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Abstract We analyse the dynamics of a Cournot duopoly with heterogeneous players to 
investigate the effects of micro-founded differentiated products demand. The present study, 
which indeed modifies and extends Zhang et al. (2007) (Zhang, J., Da, Q., Wang, Y., 2007. 
Analysis of nonlinear duopoly game with heterogeneous players. Economic Modelling 24, 
138–148) and Tramontana, F., (2010) (Tramontana, F., 2010. Heterogeneous duopoly with 
isoelastic demand function. Economic Modelling 27, 350–357), reveals that a higher degree of 
product differentiation may destabilise the market equilibrium. Moreover, we show that a 
cascade of flip bifurcations may lead to periodic cycles and ultimately chaotic behaviours. 
Since a higher degree of product differentiation implies weaker competition, then a 
theoretical implication of our findings, that also constitute a policy warning, is that a fiercer 
(weaker) competition tends to stabilise (destabilise) the unique positive Cournot-Nash 
equilibrium of the economy. 
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1. Introduction 
 
In this paper we analyse the dynamics of a Cournot duopoly within the framework developed 
by the recent literature (see, Bischi et al. 2010) that studies the dynamics of oligopoly models 
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based on expectations different from the simple naïve formation mechanism implicit in the 
original model by Cournot (1838). In particular, we consider differentiated products and 
focus on the dynamic role played by the degree of product differentiation (see the original 
contributions by Hotelling, 1929, and Chamberlin, 1933, for the notion of differentiated goods 
and services). 
    While Cournot (1838) considers a duopoly with a single homogenous product, more 
recently the economic literature offered duopoly models with differentiated products, see for 
instance, the works by Dixit (1979) and Singh and Vives (1984), which allow goods and 
services to be substitutes or complements, in models with a standard linear demand 
structure. 
    As is known, the forecasts as regards the behaviour of the competitor in a duopoly game are 
crucial in order to make the optimal (rational) output choice. The pioneering work by Cournot 
(1838) introduced the first formal theory of oligopoly in economics, and treated the case with 
naive expectations, so that in every step each player assumes the last values taken by 
competitors without any forecasts about their future reactions. 
    Recently, several works have considered more realistic mechanisms through which players 
form their expectations on the decisions of the competitors, and have shown that the Cournot 
model may lead to periodic cycles and deterministic chaos. While several articles (see, e.g., 
Kopel, 1996; Agiza, 1999); Bischi and Kopel, 2001; Agliari et al., 2005, 2006) assume that both 
duopolists adopt the same decision mechanism as regards expectation formation (i.e. the case 
of homogeneous players), another branch of literature exists where firms are assumed to 
have heterogeneous expectations (Leonard and Nishimura, 1999; Den Haan, 2001; Agiza et al., 
2002; Agiza and Elsadany, 2003, 2004; Zhang et al., 2007; Tramontana, 2010). In particular, 
the present paper is strictly related to Zhang et al. (2007) and Tramontana (2010) and 
analyses a Cournot duopoly game with heterogeneous players. However, in contrast with 
these two works, which consider a market for single homogenous product, we introduce a 
micro-economic founded demand of differentiated goods and services, which may be 
substitutes or complements between them. Other differences that distinguish the present 
study with those of the existing literature are the following: (i) production costs are assumed, 
as in Tramontana (2010), to be linear to simplify the analysis, while Zhang et al. (2007) 
assume non-linear (quadratic) costs, and (ii) a system of linear demand, as in Zhang et al. 
(2007), exists, while Tramontana (2010) assumes, following Puu (1991), a non-linear 
(isoelastic) demand system. 
    The horizontal differentiated duopoly considered here introduces microeconomic 
foundations proposed, among many others, by Singh and Vives (1984). Note that while the 
investigation of the static Cournot differentiated duopoly has produced a huge amount of 
works (see Footnote 1), less attention has been paid to the study of the dynamics in such a 
model. We aim therefore to fill this gap within the literature on nonlinear dynamic oligopolies. 
    The main result of the present analysis that an increase in product differentiation may 
destabilise the unique Cournot-Nash equilibrium: despite the rise in profits that an increase in 
the extent of product differentiation can lead to, it may also cause undesirable and 
unpredictable fluctuations, while contributing to reduce the market size. Moreover, from a 
mathematical point of view, we show that the destabilisation of the fixed point can occur 
through a flip bifurcation and also that a cascade of flip bifurcations may lead to periodic 
cycles and deterministic chaos. 
    The paper is organised as follows. Section 2 develops the model with micro-foundations of 
the differentiated products demand and presents the two-dimensional dynamic system of a 
duopoly game with heterogeneous expectations (bounded rational and naïve). Section 3 
studies both the steady state and dynamics of the Cournot differentiated duopoly, showing 
explicit parametric conditions of the existence, local stability and bifurcation of the market 
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equilibrium. Section 4 presents numerical simulations of the analytical findings, while also 
showing that complex behaviours through standard numerical tools (i.e., bifurcation 
diagrams, Lyapunov exponents, shape of the strange attractors and basins of attraction, 
sensitive dependence on initial conditions and fractal dimension of the chaotic attractor). 
Section 5 concludes. 
 
