
ASSESS: A Simulator of Soft Errors in the

Configuration Memory of SRAM-Based FPGAs∗

Cinzia Bernardeschi, Luca Cassano, Andrea Domenici and Luca Sterpone †‡

March 30, 2019

Abstract

In this paper a simulator of soft errors (SEUs) in the configuration
memory of SRAM-based FPGAs is presented. The simulator, named
ASSESS, adopts fault models for SEUs affecting the configuration bits
controlling both logic and routing resources that have been demonstrated
to be much more accurate than classical fault models adopted by academic
and industrial fault simulators currently available. The simulator permits
the propagation of faulty values to be traced in the circuit, thus allowing
the analysis of the faulty circuit not only by observing its output, but
also by studying fault activation and error propagation. ASSESS has
been applied to several designs, including the miniMIPS microprocessor,
chosen as a realistic test case to evaluate the capabilities of the simulator.
The ASSESS simulations has been validated comparing their results with a
fault injection campaign on circuits from the ITC’99 benchmark, resulting
in an average error of only 0.1%.

Keywords: Computer-aided design, reliability and testing, simulation, single
event upset, SRAM FPGA.

1 Introduction

Soft errors are caused by high-energy particles that change the stored charge in
memory cells of electronic devices [7]. In particular, a bit flip, or Single Event
Upset (SEU), in a memory cell may bring the system to an erroneous state until
the cell is rewritten. SEUs, therefore, are usually transient as they are likely
to be overwritten at the next clock cycle, but they may have permanent, or at

∗Postprint. Published in: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (Volume: 33, Issue: 9, Sept. 2014). DOI: https://doi.org/

10.1109/TCAD.2014.2329419. c© 2014 IEEE. Personal use is permitted, but re-
publication/redistribution requires IEEE permission. See http://www.ieee.org/

publications_standards/publications/rights/index.html for more information.
†C. Bernardeschi, L. Cassano and A. Domenici are with Dipartimento di Ingegneria

dell’Informazione, University of Pisa.
‡Luca Sterpone is with Dipartimento di Automatica ed Informatica, Politecnico di Torino.

1

least long term, effects in configurable devices such as SRAM-based FPGAs,
since the functions and the interconnections of these devices are controlled by
a configuration memory [26]. The sensitivity to SEUs is relevant in a growing
number of highly reliable FPGA applications, operating in environments where
radiations can increase the likelihood of soft errors [23].

In particular, FPGAs based on SRAM technology store the configuration
data in SRAM cells, which are rewritable and thus make it possible to reconfig-
ure the device. The frequency of reconfigurations depends on the application.
Some devices may never be reconfigured, as the need for reconfiguration does not
arise during their operational life, while others may be reconfigured occasionally
for repair or upgrades, and yet others may undergo frequent reconfigurations
to change mode of operation. However, even in this last case, long periods of
operation separate consecutive reconfigurations, therefore SEUs may corrupt a
device’s functionality over long period of times, until the reconfiguration is per-
formed [23]. Besides, as the portion of configuration bits actually used in the
design increases, the probability that a soft error will alter the logical behavior
of the system becomes an issue in FPGAs using SRAM technology [21].

The main techniques for the analysis of the effects of SEUs in the config-
uration memory of SRAM-based FPGAs rely on accelerated radiation testing,
fault injection and fault simulation. Radiation testing [9] and fault injection [36]
are generally accurate and fast but they can be applied only late in the design
process, when a prototype of the system is available. On the other hand, fault
simulation [24] can be applied soon during the design of the system and at differ-
ent levels of abstraction, but it is generally less accurate and slower. Moreover,
while radiation testing and fault injection allow the analysis of the system’s be-
havior only by observing its output, fault simulation makes it possible to study
fault activation and fault propagation, giving designers a deeper insight into the
circuit and the causes of system failures.

Current simulation tools and methodologies represent SEU effects on logic
resources as stuck-at faults, and effects on routing elements as open, short,
or bridge faults. Although these fault models can be effectively used when
analyzing the effects of faults in ASIC circuits or in the user resources of an
FPGA design, they have been shown not to be accurate enough for the analysis
of the configuration memory in SRAM-based FPGAs, so that more accurate
fault models have been proposed [29, 37]. In particular, the stuck-at model
cannot describe a fault in the configuration bit of a LUT, which is activated
only when the LUT inputs take the combination of values corresponding to
that bit [29]. Similarly, faults in the routing configuration memory may cause a
wider range of effects than open, short, or bridge, as has been discussed in [37]
and briefly reported in Sec. 3.2.

The novelty of the simulation framework presented in this paper with re-
spect to currently available academic and commercial tools is the adoption of
the accurate fault model for SEUs proposed in [29, 37], leading to more accu-
rate results than those of the other fault simulators, which, to the best of our
knowledge, do not yet support this model. The additional feature of ASSESS
is the use of a formal specification language, the Stochastic Activity Networks

2

(SAN) [32], supported by the Möbius tool [18], for modeling the FPGA-based
system and the fault injection module. SANs are an extension of stochastic Petri
nets, used to evaluate performance and dependability of complex systems [28].
The Möbius tool provides a flexible and easy to use environment to define and
analyze SAN-based models, and in particular it makes it possible to specify
reward functions that quantify dependability-related properties of the modeled
system.

The ASSESS tool is highly configurable, interoperates seamlessly with the
standard development process and enables designers to measure different reliability-
related properties of FPGA-based applications. The FPGA applications are de-
scribed at the netlist level, which shows the circuit components with their logical
connections but not the physical routing. Faults affecting routing resources are
interpreted as equivalent logic effects in the netlist: This is made possible by
another tool, E 2STAR [14]. E 2STAR is able to identify the topological mod-
ifications induced by an SEU in the routing structure of the FPGA according
to the position of the configuration bit as well as to electrical properties. More-
over, E 2STAR is able to determine the logic effects induced by these topological
modifications, thus allowing ASSESS to map on the pre-place and route logic
netlist the effects of the SEUs occurring in the routing structure.

Dependability-related measures that can be estimated include failure prob-
ability, i.e., the probability of a system failure in a given number of clock cycles
given the probability of the occurrence of SEUs in the configuration memory of
the system; and SEU observability, i.e., whether a system failure is observed,
assuming a specific bit flip in the configuration memory. Moreover, ASSESS al-
lows designers to detect the fault activation and to trace the error propagation.
In this way designers can understand the causes of the failures of the system
and better analyze the effectiveness of fault tolerance techniques. We point out
that we do not propose fault simulation as an alternative to fault injection, but
as an additional tool for designers to analyze the susceptibility of the system
to faults, as early as possible during the design process, thus getting to the
final fault injection or radiation experiment on the prototype with a thoroughly
analyzed system.

Preliminary work from the same authors related to ASSESS are: 1) [12],
where a netlist simulator without fault injection is presented; 2) [11, 10], where
faults in the logic were introduced; and 3) [14] where routing faults were taken
into account. With respect to the previously published papers, the current
paper presents the following new technical material: 1) re-engineering of the
whole simulation environment in order to make it configurable, e.g., able to
change operational mode (fault-free, deterministic and stochastic fault injec-
tion) and performed measures; 2) redesign of the fault injection SAN module
to support both stochastic and deterministic fault injection, and of the system
manager SAN module in charge of orchestrating the simulation; 3) design of re-
ward functions for additional dependability-related measures; 4) comparison of
results obtained by ASSESS with those obtained using the traditional stuck-at
fault model; 5) figures from the analysis of fault activation, error propagation
and failure probability on a set of circuits from the ITC’99 benchmark; and 6)

3

simulation and analysis of the miniMIPS microprocessor, representing a realistic
industrial case application.

The remainder of this paper is organized as follows. Section 2 discusses
related work on SEU analysis and simulation; Section 3 introduces the FPGA
technology and the adopted fault models; Section 4 briefly presents the SAN
formalism and Möbius environment; Section 5 describes the simulation frame-
work, the architecture of the ASSESS tool and some SAN models composing
ASSESS; Section 6 discusses the dependability-related measures performed by
ASSESS; a discussion about results obtained by simulating some benchmark
circuits is in Section 7; conclusions and future work are in Section 8.

2 Related Work

In this section we focus on the techniques and tools specifically addressing the
analysis of the effects of SEUs in SRAM-based FPGAs that can be found in the
literature.

