
304	doi:10.1016/j.jsg.2009.10.001.
305	KRETZ, R. (1983) Symbols for rock-forming minerals, American Mineralogist, 68, 277–279.
306	GIACOMINI, F., BOMPAROLA, R.M., GHEZZO, C. and GULDBRANSEN, H. (2006) The
307	geodynamic evolution of the Southern European Variscides: constraints from the U-Pb
308	geochronology and geochemistry of the lower Palaeozoic magmatic-sedimentary sequences
309	of Sardinia (Italy), Contributions to Mineralogy and Petrology, 152, 19-42.
310	GIACOMINI, F., DALLAI, L., CARMINATI, E., TIEPOLO, M. and GHEZZO, C. (2008)
311	Exhumation of a Variscan orogenic complex: insights from the composite granulitic-
312	amphibolitic metamorphic basement of South-East Corsica (France), Journal of
313	Metamorphic Geology, 26, 403-436.
314	GUILLOT, S. and MÉNOT, R.P. (2009) Paleozoic evolution of the Extern Crystalline Massifs
315	of the Western Alps, C.R. Geosciences, 341, 253–265.
316	IACOPINI, D., CAROSI, R., MONTOMOLI, C. and PASSCHIER, C.W. (2008) Strain analysis
317	and vorticity of flow in the northern Sardinian Variscan belt: Recognition of a partitioned
318	oblique deformation event, Tectonophysics, 365, 7-22.
319	MACERA, P., PONTICELLI, S., DEL MORO, A., DI PISA, A., OGGIANO, G. and SQUADRONE, A.
320	(1989) Geochemistry and Rb/Sr of syn-tectonic peraluminous granites of Western Gallura, northern
321	Sardinia: constraints on their genesis, Periodico di Mineralogia, 58, 25-43.
322	OGGIANO, G. and DI PISA, A. (1992) Geologia della catena Ercinica in Sardegna - Zona
323	Assiale. In: Carmignani L., Pertusati P.C., Barca S., Carosi R., Di Pisa A., Gattiglio M.,
324	Musumeci G., Oggiano G. (Eds), Struttura della catena ercinica in Sardegna. Guida
325	all'escursione. Gruppo Informale di Geologia Strutturale, 147-177, Siena.
326	STAMPFLI, G.M., VON RAUMER, L.F. and BOREL, G.D. (2002) Paleozoic evolution of pre-
327	Variscan terranes: Form Gondwana to the Variscan collision. Geological Society of America
328	Special Paper, 364, 263-280.
329	VON RAUMER, J.F., STAMPFLI G.M. and BUSSY, F. (2003) Gondwana-derived
330	microcontinets - the constituents of the Variscan and Alpine collisional orogens,
331	Tectonophysics, 7, 7-22.
332	

336

337

Journal of Maps

Figure 1. Geological sketch map of the Sardinia Island and location of the study area.

Figure 2. Migmatites from the HGMC in the northern metamorphic complex. a) Metatexite

0	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
40	
41	
48	
49	
50	
51	
52	
52	
23	
54	
55	
56	

333	Figure Captions
333	Figure Capitons

338 with thin restitic layers around cm-thick leucosome; b) Typical metatexite; c) migmatitic showing nebulitic texture (n); d) garnet-bearing orthogneiss (Grt: garnet); e) aplitic monzogranite 339 340 in Tarra Padedda area. It is interpreted as the precursor of the post-Variscan batholith; f) pegmatitic vein cross cutting the S2 foliation. S2: S2 foliation. 341 342 Figure 3. Metasediments affected by greenschist- to amphibolites facies metamorphism from 343 344 the MGMC cropping out in the western portion of the southern metamorphic complex. a) cm-345 thick layers of micaschists (m) and quartz-rich psammites (p) deformed by F2 and F3 folds. AP2: F2 folds axial plane; AP3: F3 fold axial plane; b) quartzites (q) (m: micaschist); c) fine-346 grained micaschist; d) Kyanite+staurolite+garnet-bearing micaschist cropping out west of 347 348 phyllonites (Ky: kyanite). S2: S2 foliation. 349 Figure 4. a) High-strain phyllonites; b) low-strain phyllonites with c. 15-cm-thick sheared 350 351 pegmatitic veins; c) detail of low-strain phyllonites, with mm-size porphyroclasts of feldspar; d) 352 mylonitic pegmatitic vein deformed by sinistral top-to-the NW shear sense. Sm: mylonitic 353 foliation. 354

nner Zone

Nappe Zone

N

50 km

Main thrust

Low-grade

metamorphism

Very low-grade

metamorphism

A Minor thrust

- Fault

PAL: Posada-Asinara Line

Cagliari

Asinara I.

Sassari

study area

Post-Variscan covers

Variscan batholith

Complex (HGMC)

Complex (MGMC)

High-Grade Metamorphic

Medium-Grade Metamorphic

Geological sketch map of the Sardinia Island and location of the study area

71x164mm (300 x 300 DPI)

VARISCAN BASEMENT

External Zone

+

SE

NW

Frassi C. - Figure 2

Migmatites from the HGMC in the northern metamorphic complex. a) Metatexite with thin restitic layers around cm-thick leucosome; b) Typical metatexite; c) migmatitic showing nebulitic texture (n); d) garnetbearing orthogneiss (Grt: garnet); e) aplitic monzogranite in Tarra Padedda area. It is interpreted as the precursor of the post-Variscan batholith; f) pegmatitic vein cross cutting the S2 foliation. S2: S2 foliation. 169x207mm (150 x 150 DPI)

Frassi C. - Figure 3

Metasediments affected by greenschist- to amphibolites facies metamorphism from the MGMC cropping out in the western portion of the southern metamorphic complex. a) cm-thick layers of micaschists (m) and quartz-rich psammites (p) deformed by F2 and F3 folds. AP2: F2 folds axial plane; AP3: F3 fold axial plane; b) quartzites (q) (m: micaschist); c) fine-grained micaschist; d) Kyanite+staurolite+garnet-bearing micaschist cropping out west of phyllonites (Ky: kyanite). S2: S2 foliation. 169x148mm (150 x 150 DPI)

URL: http://mc.manuscriptcentral.com/tjom

Frassi C. - Figure 4

a) High-strain phyllonites; b) low-strain phyllonites with c. 15-cm-thick sheared pegmatitic veins; c) detail of low-strain phyllonites, with mm-size porphyroclasts of feldspar; d) mylonitic pegmatitic vein deformed by sinistral top-to-the NW shear sense. Sm: mylonitic foliation. 169x148mm (150 x 150 DPI)