2. The model 
 
Since in the present study we concentrate on the effects on stability of horizontal product 
differentiation in a Cournot duopoly, it is of importance to set up the microeconomic 
foundations of the differentiated commodity setting and clarify the economic reasons why we 
assume specific demand and cost functions. 
    We assume the existence of an economy with two types of agents: firms and consumers. 
There exists a duopolistic sector with two firms, firm 1 and firm 2 , and every firm i  produces 
differentiated goods and services, whose price and quantity are given by ip  and iq , 

respectively, with  2,1i . In addition to the duopolistic sector, a competitive sector that 
produces the numeraire good y  exists. 
    We also assume the existence of a continuum of identical consumers which have 
preferences towards q  and y  represented by a separable utility function  yqV ; , which is 
linear in the numeraire good. The representative consumer maximises     yqUyqV ;  with 
respect to quantities subject to the budget constraint Myqpqp  2211 , where  21,qqq  , 

1q  and 2q  are non-negative and M  denotes the consumer’s exogenously given income. The 
utility function  qU  is assumed to be continuously differentiable and satisfies the standard 
properties required in consumer theory (see, e.g., Singh and Vives, 1984, pp. 551–552). Since 
 yqV ;  is separable and linear in y , there are no income effects on the duopolistic sector. This 

implies that for a large enough level of income, the representative consumer’s optimisation 
problem can be reduced to choose iq  to maximise   MqpqpqU  2211 . Utility 
maximization, therefore, yields the inverse demand functions (i.e., the price of good i  as a 

function of quantities):  qP
q

U
p i

i
i 




 , for 0iq  and  2,1i . Inverting the inverse demand 

system above gives the direct demand functions (i.e., the quantity of good i  as a function of 
prices):  pQq ii  , where  21, ppp   and 1p  and 2p  are non-negative. 
    In order to have explicit demand functions for the goods and services of variety 1 and 2 , a 
specific utility function should be assumed. We consider a simplified version of the model 
proposed by Singh and Vives (1984), which is usually adopted to represent a micro-founded 
demand system of differentiated products. On the demand side of the market, the 
representative consumer’s utility is a quadratic function of two differentiated products, 1q  
and 2q , and a linear function of a numeraire good, y .1 
    Therefore, we assume that preferences of the representative consumer over q  are given by: 

    jijjiijjiiji qqdqqqaqaqqU 2
2

1
, 22   , (1) 

                                                
1 The quadratic utility function is the usual specification of preferences proposed by Dixit (1979) and 
subsequently used, amongst many others, by Singh and Vives (1984), Qiu (1997), Häckner (2000), Correa-López 
and Naylor (2004), Gosh and Mitra (2010), Fanti and Meccheri (2011). The important feature of such a utility 
function is that it generates a system of linear demand functions. 
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where 11  d  represents the degree of horizontal product differentiation. More in detail, if 
0d , then goods and services of variety 1 and 2  are independent. This implies that each firm 

behaves as if it were a monopolist in its own market; if 1d , then products 1 and 2  are 
perfect substitutes or, alternatively, homogeneous; 10  d  describes the case of imperfect 
substitutability between goods. The degree of substitutability increases, or equivalently, the 
extent of product differentiation decreases as the parameter d  raises; a negative value of d  
instead implies that goods 1 and 2  are complements, while 1d  reflects the case of perfect 
complementarity. 
    If ji aa  , then a demand asymmetry between firms i  and j  exists, which can be 

interpreted as a quality difference between products supplied by the two firms, as in Häckner 
(2000). This asymmetry implies a vertical (quality) differentiation between the two products. 
Since we are interested to exclusively analyse the dynamic role played by the degree of 
horizontal differentiation (i.e., the parameter d ) we assume that aaa ji  . Furthermore, we 

normalise the coefficients of the squared terms in the utility function (i.e., the slopes of the 
inverse demand functions) to unity, that is 1 ji  . Therefore, the present utility 

specification slightly differs from that adopted by Singh and Vives (1984), because the 
notation has been simplified without loss of generality.2 
    The inverse demand functions of products of variety 1 and 2  (as a function of quantities) 
that come from the maximisation by the representative consumer of Eq. (1) subject to the 
budget constraint Myqpqp  2211 , are given by: 
   21211 , qdqaqqp  , (2.1) 
   12212 , qdqaqqp  . (2.2) 
    Following Correa-López and Naylor (2004) and Fanti and Meccheri (2011), we assume that 
firm i  produces output of variety i  through the following production function with constant 
(marginal) returns to labour: ii Lq  , where iL  represents the labour force employed by the 
i th firm. Firms face the same (constant) average and marginal wage cost 0w  for every unit 
of output produced. Therefore, the firm i ’s cost function is linear and described by: 
   iiii qwLwqC  . (4) 
    Profits of firm i  in every period can be written as follows: 
        ijiiiijiijii qwqqpqwqqqpqq  ,,, . (5) 