The sensitivity to SEUs of SRAM-based FPGA systems can be analyzed
according to four main approaches: accelerated radiation ground testing, fault
injection boards, analytical computation, and fault simulation.

Accelerated radiation ground testing [21, 9, 22, 17, 16] aims at emulating the
effects of SEUs by exposing a prototype of the FPGA-based system to a flux
of radiations, originated by either a radioactive source or a particle accelerator.
While being exposed to the radiations flux, the prototype is fed with a set of in-
put patterns, and its behavior is monitored. Drawbacks of these techniques are:
1) The impossibility of injecting SEUs only in the configuration memory of the
FPGA, since the whole chip area will be irradiated (including logic resources);
2) a possibility that the device be permanently damaged after the experiment;
and 3) high cost.

Several fault injection boards have been developed in order to evaluate the
impact of SEUs in the configuration memory of circuits mapped on SRAM-based
FPGAs [36, 38, 4, 2]. These boards emulate the occurrence of SEUs by modi-
fying the bitstream of the target system whose dynamic behavior is then evalu-
ated. Fault injection can be performed either before downloading the bitstream
on the device under test, or at run time exploiting partial dynamic reconfigura-
tion. Unlike radiation testing experiments, fault injection makes it possible to
focus the analysis on SEUs in the configuration memory of the FPGA, leaving
out any other resources. Moreover, fault injection avoids the risk of damaging
the device under analysis. The major drawbacks of SEU injection boards are
high costs, complex usability, and strong chip and vendor dependence. Both
fault injection and radiation testing also have the drawback that they need a
physical prototype of the system.

Analytical approaches are reported in [34, 35, 5, 25]. In [34] and [35], a
model based on the structure of the design implemented on the FPGA is built,
and the topological modifications induced by SEUs in each configuration bit
are deduced, thus discovering which SEUs affect the design. In [5], sensitive

4

paths to SEUs are identified by combining the error probability of all nodes of
the circuit with the error propagation probability of each path of the circuit.
Finally, in [25] an accurate probabilistic model to estimate the reliability of
SRAM-based FPGA system is presented. Given the probability of occurrence
of an SEU, the model is able to estimate the probability of having a system
failure after a given amount of time. The drawback of these approaches is that,
since the analysis is carried out without respect to the input patterns fed into
the system, they are able to provide a worst case analysis but they cannot give
information about the behavior of the system in its normal operating conditions.

Although a large number of fault simulators for digital circuits can be found
in the literature, very few simulation approaches targeting the analysis of the
effects of SEUs have been proposed. Moreover, if we look for simulators that
specifically address the FPGA technology we find an even smaller number of
works. In [33, 15], two simulators of SEUs affecting digital circuits have been
proposed. Both simulators work at the gate-level representation of the circuit,
thus ensuring accurate results, but neither one takes into account any details
specific of the FPGA technology. To the best of our knowledge, the only simu-
lator targeting SEUs in FPGAs is SST [24]. SST is a set of TCL scripts able
to modify the HDL description of the circuit in order to emulate the effects of
SEUs, and then to interact with standard Register Transfer Level (RTL) sim-
ulators, such as ModelSim [27]. Since SST works on the RTL representation
of the system, it can only emulate the effects of SEUs in logic resources, e.g.,
flip-flops and memories, but it is not able to reproduce the effects of SEUs in
the configuration memory.

3 Effects of SEUs in the Configuration Memory

of SRAM-based FPGAs

An FPGA is an array of programmable logic blocks, interconnected through a
programmable routing architecture and communicating with the output through
programmable I/O pads [26].

The basic logic element may have several different structures, which in many
cases are variations of the pattern shown in Figure 1: The logic block has n m-
input LUTs implementing the required functions, a carry chain logic that can
be used to implement arithmetic functions, a number of multiplexers that allow
selecting among the outputs of the LUTs and those of the carry chain logic, and
a number of flip-flops.

A common architectural pattern is based on a regular layout where con-
ductive tracks (or wires) are grouped into channels running in two orthogonal
directions and forming a grid whose meshes enclose the logic blocks. The areas
where vertical and horizontal channels cross are called switch boxes and contain
the programmable circuitry that connects tracks of one channel to tracks of the
same or the other channel.

Figure 2 shows an overall representation of an FPGA architecture. More

5

Figure 1: Basic logic block structure.

in detail, the figure shows the regular structure of the logic blocks, the routing
architecture, and the configuration memory. The configuration memory bits
control and program both logic and routing resources of the FPGA.

After an FPGA chip has been selected, a tool synthesizes the RTL descrip-
tion of a system into a netlist, choosing the logic blocks to implement the RTL
design and defining their logical connections; then the place and route phase de-
fines the location of the various components of the netlist on the target device
and then their physical interconnections; and finally the bitstream is gener-
ated from the placed and routed netlist and downloaded into the configuration
memory of the chip.

The bitstream determines the functions of the programmable logic blocks,
the internal connections among logic blocks and the external connections among
logic blocks and I/O pads.

3.1 Logical Faults

ASSESS adopts the model for SEUs affecting the configuration memory of LUTs
presented in [29]. A LUT affected by an SEU in its configuration memory will
produce an incorrect value only when the pattern of its input values is the one
associated with the faulty configuration bit, while for every other input pattern
the faulty LUT will behave correctly. Figure 3(a) shows an SEU causing a
bit flip in the configuration bit associated with input (0000). In this case,

6

Figure 2: Overall structure of an FPGA device.

(a) SEU in a lookup table. (b) SEU in an I/O buffer.

Figure 3: Effects of SEUs in the logic components of an FPGA.

the logic function implemented by the LUT changes from the correct function
y = x1 · x2 + x3 · x4 to the faulty function yf = x1 · x2 + x3 · x4 + x̄1 · x̄2 · x̄3 · x̄4.
The results of y and yf are different only when the values of the input signals
are (0000). This behavior cannot be simulated with the stuck-at fault model,
which does not “look inside” the LUT, and thus assumes that the output is
fixed at a value V that is faulty for all inputs such that y 6= V.

An SEU in the configuration bit of an I/O buffer causes an undesired con-
nection or disconnection between two wires. Fig. 3(b) shows a 1 to 0 bit flip
causing a disconnection between point A and B.

3.2 Routing Faults

An extensive treatment of the fault model for the effects of SEUs in the routing
structure that is assumed in this paper is found in [37].

In order to discuss the effects of SEUs in the interconnect, let us first con-
sider the organization of the switch boxes. Programmable interconnect points
(PIPs) are used to connect the input and output ports of switch boxes, provid-
ing the routing paths to connect the I/O buffers and logic components of the

7

C
S

Pi
Pj

B i

Dj

D

B
A a

c

Figure 4: An example of a switch box.

FPGA circuit. A PIP may consist in a single pass transistor controlled by one
configuration bit, or in more complex structures controlled by groups of bits.
The various structures accomplish different functions, such as connecting two
wires in the same channel, or two wires in orthogonal channels, or establishing
multiple connections. In particular, even if an SEU modifies only one switch
box configuration bit, single and multiple effects may be originated for PIPs of
the switch box.

Depending on the position and the electrical properties of the affected PIPs,
an SEU in the routing structure can cause the following topological modifica-
tions.

• Open. The PIP corresponding to a net is not programmed anymore.

• Input antenna. A new PIP is added between an unused input node and a
used output node. The new PIP can influence the behavior of the output
node.

• Output antenna. A new PIP is added between a used input node and an
unused output node. The new PIP does not influence the behavior of the
implemented circuit.

• Conflict. A new PIP is added between an input node and an already used
output node.

• Bridge. A PIP is disabled while a new PIP is instantiated between a used
input node and the output nodes used by the previous net.

By comparing the results of electrical fault injection with behavioral sim-
ulations, it has been possible to identify the logical effects of the topological
modifications induced by SEUs into the routing resources, thus defining an
equivalent logical model associated with such SEUs.

With reference to Fig. 4, if S is a switch box, B and D are two components
directly connected to S, Bi and Dj are the input pins of B and D connected to
S through the PIPs Pi and Pj , respectively, the five possible logical effects of an
SEU in the configuration bit controlling the two PIPs are described as follows.

8

Figure 5: The bridge effect.

• Stuck-at 0 on Bi: The logic signal on Bi is set at zero.

• Stuck-at 1 on Bi: The logic signal on Bi is set at one.

• Logical bridge between Bi and Dj : The logic values on Bi and Dj are
exchanged.

• Wired-AND (Wired-OR) between Bi and Dj : The logic signals on Bi and
on Dj are set to the value a and (or) c.

• Wired-MIX between Bi and Dj : Bi is set to 1 and Dj is set to 0 if a 6= c,
while Bi and Dj are left unaltered otherwise.

In detail, considering the picture in Fig. 5, two interconnections are initially
configured (net 0 and net 1). The scenario that may happen once a configura-
tion memory bit is changed is the bridge phenomenon. In the case represented
in Fig. 5, the interconnection segment corresponding to net 1 is disabled while
a new segment corresponding to the interconnection net n is instantiated be-
tween a used input node and the output nodes of the previously used net 1 as
shown in Fig. 5. The behavior of the circuit is therefore modified. The charac-
teristics of the topological modification depend on the electrical characteristics
of the segment’s input and output nodes. In detail, the schema in Fig. 5 is
a simplification of a possible realistic scenario. The electrical behavior of the
nodes represented between I 1 and I 6 is different from the ones belonging to the
nodes from I 7 to I 12. A realistic routing switch box contains several hundreds
of routing interconnection points having different electrical behavior. The main
characteristics of the node are related to its physical characteristics. In gen-
eral a node can be unidirectional or bidirectional. The bidirectional nodes are
generally used to support extra switch box connections, for instance long lines
between different routing switch boxes. A long line may have several input and
output points, depending on where the routing is topologically configured by
the place and route algorithm. If a bridge phenomenon occurs, it may interfere

9

with different interconnection nodes with different electrical behavior that may
lead to a wired-and or wired-or characteristic, if the node is a starting point of
a long line. If the node is not a starting point of a long line, the phenomenon
is described through the wired-mix mode. Since the node is an intermediate
point without a tied-on configuration, its electrical behavior can be floating and
depend on the signal value passing through the node according to the model we
described, which has been electrically validated in [8].

Note that a given SEU in the configuration bit associated with a PIP can
propagate to different routing segments, and that the same SEU can have dif-
ferent effects on the routing segments through which it propagates.

4 The SAN Formalism and the Möbius tool

Stochastic Activity Networks (SANs) [32] are an extension of Petri Nets (PN).
A SAN is a directed graph with four disjoint sets of nodes: places, input gates,
output gates, and activities.

The topology of a SAN is defined by its input and output gates and by two
functions, one that maps input gates to activities, and one that maps pairs (ac-
tivity, case) (see below) to output gates. Each input (output) gate has a set
of input (output) places. Activities may be instantaneous or timed, i.e., with a
duration, and may have mutually exclusive outcomes, called cases, chosen prob-
abilistically according to the case distribution of the activity. Cases can be used
to model probabilistic behaviors, e.g., the failure probability of a component.
An activity completes when its execution terminates.

Enabling condition and firing rule for each activity are specified by associ-
ating an enabling predicate and an input function to each input gate, and an
output function to each output gate. The enabling predicate is a Boolean func-
tion of the marking of the gate’s input places. The input and output functions
compute the next marking of the input and output places, given the current
marking. If these predicates and functions are not specified for some activity,
the standard PN rules are assumed.

Places are drawn as circles, input (output) gates as left-pointing (right-
pointing) triangles, and instantaneous (timed) activities as thin (thick) vertical
bars. Cases are drawn as small circles on the right side of activities. Gates with
default (standard PN) enabling predicates and firing rules are not shown.

Möbius [20] is a software tool that provides a hierarchical modeling paradigm,
allowing complex models to be built from individual components, and support
for customized measures of system properties. SAN models can be composed by
means of Join and Rep operators. Join is used to compose two or more SANs.
Rep is used to construct a model consisting of a number of replicas of a SAN.
Models composed with Join and Rep interact via place sharing, an extension
to the SAN formalism that enables different SAN submodels to communicate
through shared places. Moreover, places may be complex data structures (ex-
tended places).

Properties of interest are specified with reward functions [31]. A reward func-

10

tion specifies how to measure a property, represented by a performance variable,
on the basis of the SAN marking and of the executed activities. Measurements
can be conducted at specific time instants, over periods of time, or when the
system reaches a steady state.

SANs allow a simulator designer to focus on the definition of the execution
flow of the various components of the simulator before defining their detailed
behavior. The Möbius tool translates this execution flow into a C++ imple-
mentation on top of which the application-specific components are developed.
The tool made it possible to develop a flexible simulator that can be easily
customized for different types of experiments and analyses. To this purpose,
Möbius provides the means to define system properties of interest using reward
functions and to automate experiment design with an interactive environment,
enabling users to specify the desired statistical properties and let the system
produce the code performing the experiments.

5 The ASSESS Simulation Environment

Fig. 6 shows the overall structure of the simulation framework and how it fits
in the standard design process of FPGA-based systems.

After the hardware description language specification of the system has been
synthesized into a netlist in EDIF format, a parser translates the netlist into
an intermediate description of its topology and of its components’ functionality.
The parser also produces the list of SEUs occurring in configuration bits asso-
ciated with the logic resources and of their effects, according to the fault model
presented in Section 3.1.

After the place and route phase, E 2STAR produces a file containing the list
of the SEUs in the configuration bits associated with the routing elements of
the FPGA that can alter the structure of the implemented system, according to
the fault model presented in Section 3.2. For each SEU, the file contains the list
of its effects on the logic components (see Section 5.4). Nevertheless, ASSESS
could also be used to simulate only SEUs affecting the logic resources of the
FPGA. In this last case, the simulation can be carried out before the place and
route phase and E 2STAR is not required.

The simulator is configured for the different types of experiments by specify-
ing a number of parameters that will be described in Section 5.1 and by defining
reward functions that compute values for properties of interest (Section 6.1).

By configuring dedicated simulation parameters, ASSESS can generate de-
tailed reports on input data and results. In particular, a detailed SEU report
shows, for each injected SEU, whether the SEU has been propagated to at least
one output pin.

Algorithm 1 summarizes the overall execution flow of the simulation envi-
ronment for the three simulation modes (fault-free, stochastic fault injection and
deterministic fault injection) that will be presented in the following.

In the stochastic fault simulation mode, the execution flow (excluding the
steps involving the EDIF parser and E 2STAR) is automatically repeated as

11

call the EDIF parser;
load the netlist description;
load the list of SEUs in logic components;
if routing faults simulation required then

call E2STAR;
load the list of SEUs in routing components;

end if

load the configuration;
generate/load test patterns;
if fault-free simulation then

for each clock cycle n do

simulate;
end for

else if stochastic fault injection mode then

for each clock cycle n do

inject an SEU with the configured SEU probability;
simulate;
evaluate reward functions;

end for

else if deterministic fault injection mode then

for each SEU do

inject the SEU;
for each clock cycle do

simulate;
evaluate reward functions;

end for

clear fault;
end for

end if

collect and output results.

Algorithm 1: The overall behavior of the proposed SEU simulation environment.

12

EDIF netlist

post place &
route file

behavioral
description

EDIF parser

E2 STAR

place and route

logic synthesis

FPGA design process

faults
logic

description
netlist

output
routing
faults

ASSESS

Figure 6: Flow Diagram of the Simulation Environment.

many times as needed to achieve the required statistical confidence.

5.1 The ASSESS Tool

The high-level structure of ASSESS is shown in Figure 7. The simulator is
composed of three subsystems: the SEU Injector, the Input Pattern Generator,
and the Netlist Simulator.

The SEU Injector reads two lists of configuration memory faults (for logic
and for routing resources) and alters the behavior of the simulated circuit ac-
cording to the corresponding failure modes.

The Input Pattern Generator provides the signals at the input pins at each
clock cycle. Signal values may be taken from externally generated test patterns
or chosen stochastically according to user-provided signal probabilities.

The Netlist Simulator is the core of the tool, and implements a generic
model of execution of digital circuits. In particular, its subsystems Combina-
tional Logic and Sequential Logic simulate the behavior of combinational and
sequential elements, respectively.