From the profit maximisation by firm  2,1i , marginal profits are obtained as: 

 
 

wqdqa
q

qq





21
1

211 2
,

, (6.1) 

 
 
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q

qq





12
2

212 2
,

. (6.2) 

    The reaction or best reply functions of firms 1 and 2  are computed as the unique solution of 
Eqs. (6.1) and (6.2) for 1q  and 2q , respectively, and they are given by: 

 
     221

1

211

2

1
0

,
qdwaqq

q

qq





, (7.1) 

 
     112

2

212

2

1
0

,
qdwaqq

q

qq





 (7.2) 

Following Zhang et al. (2007) and Tramontana (2010) (to which we refer for details), we 
assume heterogeneous expectations: i.e., firm 1 ( 2 ) has bounded rational (naïve) 
                                                
2 En passant, we note that this simplification is usual, e.g. Correa-López and Naylor (2004), Gosh and Mitra 
(2010), Fanti and Meccheri (2011). 
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expectations about the quantity to be produced in the future. Therefore, given these types of 
expectations formation mechanisms, the two-dimensional system that characterises the 
dynamics of the economy is the following: 

 



















tt

t

t
ttt

qq

q
qqq

,21,2

,1

,1
,1,11,1




, (8.1) 

where 0  is a coefficient that captures the speed of adjustment of firm 1’s quantity at time 
1t  with respect to a marginal change in profits when 1q  varies at time t . Using Eqs. (7.1), 

(7.2), the two-dimensional system Eq. (8.1) that characterises the dynamics a differentiated 
Cournot duopoly can alternatively be written as follows: 

 
 
















2

2

,1
,21,2

,2,1,1,11,1

t
tt

ttttt

qdwa
qq

wqdqaqqq 
. (8.2) 

    From Eq. (8.1) it can be seen that the degree of horizontal product differentiation, d , plays a 
twofold role on marginal profits of firm 1 and then on the quantity it will produce in the 
future. Indeed, for any 10  d  ( 01  d ), a rise in the absolute value of d , i.e. the degree 
of substitutability (complementarity) increases: (1) directly reduces (increases) the weight of 
the reply of firm 1 because marginal profits reduces (increases) since the degree of 
competition becomes lower (higher), (2) indirectly tends to reduce (increase) the reaction of 
firm 1 through a negative (positive) effect on the production of firm 2 . Definitely, a rise in the 
(absolute value) of d  at time t  has a potentially uncertain effect on the quantity produced by 
the bounded rational firm at time 1t . 
 
3. Local stability analysis of the unique positive Cournot-Nash equilibrium 
 
From an economic point of view we are only interested to the study of the local stability 
properties of the unique positive output equilibrium, which is determined by setting 

1,11,1 qqq tt   and 2,21,2 qqq tt   in (8.2) and solving for (non-negative solutions of) 1q  and 

2q , that is: 

 
d

wa
qqq





2

*
2

*
1

* , (9) 

where aw   should hold to ensure 0* q . 
    The Jacobian matrix evaluated at the equilibrium point (9) is the following: 
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
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




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. (10) 

The trace and determinant of the Jacobian matrix (10) are respectively given by: 

    
d

wad
JJJTrT





2

22
: 2211


. (11) 

    
 d

wad
JJJJJDetD





22

:
2

21122211


, (12) 

so that the characteristic polynomial of (10) is: 
      JJtrG det2   , (13) 

whose discriminant is     JDetJTrQ 4: 2  . 
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    We now study the local stability properties of the Cournot-Nash equilibrium Eq. (9) by 
means of well-known stability conditions for a system in two dimensions with discrete time 
(see, e.g., Medio, 1992; Gandolfo, 2010), which are generically given by: 

 













01:)(

01:)(

01:)(

DHiii

DTTCii

DTFi

. (14) 

    The violation of any single inequality in (15), with the other two being simultaneously 
fulfilled leads to: (i) a flip bifurcation (a real eigenvalue that passes through 1 ) when 0F ; 
(ii) a fold or transcritical bifurcation (a real eigenvalue that passes through 1 ) when 0TC ; 
(iii) a Neimark-Sacker bifurcation (i.e., the modulus of a complex eigenvalue pair that passes 
through 1) when 0H , namely   1JDet  and   2JTr . For the particular case of the 