Three modes of operation are possible: fault-free simulation, deterministic
fault injection, and stochastic fault injection. With deterministic fault injection,
all possible faults are injected, one at a time, each one at the beginning of a
simulation run. A simulation run is the application of a test pattern, i.e., a
sequence of test vectors, to the modeled circuit. This operation mode is used to
analyze the sensitivity of the system to each fault, and to have a detailed and
complete picture of the activability, propagability and criticality of each fault.

With stochastic fault injection, the user sets the maximum number of faults
to be injected and a fault is injected with a specified probability q (SEU prob-
ability) at each clock cycle. Faults are chosen at random. This operation mode
is used to produce statistical measures of the failure probability of the system
and of the fault activability and propagability.

As shown in Figure 7, a configuration file is used to control the simulator.
Table 1 shows the main parameters of the simulator. Fault-free simulation is per-

13

SEU injector

combinational
logic

sequential
logic

input pattern
generator

output

description
netlist

routing
faults

faults
logic

configuration
ASSESS

netlist simulator

Figure 7: High-level structure of the ASSESS tool.

Table 1: Main parameters of the simulator

PARAMETER DEFINITION

MAX CLOCKS limit to clock cycles to simulate

MAX SEUS limit to injected SEUs

STOCHASTIC INJ true for stochastic fault injection

ROUTING FAULTS true for routing faults injection

q SEU probability per clock cycle

STOCHASTIC INPUT true for stochastic TP generation

pi signal probability of i-th primary input

SAVE FAULTS true if a detailed output report is generated

SAVE INPUTS true if applied TP are saved in output file

formed when MAX SEUS is zero. Deterministic simulation is performed when
STOCHASTIC INJ is false. Configuration parameter ROUTING FAULTS en-
ables simulation of routing faults, in addition to logic faults. Stochastically
generated input patterns can be saved in order to be reused in further exper-
iments when SAVE INPUTS is true. Finally, a detailed output report about
the activation, propagation to flip-flops and detection of each fault is generated
if SAVE FAULTS is true; otherwise, a report containing only the number of
system failures is generated.

The internal structure of the tool rests on three levels of abstraction: 1) A
generic SAN model of digital circuit behavior, consisting of a set of interacting
SANs; 2) a set of procedures, attached to the SAN model, that specialize its
behavior for the typical logical blocks of FPGA netlists, stored in a library
accessed by the Möbius environment; and 3) the definitions of the actual systems
to be simulated, which comprise the reward model(s), and descriptions of the
specific circuit. A user of the ASSESS tool only needs to provide the information

14

y = 1f

1c

y = 1c
OR*

^
3

0f

(a) (b)

x = 1c x = 1c

OR*

Figure 8: Tracking function: (a) correct component (b) faulty component for
input combination x = 1, y = 1.

required at level 3), in the configuration files.
The SAN model is translated by the Möbius tool into a core set of C++

modules, that in turn call the procedures at the second abstraction level. These
procedures fulfill many tasks, including the definition of input predicates for
various SAN gates and simulating specific classes of circuit components, such
as LUTs, multiplexers, and various kinds of flip-flops. At the third abstraction
level, a specific circuit is represented by a set of data structures.

5.2 Tracking functions of components

The simulator uses a four-valued logic [30] to propagate faults through the
circuit. Let B = {0, 1} be the set of standard Boolean values and D =
{0c, 0f , 1c, 1f} be the domain of the four-valued logic. D represents correct and
faulty Boolean values, namely zero correct (0c), one correct (1c), zero faulty
(0f) and one faulty (1f).

Each component of the netlist implements a Boolean function f : Bn → B.
For such function, its tracking function f∗ : Dn → D, extends the semantics
of f to the four-valued domain D. For a given n-tuple of inputs (d1, · · · , dn) in
Dn, the tracking function f∗ applies f to the actual inputs and to the input
that would have been applied in absence of faults. Then f∗ compares the two
results and returns a correct or a faulty output accordingly.

Let us now consider the propagation of values through faulty components.
For each possible fault i of the component the simulator uses a faulty function
f̂i : B

n → B that describes the behavior of the component in presence of that
fault. This behavior may be given in the form of truth table or as an expression.
The tracking function f̂∗

i : Dn → D of a faulty function f̂i compares the output
of the faulty component with possibly faulty inputs to the output of the correct
component with correct inputs. If the two are equal, the result is taken as
correct, otherwise it is tagged as faulty.

For example, consider a correct or gate with inputs x and y, where x is
correct and equals 1. In this case, the output will be 1 no matter what the
other input is. Therefore, if input y is faulty, the output will nevertheless be
correct (1). If, instead, the correct value of x were 0, an incorrect 1 value of y
would produce an incorrect output value of 1.

15

Fig. 8 (a) shows the output of the two-input correct LUT implementing the
or operator. A correct 1 input and a faulty 1 input generate a correct output.
The value is tagged as correct (1c) and it is propagated to the next component.
Fig. 8 (b) shows the output of the two-input LUT implementing the or function
with a fault in the configuration bit associated with the input x = 1 and y = 1.
If we number each fault with a label i equal to the integer value of the input
combination activating the fault, the label of this fault is 3. Two 1c inputs
activate the fault in the component and generate a faulty output, because the
resulting output differs from the output that should have been produced by a
correct component with (1, 1), and the faulty value (0f) is propagated.

The simulator uses tracking functions to trace the propagation of faults and
to determine whether they reach the output or not, and, if not, to find which
components mask or propagate the fault.

5.3 Modeling the circuit

A component is an input or output buffer, a flip-flop, a multiplexer, or a LUT.
Each component has an identifier. The circuit’s topology is represented by a
connectivity matrix C with a row for each component and a number of columns
equal to the maximum number of input pins per component. Each element of
the matrix contains the identifier and the type of the component connected to
the corresponding pin, and a flag used for routing faults injection. Thus, each
row holds the information needed to find the inputs to a component.

The values of the circuit’s signals at each clock cycle are stored in data struc-
tures defined in the Möbius model (Sec. 5.5), namely places Input Lines, Internal
Lines, and Output Lines. The signals take values of the extended Boolean type
D discussed in section 5.2.

A functions table T holds encodings of the functions of all the components.
In particular, the function of each LUT is encoded as an array of Boolean values
representing the LUT’s truth table.

The current test pattern is stored in a matrix TP , and the current number
of generated test vectors is n v.

5.4 Modeling faults

A data structure F keeps the lists of logic and routing faults.
An array L of Boolean values indicates for each component if it is faulty

or not. A single Boolean value is sufficient to model logic faults in buffers,
multiplexers and flip-flops, as these components have a single mode of failure.

Faults in LUTs require a more complex representation. Each LUT may be
affected by multiple faults, and a fault is represented by the input that activates
the fault. Then, array L also has a pointer to the fault set injected in each LUT.
The fault set is a set of input configurations.

The E 2STAR tool produces a list of all possible routing faults. Each fault
is characterized by the list of its logical effects and the components involved by
each effect. For example, an E 2STAR output might contain the following entry:

16

Figure 9: Möbius model of the ASSESS tool.

37 2;

0 bridge 22 0 21 0;

1 stuck-at-0 16 0;

This entry means that routing fault number 37 has two effects: a bridge
between input pin 0 of component 22 and input pin 0 of component 21, and a
stuck-at-0 on input pin 0 of component 16.

The simulator maintains the list of routing faults in an array R whose el-
ements hold pointers to the respective effects, each defined by its type (as de-
scribed in Section 3.2) and its affected components.

A fault propagation matrix P with the same structure as the connectivity
matrix is used to identify the component input pins affected by routing faults,
by storing a pointer to the injected fault.

It may be observed that the actual (faulty) signal value at a given pin cannot
be computed in advance for all types of faults, but in general it must be com-
puted when each component is executed for the actual state of the circuit. As
an example, if the fault type in element (22, 0) of the fault propagation matrix
is a bridge between pin 0 of component 22 and pin 0 of component 21, the value
applied to pin 0 of component 22 depends on the actual value of both signals.

5.5 SAN Models

Fig. 9 shows the Möbius model of the tool, obtained by composing SAN sub-
models with Join and Rep operators.

The Combinational Logic subsystem of Figure 7 corresponds to the Combi-
nationalElements node in Figure 9, which is the replication of the SAN submodel
for the class of combinational components, such as LUTs, I/O buffers and multi-
plexers. The Sequential Logic subsystem corresponds to the SequentialElements
node, the replication of the SAN submodel for storage elements, i.e., different

17

Figure 10: The FaultInjector SAN model.

kinds of flip-flops. The SEU Injector and the Input Pattern Generator subsys-
tems correspond to the FaultInjector and InputPtnGenerator Möbius nodes. In
particular, the InputPtnGenerator node has a replica of the InputSetup sub-
model for each input pin. Finally, submodel SystemManager co-ordinates the
other submodels.

The SAN submodules interact through shared places. The main shared
places are Input Lines, Output Lines, and Internal Lines, holding the values of
the input, output, and internal signals, respectively. Other places hold global
variables, such as the numbers of executed clock cycles, of injected faults, and
of generated test patterns.

In the following, we describe the FaultInjector and SystemManager models.
The other models have been introduced in previous work [12].

5.5.1 The FaultInjector Model

Places start FI and end FI (Figure 10) contain a Boolean to indicate if the fault
injector is enabled for execution or has terminated its execution, respectively.
Depending on the value of a simulation parameter, either the det injIG or the
stoch injIG input gate enabled its activity. In the first case, the simulator works
in deterministic fault injection mode. Place current fault identifies the fault
being simulated with its position in the data structure F . At the beginning of a
simulation run (at the first clock cycle), the fault simulated in the previous run
is cleared by restoring the affected component to the normal state. The new
fault is then injected by updating the relevant data structures and updating the
current fault place. In the rest of the run, OG1 just moves a token to place
end FI.

In the stochastic fault injection mode, the probability of SEU occurrence q

is read from a simulation parameter. One case of activity stoch inj selects, with
probability q, gate SEU occurrence, which chooses randomly one fault. A fault
is defined by a component identifier, and additionally by an input configuration
if the component is a LUT, or by a routing fault identifier. Array L (Section 5.4)

18

Figure 11: The SystemManager SAN model.

or the fault propagation matrix P are then updated accordingly, and the number
of injected faults is increased. No fault is injected if the predetermined number
of faults (MAX SEUS) has been reached. The other case of activity stoch inj,
selected with probability 1− q, simply skips fault injection.

5.5.2 The SystemManager Model

The SystemManager SAN model (shown in Fig. 11) orchestrates the execution
of the simulation process by co-ordinating the interactions between the various
submodules of the simulator. The System manager starts the execution of the
FaultInjector through the place named start FI. Then the System manager waits
for the termination of the FaultInjector, notified to the System manager trough
the place end FI. A similar mechanism is used to interact with the InputSetup
(start IS, end IS places), the CombinationalElements (start CE, end CE places)
and the SequentialElements (start SE, end SE places).

Place cycle start in Fig. 11 enables the simulation of one clock cycle. De-
pending on the value of the STOCHASTIC INJ and MAX SEUS parameters,
transition t1 starts the FaultInjector, then the InputSetup module is activated.

After InputSetup has generated the input vector for the current clock cycle,
the System manager enables the CombinationalElements and then the Sequen-
tialElements models.

CombinationalElements is repeatedly activated by transition t4 (through the
output function implemented in gate OG5) until the signal values at the input
of the combinational components are stable.

Transition t5 is enabled when the clock cycle terminates. The output gate
OG6 checks if the current simulation run must terminate or a next simulation
step must be enabled, depending on the conditions required in each simulation
mode.

6 Measurements

The simulator has been used to evaluate different properties. The failure prob-
ability of a circuit is the fraction of simulation runs in which a faulty output
is produced, assuming known fault probabilities. In order to evaluate failure

19

probability, random input vectors are generated according to specified signal
probabilities of the input, faults are injected according to specified fault prob-
abilities, and at each clock a reward function returns 1 if at least one output
value is in the set {0f , 1f}.

The fault observability analysis consists in studying the propagation of faults
to the output of the system, and can be evaluated as the fraction of system fail-
ures observed in a series of simulation runs over the total number of injectable
faults in the configuration bits. In each simulation run a test pattern is stochasti-
cally generated, and at the end of the simulation the list of applied test patterns
and associated discovered faults is available. From this list a set of test patterns
able to detect all the observed faults can be obtained.

Moreover, regardless of the type of fault injection, the simulator allows er-
ror propagation and fault activation to be estimated. The error propagability
analysis consists in measuring the fraction of simulation runs in which at least
one flip-flop in the system stores a faulty value, meaning that the fault has
been propagated from the fault location to at least one memory element. The
fault activability analysis consists in measuring the fraction of simulation runs
in which the component affected by the fault produces an incorrect value.

The simulator can be easily extended by adding new measures, in order
to analyze different dependability-related properties. For example, in [6], the
simulator was extended in order to estimate the probability of occurrence of a
subclass of failures, called catastrophic failures, that lead the considered system
(the battery management system of an electric car) to a dangerous working
condition. Further, the simulator has been used in [12] to compute signal prob-
ability, computed as the fraction of clock cycles in which a given signal is high,
and transition density, computed as the fraction of clock cycles in which a signal
makes a transition. Finally, in [13], the simulator was used to assess the fault
coverage of test patterns produced by a genetic algorithm-based automatic test
pattern generation environment.

6.1 Reward Functions

Reward functions are used in Möbius to collect data during the simulation.
In particular, in order to compute the total number of failures observed at
the primary outputs, the performance variable sys failures, with the reward
function shown in Figure 12, is defined. This function checks, at each clock
cycle, if a faulty value is present at an output pin and returns 1 or 0 accordingly.
The Möbius-generated code accumulates the values returned by the function
in the associated sys failures performance variable, thus counting the number
of system failures. The function is executed whenever the marking changes,
throughout the simulation. Since the reward function must check for failures
only once per clock cycle, the check is made only when all the sequential elements
are enabled, which happens exactly once per cycle. This condition holds when
all the elements of start SE have the value 1 and it is implemented by function
check cycle.

Similarly, we calculate the probability of a fault to be activated and to

20

double sys failures rf()
{ if (check cycle())

return check failures();
else return 0;

}
bool check cycle()
{ for (i = 0;

i < System Manager->start SE->length(); i++)
if (System Manager->start SE->Index(i) == 0)

return false;
return true;

}
double check failures()
{ for (int i = 0; i < N OUTPUT PINS; i++)

if ((out pin[i] == ZERO F)
|| (out pin[i] == ONE F))

return 1;
return 0;

}

Figure 12: The sys failures rf reward function.

be propagated to flip-flops. In particular, with the sys activation rf reward
function we check whether the output of the faulty component is faulty or
not. Finally, with the sys propagation rf reward function we check whether the
output of at least one flip-flop is faulty or not. These functions are similar in
structure to the one shown in Fig. 12.

Data of interest can also be collected by input and output functions of the
gates in the SAN model. In the deterministic simulation mode, a data structure
log faults is used, where it is reported whether each fault has been activated,
propagated to a flip-flop and propagated to the output of the system. The
output gate OG6 of the SystemManager SAN model checks the output pins and
the internal lines and updates log faults accordingly.

7 Experimental results

This section presents results from three sets of experiments, one to evaluate
the accuracy of the tool, one to show one of its possible applications, and one
to evaluate its applicability to large and complex systems. The first two sets
are based on the simulation of circuits from the ITC’99 benchmark [19], which
provide a diversified set of test cases composed of sequential circuits with a single
clock signal, no tristate buses or internal memories, modeled at the RTL level.
The number of LUTs and flip-flops for the circuits studied in this work range
between 4 and 152 and between 4 and 59, respectively. The VHDL code of the
circuits was synthesized with the Xilinx ISE CAD tool. The target device was
the Xilinx Virtex-II XC2VP30, that was also used to perform fault injection on a

21

Table 2: Characteristics of the benchmarks
Circuit LUTs FFs MUXs IOBs Function

b01 9 5 0 5 Compare serial flows

b02 4 4 0 3 Recognize binary coded

decimal numbers

b03 76 37 0 9 Resource arbiter

b06 9 8 0 9 Interrupt handler

b07 152 51 20 10 Count points on a straight line

b08 40 21 0 14 Find inclusions in sequences

of numbers

b09 53 28 0 3 Serial-to-serial converter

b10 52 24 0 18 Voting system

b11 147 38 14 14 Scramble string with var. cipher

b13 106 59 11 21 Interface to meteo sensors

prototype board. The characteristics of the designs used in the experiments are
shown in Table 2, which reports for each circuit the number of Look-Up Tables
(LUTs), Flip-Flop (FFs), multiplexers, Input and Output buffers (IOBs), and
a synthetic description of the circuit’s purpose. The computer used for the
experiments was equipped with an Intel Core i5 (QuadCore) 2.67 GHz, 256 KB
L1 Cache, 1 MB L2 Cache, 8MB L3 Cache, 4 GB RAM.

Table 3 shows the number Fl of faults in LUTs and buffers and the results
of the analysis performed with E 2STAR on the considered circuits, i.e., the
number Fr of SEUs affecting configuration bits for routing resources identified
by the tool, and the number of affected nodes classified by logical effect: Stuck-
at-0, Stuck-at-1, Wired-And, Wired-Mix, and Bridge. Wired-Or effects were
not observed. As previously discussed (Section 3.2), the number of propagation
points per SEU in the configuration bits controlling the routing structure is
much higher than the actual number of SEUs.

In the third set of experiments, the miniMIPS RISC processor, synthesized
for the Xilinx Virtex 6 device family, has been studied.

7.1 Validation of ASSESS

Each circuit was simulated by applying 10000 randomly generated test vectors
and performing an exhaustive deterministic fault injection. For each circuit,
the same test vectors and faults were also applied to its prototype on the fault
injection board.

The fault injection setup is the following: A test manager running on the host
computer reads the lists of faults and test patterns, builds the faulty bitstreams,
loads each of them onto the FPGA and starts the execution of the device driver,
a control circuit that feeds the test patterns to the implemented circuit and

22

Table 3: Effects of SEUs
Circuit Fl Fr SA0 SA1 W-AND W-Mix Bridge

b01 129 547 708 2,944 5 7 0

b02 55 304 118 339 5 7 102

b03 963 5,910 8,105 21,661 1,423 1,431 2,320

b06 113 566 372 790 0 18 305

b07 1,730 10,431 18,331 47,762 4,085 3,911 4,739

b08 518 2,689 3,074 8,061 464 496 1,217

b09 695 3,872 6,569 15,948 567 512 1,908

b10 678 3,942 4,603 10,727 482 692 1,498

b11 1,790 10,104 14,059 35,749 3,537 3,536 4,480

b13 1,237 7,203 10,390 27,720 1,143 1,387 3,602

reports the results to the test manager, which compares them with the expected
results obtained from a golden copy.

Table 4 shows the two sets of results: The total number Ft of faults (in
LUTs, buffers, and routing elements) and, for both sets, the number of detected
faults (Dsim for simulation and Dfi for fault injection) and the fault observability
(Osim and Ofi).

The comparison between columns Dsim and Dfi shows that the proposed
simulation method can accurately reproduce the effects of SEUs affecting any
configuration bit of an SRAM-based FPGA system. In particular, the compar-
ison with results obtained by fault injection shows that our simulator has an
error ranging between 0.0% and 0.5% for this benchmark (0.1% on average).

In order to show the accuracy of ASSESS and of the adopted fault models,
a modified version of the ASSESS tool, built with the same architecture but
adopting the stuck-at model currently assumed in commercial and academic
tools, was used to simulate the above mentioned benchmark (Table 5) applying
the same input patterns used in the previous experiment. The simulations
produced the number Dsa of detected failures with respect to the number Fsa

of possible stuck-at faults, at zero and at one, in LUTs and buffers, giving the
fault observabilities (Osa) reported in the table.

Results from this experiment show that traditional fault simulators adopting
the stuck-at fault model obtain much different fault detection values than AS-
SESS. In particular, considering the fault detection values achieved with fault
injection as a reference, it can be observed that the error obtained with stuck-at
fault simulators, which ranges between 0.0% and 57.1% (15.2% on average), is
much higher than the error obtained using ASSESS.

23

Table 4: Comparison between simulation and fault injection

Circuit Ft Dsim Dfi Osim (%) Ofi (%)

b01 676 676 676 100.0 100.0

b02 359 352 350 98.0 97.5

b03 6,873 3,285 3,278 47.8 47.7

b06 679 670 670 98.7 98.7

b07 12,161 927 927 7.6 7.6

b08 3,207 157 157 4.9 4.9

b09 4,567 2,081 2,080 45.5 45.5

b10 4,620 3,548 3,545 76.8 76.7

b11 11,894 7,521 7,519 63.2 63.2

b13 8,440 2,517 2,515 29.8 29.7

Table 5: Estimated SEU Observability, Stuck-at Model

Circuit Fsa Dsa Osa

b01 28 28 100.0%

b02 24 24 100.0%

b03 170 78 45.9%

b06 36 36 100.0%

b07 324 17 5.1%

b08 108 23 2.1%

b09 112 42 37.6%

b10 140 107 76.2%

b11 322 259 80.5%

b13 254 69 27.1%

7.2 Examples of ASSESS Applications

In the following, we show how ASSESS can be used to measure dependability-
related properties, including some that could not be measured with fault injec-
tion or radiation experiments. The failure, fault activation and error propaga-
tion probabilities of three circuits from the above mentioned benchmark were
measured as functions of operating time, in a single-fault and in an accumulated-
faults scenario, with realistic assumptions on SEU rate and clock frequency.

Circuits b08, b09, and b10 were simulated with stochastic fault injection
for operating times ranging from 100,000 to 1,000,000 clock cycles, in steps
of 100,000, using randomly generated test vectors. The SEU rate of 82 s−1

reported in [3] and a working frequency of 1 MHz were assumed, resulting in
an SEU rate q of 8, 2 · 10−5 per clock cycle, and in operating times between

24

100 milliseconds and 1 second. The Möbius tool was configured to compute the
performance variables with a confidence level of 0.95 and a confidence interval
of 0.1, which required between 1,000 and 5,000 simulation runs for each value of
operating time. We chose the 0.95 confidence level and 0.1 confidence interval
since they allowed us to obtain results with a 5% average error in a reasonable
time. Nevertheless, these parameters can be relaxed or strengthened in order
to speed up the analysis or obtain more accurate results, respectively.

For each of the three properties both single fault analysis, in which just one
SEU was injected in the system during the operating time, and fault accumula-
tion analysis, in which multiple SEUs were injected in the system, were carried
out. Fig.s 13(a), 13(b), and 13(c) refer to the single fault scenario and show,
for each value of operating time, the probability that a fault is activated, the
probability that an error reaches a flip-flop and that the fault corrupts the out-
put of the system respectively. Similarly, Fig.s 14(a), 14(b), and 14(c) show the
same properties in the fault accumulation scenario.

The analysis of fault activation and fault propagation gives designers a
deeper knowledge of the system from the point of view of dependability. For ex-
ample, knowing which faults have been activated and how they propagate in the
circuit could help designers in the generation of test patterns much more than
the analysis of the system at the input/output level. Moreover, knowing which
parts of the circuit are more prone to fault activation and propagation could
help designers in the development of selective fault tolerance and hardening tech-
niques. Finally, knowledge of the probability of an error to be propagated to a
flip-flop could be used to implement more efficient reset and state restoration
mechanisms to be used in conjunction with configuration memory scrubbing to
recover from faulty states.

Failure probability and fault observability are useful when the focus is on
studying the robustness of the system to faults: Knowing the working frequency
of the system and the SEU rate, the mean time to failure can be estimated, help-
ing designers to determine the optimal scrubbing frequency for a self-correcting
system. Moreover, analyzing the failure probability of the system could be used
to assess the effectiveness of fault tolerance techniques. Finally, the fault cov-
erage achieved by a set of test patterns can be assessed through analysis of the
system’s fault observability.

In order to better highlight how ASSESS could be used to get a deeper
insight into the internal behavior of the circuit in the presence of SEUs, we
report in Fig. 15 the probability of SEUs of being propagated to flip-flop 0,
flip-flop 1, output pin 0, and output pin 1 in circuit b08.

The computations to perform the stochastic fault injection experiments
(shown in Fig.s 13 to 15) took about ten minutes for each point of the plots.

The most time-demanding analysis was the validation experiment. The ex-
haustive deterministic fault injection simulations took between 2 and 5 minutes
for the small circuits (b01, b02 and b06), about one hour for the medium sized
ones (b03, b08 and b09), and between one and five days for the largest circuits
(b07, b11 and b13). This was expected since, as discussed in Section 3, the
number of SEUs (both in the logic and in the routing structure) that must be

25

Table 6: Characteristics of the miniMIPS RISC processor

Functional Unit LUTs FFs

Register Bank 1,745 992

BUS Controller 38 1

Instruction Decoding 410 207

Instruction Extraction 66 66

Execution + ALU 953 238

Memory Access 108 107

Address Calculation 97 32

Branch Prediction 1,780 564

Bypass Unit 168 0

Coprocessor System 326 129

total 5691 2336

simulated with such an accurate fault model is very large.
The bounds on the scalability of the tool strongly depend on the number of

faults to be simulated. Taking a 6-input LUT as an example, with the stuck-at
fault model only two faults have to be considered (the stuck-at-0 and stuck-
at-1 on the LUT output, while the stuck-at faults on its inputs are analyzed
when simulating the outputs of the upstream LUTs), while, with the SEU fault
model considered in the paper, 64 SEUs must be simulated (one for each of the
26 configuration bits of the LUT).

7.3 The miniMIPS RISC processor

In order to show how ASSESS can be used to analyze large circuits, we per-
formed a set of experiments on the miniMIPS RISC processor [1]. Moreover, in
order to show that ASSESS can be applied to systems synthesized for any FPGA
device family, we synthesized the miniMIPS processor for the Virtex 6 family.
The synthesized circuit is composed of 5691 LUTs, 2336 flip-flops, and 138 I/O
buffers. Table 6 reports the characteristics of the miniMIPS RISC processor.

The number Fl of faults in LUTs and buffers, the number Fr of SEUs in
configuration bits for routing resources, and the number of affected nodes clas-
sified by logical effect, are shown in Table 7, which summarizes the analysis
performed with the E 2STAR tool.

In Fig. 16, we show the probability that some components of the processor
propagate a faulty value to their outputs after the occurrence of 1 to 10 SEUs.
These experiments were carried out by simulating 10000 randomly generated
test patterns. The analysis took about half an hour for each point.

Finally, a deterministic SEU injection was performed, using 10000 previously
generated test patterns on four functional units of the processor: In this way
we also show that ASSESS can be used to simulate deterministically generated

26

Table 7: Effects of SEUs in the miniMIPS Processor
W-A: Wired-AND; W-B: Wired-Mix; B: Bridge

Circuit Fl Fr SA0 SA1 W-A W-M B

Register Bank 24,430 123,808 160,323 453,021 421 390 93

BUS Controller 531 2,699 3,832 6,492 0 3 0

Inst. Decoding 5,744 30,135 51,239 52,532 34 31 12

Instr. Extraction 925 4,685 6,097 6,130 3 9 0

Execution + ALU 13,534 68,632 87,562 88,532 81 89 3

Memory Access 1,523 7,662 9,932 15,032 7 18 1

Addr. Calculation 1,453 6,882 8,907 11,945 5 4 0

Branch Prediction 24,332 126,294 163,462 249,993 90 16 8

Bypass Unit 2,491 11,914 15,353 15,843 13 3 0

Coprocessor 4,564 23,129 31,032 58,302 49 53 11

Table 8: Results from deterministic SEU injection on some functional units of
the miniMIPS processor

Functional Unit #Clock Cycles Inj. SEUs [%] Det. SEUs [%]

Instruction Extraction 10,000 100% 8.91%

Memory Access 10,000 100% 25.70%

Address Calculation 10,000 100% 40.42%

Bypass Unit 10,000 100% 36.92%

input patterns, in addition to stochastically generated ones. The fraction of
detected faults is reported in Table 8.

8 Conclusions and Further Work

This paper has presented ASSESS, a digital circuit simulator designed for the
study of soft errors in the configuration memory of SRAM-based FPGAs. A
detailed model of the circuits and of the logical effects of SEUs in their configu-
ration memory has been developed around a formal model based on Stochastic
Activity Networks. The fault simulator is proposed as an additional tool to be
used during the design of an FPGA-based system, in order to get to the final
fault injection or radiation experiment with a deeper knowledge of the system’s
behavior in the presence of faults.

The accuracy of the dependability measures computed with the developed
SAN-based simulator has been validated against results obtained with a fault
injection board.

Currently available commercial and academic fault simulators model faults
at a much coarser detail level than the one adopted in ASSESS, which achieves

27

significantly more accurate results in terms of fault observability and failure
probability estimation.

The simulator can be used to evaluate a number of dependability-related
properties, using various policies to generate faults and test vectors. In par-
ticular, both faults and test vectors can be generated stochastically according
to user-supplied probabilities, or deterministically. Simulations are configured
through a wide range of parameters characterizing the simulated circuit and the
statistical properties of the sought results.

As future work we plan to extend the simulator in order to consider a larger
spectrum of faults, such as hard errors and multiple cell upsets. Further, ab-
straction techniques will be studied to improve the scalability of the simulator,
through the generation of a reduced model of the states of the system.

References

[1] miniMips overview page at OpenCores. [Online] Available: http://

opencores.org/project,minimips,overview

[2] Miguel Angel Aguirre, Jonathan Noel Tombs, Vicente Baena, Fernando
Muñoz, Antonio Jesus Torralba, A. Fernández-León, and F. Tortosa-López.
Ft-Unshades: a New System for Seu Injection, Analysis and Diagnostics
Over Post Synthesis Netlist. In Proc. of the 8th Military and Aerospace
Programmable Logic Devices Int. Conf. (MAPLD’05), 2005.

[3] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, A. Marmo, S. Pastore,
and G. R. Sechi. A Tool for Injecting SEU-Like Faults into the Configu-
ration Control Mechanism of Xilinx Virtex FPGAs. In Proc. 18th IEEE
Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT ’03), pages
71–78, Washington, DC, USA, 2003. IEEE Computer Society.

[4] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, and G.R.
Sechi. Evaluation of Single Event Upset Mitigation Schemes for SRAM
based FPGAs using the FLIPPER Fault Injection Platform. In Proc. 22nd
IEEE Int. Symp. Defect and Fault-Tolerance in VLSI Systems (DFT ’07),
pages 105–113, Sept. 2007.

[5] Ghazanfar Asadi and Mehdi B. Tahoori. An analytical Approach for Soft
Error Rate Estimation of SRAM-based FPGAs. In Proc. Military and
Aerospace Applications of Programmable Logic Devices (MAPLD), pages
2991–2994, 2004.

[6] F. Baronti, C. Bernardeschi, L. Cassano, A. Domenici, R. Roncella, and
R. Saletti. Mitigation Techniques of Single Event Upsets in the Control
Logic of a Charge Equalizer for Li-ion Batteries. In 39th Annu. Conf. of
the IEEE Industrial Electronics Society (IECON 2013), pages 6756–6761.
IEEE, 2013.

28

[7] R.C. Baumann. Radiation-induced Soft Errors in Advanced Semiconductor
Technologies. IEEE Trans. Device Mater. Rel., 5(3):305–316, Sept. 2005.

[8] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Ceschia,
A. Paccagnella, M. Rebaudengo, M.S. Reorda, M. Violante, and P. Zam-
bolin. Evaluating the effects of SEUs affecting the configuration memory of
an SRAM-based FPGA. In Design, Automation and Test in Europe Conf.
and Exhibition, 2004, volume 1, pages 584–589, Feb. 2004.

[9] M. Bellato, M. Ceschia, M. Menichelli, A. Papi, J. Wyss, and
A. Paccagnella. Ion beam testing of SRAM-based FPGA’s. In Proc. 6th
European Conf. on Radiation and Its Effects on Components and Systems,
pages 474–480, Sept. 2001.

[10] C. Bernardeschi, L. Cassano, and A. Domenici. Failure Probability and
Fault Observability of SRAM-FPGA Systems. In Int. Conf. Field Pro-
grammable Logic and Applications (FPL2011), pages 385–388, Sept. 2011.

[11] C. Bernardeschi, L. Cassano, and A. Domenici. Failure Probability of
SRAM-FPGA Systems with Stochastic Activity Networks. In Proc. 14th
IEEE Symp. on Design and Diagnostics of Electronic Circuits and Systems,
Apr. 2011.

[12] C. Bernardeschi, L. Cassano, A. Domenici, and P. Masci. A Tool for Signal
Probability Analysis of FPGA-Based Systems. In Proc. 2nd Int. Conf.
Computational Logics, Algebras, Programming, Tools, and Benchmarking,
2011.

[13] Cinzia Bernardeschi, Luca Cassano, Mario G.C.A. Cimino, and Andrea
Domenici. GABES: A genetic algorithm based environment for SEU testing
in SRAM-FPGAs. J. of Systems Architecture, 59(10, Part D):1383–1254,
2013.

[14] Cinzia Bernardeschi, Luca Cassano, Andrea Domenici, and Luca Sterpone.
Accurate Simulation of SEUs in the Configuration Memory of SRAM-based
FPGAs. In IEEE Int. Symp. Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT 2012), pages 115–120, Oct. 2012.

[15] W. Calienes Bartra and R. Reis. SET and SEU simulation toolkit for Lab-
VIEW. In 12th European Conf. Radiation and Its Effects on Components
and Systems (RADECS2011), pages 829–836, Sept. 2011.

[16] Carl Carmichael, Earl Fuller, Joe Fabula, and Fernanda D. Lima. Pro-
ton testing of SEU mitigation methods for the Virtex FPGA. In Proc.
IEEE Microelectronics Reliability and Qualification Workshop, Pasadena,
CA, Dec. 2001.

[17] M. Ceschia, M. Bellato, A. Paccagnella, S. C. Lee, C. Wan, A. Kaminski,
M. Menichelli, A. Papi, and J. Wyss. Ion beam testing of Altera Apex

29

FPGAs. In Proc. 2002 IEEE Radiation Effects Data Workshop, pages 45–
50, July 2002.

[18] G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi, J. M. Doyle,
W. H. Sanders, and P. G. Webster. The Möbius modeling tool. In 9th Int.
Workshop on Petri Nets and Performance Models, pages 241–250, Aachen,
Germany, Sept. 2001. IEEE Computer Society Press.

[19] F. Corno, M. Sonza Reorda, and G. Squillero. RT-Level ITC’99 Bench-
marks and First ATPG Results. IEEE Des. Test, 17:44–53, July 2000.

[20] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem
Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G. Webster.
The Möbius framework and its implementation. IEEE Trans. Softw. Eng.,
28(10):956–969, Oct. 2002.

[21] Earl Fuller, Michael Caffrey, Phil Blain, Carl Carmicheal, Noor Khalsa,
and Anthony Salazar. Radiation test results of the Virtex FPGA and ZBT
SRAM for space based reconfigurable computing. In Proc. 2nd Military
and Aerospace Programmable Logic Devices Int. Conf. (MAPLD’99), 1999.

[22] Earl Fuller, Michael Caffrey, Anthony Salazar, Carl Carmichael, and Joe
Fabula. Radiation Testing Update, SEU Mitigation, and Availability
Analysis of the Virtex FPGA for Space Reconfigurable Computing. In
Proc. 3rd Military and Aerospace Programmable Logic Devices Int. Conf.
(MAPLD’00), 2000.

[23] P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson, P. Sundararajan,
and C. Patterson. Consequences and Categories of SRAM FPGA Config-
uration SEUs. In Proc. 6th Military and Aerospace Applications of Pro-
grammable Logic Devices (MAPLD’03), pages 1–9, Sept. 2003.

[24] Daniel González Gutiérrez. Single event upsets simulation tool functional
description. Technical Report TEC-EDM/DGG-SST2, ESA-ESTEC, 2000.

[25] O. Heron, T. Arnaout, and H.-J. Wunderlich. On the reliability evaluation
of SRAM-based FPGA designs. In Proc. Int. Conf. Field Programmable
Logic and Applications (FPL’05), pages 403–408, Aug. 2005.

[26] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA Architecture: Sur-
vey and Challenges. Found. Trends Electron. Des. Autom., 2(2):135–253,
February 2008.

[27] Mentor Graphics Corporation. ModelSim SE Reference Manual, 2008.

[28] Ali Movaghar and J. F. Meyer. Performability modelling with stochastic
activity networks. In Real-Time Systems Symp., Austin, TX, USA, pages
215–224, 1984.

30

[29] M. Rebaudengo, M. Sonza Reorda, and M. Violante. A new functional
fault model for FPGA application-oriented testing. In Proc. 17th IEEE
Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT 2002), pages
372–380, 2002.

[30] J. Paul Roth. Diagnosis of Automata Failures: A Calculus and a Method.
IBM J. of Research and Development, 10(4):278 –291, July 1966.

[31] William H. Sanders and John F. Meyer. A unified approach for specifying
measures of performance, dependability, and performability. In Algirdas
Avižienis, Herman Kopetz, and Jean-Claude Laprie, editors, Dependable
Computing for Critical Applications, pages 215–237. Springer-Verlag Hei-
delberg, 1991.

[32] William H. Sanders and John F. Meyer. Stochastic activity networks: for-
mal definitions and concepts. In Lectures on formal methods and perfor-
mance analysis: first EEF/Euro summer school on trends in computer sci-
ence, pages 315–343. Springer-Verlag New York, Inc., New York, NY, USA,
2002.

[33] S. Schulz, G. Beltrame, and D. Merodio-Codinachs. Smart behavioral
netlist simulation for SEU protection verification. In 9th European Conf.
Radiation and Its Effects on Components and Systems (RADECS2008),
pages 406–411, Sept. 2008.

[34] L. Sterpone and M. Violante. A new analytical approach to estimate the
effects of SEUs in TMR architectures implemented through SRAM-based
FPGAs. IEEE Trans. Nucl. Sci., 52(6):2217–2223, Dec. 2005.

[35] L. Sterpone and M. Violante. Analysis of the robustness of the TMR
architecture in SRAM-based FPGAs. IEEE Trans. Nucl. Sci., 52(5):1545–
1549, Oct. 2005.

[36] M. Straka, J. Kastil, and Z. Kotasek. SEU Simulation Framework for Xilinx
FPGA: First Step towards Testing Fault Tolerant Systems. In Proc. 14th
Euromicro Conf. Digital System Design (DSD2011), pages 223–230, Sept.
2011.

[37] M. Violante, N. Battezzati, and L. Sterpone. Reconfigurable Field Pro-
grammable Gate Arrays for Mission-Critical Applications. Springer Science
& Business Media, 2011.

[38] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham. The
reliability of FPGA circuit designs in the presence of radiation induced
configuration upsets. In Proc. 11th Ann. IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM 2003), pages 133–142, Apr. 2003.

31

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

S
in

gl
e

S
E

U
 A

ct
iv

at
io

n

Simulation time (ms)

b08

b09

b10

(a) Fault activation.

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

S
in

gl
e

S
E

U
 P

ro
pa

ga
tio

n
to

 fl
ip

-f
lo

ps

Simulation time (ms)

b08

b09

b10

(b) Error propagation to flip-flops.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

S
in

gl
e

S
E

U
 F

ai
lu

re
 P

ro
ba

bi
lit

y

Simulation time (ms)

b08

b09

b10

(c) Failure probability.

Figure 13: Results from fault simulation in the single SEU scenario.

32

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

M
ul

tip
le

 S
E

U
 A

ct
iv

at
io

n

Simulation time (ms)

b08

b09

b10

(a) Fault activation.

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

M
ul

tip
le

 S
E

U
 P

ro
pa

ga
tio

n
to

 fl
ip

-f
lo

ps

Simulation time (ms)

b08

b09

b10

(b) Error propagation to flip-flops.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

M
ul

tip
le

 S
E

U
 F

ai
lu

re
 P

ro
ba

bi
lit

y

Simulation time (ms)

b08

b09

b10

(c) Failure probability.

Figure 14: Results from fault simulation in the SEU accumulation scenario.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
E

U
 p

ro
pa

ga
bi

lit
y

Number of injected SEUs

ff0

ff1

out0

out1

Figure 15: Probability of an SEU of being propagated to flip-flops 0 and 1 and
to output pins 0 and 1 in circuit b08.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

F
ai

lu
re

 P
ro

ba
bi

lit
y

Number of injected SEUs

AddressCalculationStage
BypassUnit

InstructionExtractionStage
MemoryAccessStage

Figure 16: Probability of four miniMIPS processor components of propagating
a faulty value.

34