Jacobian matrix (10), the stability conditions stated in (14) can be written as follows: 
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
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. (15) 

    From (15) it can easily be seen that while conditions (ii) and (iii) are always fulfilled, 
condition (i) can be violated. Therefore, the Cournot-Nash equilibrium *

2
*

1
* qqq   can loose 

stability through neither a transcritical nor Neimark-Sacker bifurcation. The stability 
condition (i) in (15) represents a region F  in the  d,  plane, i.e., the speed of adjustment 
and the degree of horizontal product differentiation, bounded by the economic model 
assumption 0  and 11  d . Therefore, the following equation  d , i.e. the numerator 
of F  in (15), represents a bifurcation curve at which the positive equilibrium point 

*
2

*
1

* qqq   looses stability through a flip (or period-doubling) bifurcation, that is: 

        0244: 2  ddwad  . (16) 
    A simple inspection of Eq. (16) leads to the following remarks. 
 
Remark 1. The bifurcation curve  d  is hump-shaped3 and intersects the horizontal axis at 

KCdd F  :1  and KCdd F  :2 , where 

  
   

 wa

wawa
K

wa
C













122
:,

2
:

22

. (17) 

The fixed point *q  is locally asymptotically stable (   0 d ) when 21
FF ddd   (see Figure 1). 

Moreover, there are no real solutions of  d  for d  when   41.2 wa  (see the Appendix for 
details). 
 
    Therefore, when the combination of the speed of adjustment and the market size4 is fairly 
high, i.e.   41.2 wa  (resp., low, i.e.   8.0 wa ), the Cournot-Nash equilibrium (9) of 
the dynamic system (8.2) is locally unstable (locally asymptotically stable) irrespective of the 
degree of product differentiation d . While within the intermediate range   41.28.0  wa , 

                                                
3 This can be ascertained by looking at the (negative) sign of the coefficient of 2d  in Eq. (16). 
4 Broadly speaking, 0 wa  captures the size of market demand. 
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the degree of product differentiation crucially matters for stability. However, we must 
investigate whether the real solutions (if any) for d  are feasible from an economic point of 
view in such a case. 
    In particular, it is of importance for economics to establish whether the stability region is 
reduced when products of variety 1 and 2  tends to become either substitutes or 
complements (i.e., whether the loss of stability of the market equilibrium may occur only 
through a reduction in the degree of substitutability between products), because the 
preceding mathematical analysis has revealed that the Cournot-Nash equilibrium Eq. (9) 
might occur through either an increase or decrease in the value of the parameter d . 
    In other words, in order to have an interesting economic interpretation of the results, it is 
crucial to know whether and how the bifurcation values 1

Fdd   and 2
Fdd   are included 

between 1  and 1 or not. 
    By using the Budan-Fourier theorem we are able to establish that the introduction of a 
higher differentiation between products has always a clear-cut stability effect, as the following 
proposition claims. 
 
Proposition 1. Let   41.28.0  wa  hold. Then, starting from a stability situation, when the 
parameter d  is reduced (i.e., the degree of product differentiation increases), the Cournot-Nash 
equilibrium looses stability through a flip bifurcation when 1

Fdd  . 
 
Proof. See the Appendix. 
 
From an economic point of view, Proposition 1 shows that when a firm attempts to increase 
profits by reducing the degree of competition through an increase in product differentiation, it 
also tends to destabilise the market equilibrium. Moreover, ceteris paribus as regards the size 
of market demand, wa  , the higher the speed of adjustment   is the closer d  is to unity 
(perfect substitutability). 
    Therefore, depending on the relative size of both the market demand and speed of 
adjustment, we have the following three cases: 
 
Case (1).   8.0 wa . In this case there exists two real solutions of  d  for d , namely 

11 Fd  and 12 Fd . The Cournot-Nash equilibrium Eq. (9) is locally asymptotically stable 
irrespective of the degree of product market differentiation. 
 
Case (2).   41.2 wa . No real solutions exist of  d  for d . The Cournot-Nash equilibrium 
Eq. (9) is locally unstable irrespective of the degree of product market differentiation. 
 

Case (3.1).   41.28.0  wa  and 
wa 


2

0  . Then 01 1  Fd . The Cournot-Nash 

equilibrium Eq. (9) is locally asymptotically stable for any 10 1  Fd . It looses stability 
through a flip bifurcation when the degree of products of variety 1 and 2  become 
complements. 
 

Case (3.2).   41.28.0  wa  and 
wa 


2 . Then 01 Fd . The Cournot-Nash equilibrium 

Eq. (9) is locally asymptotically stable for any 10 1  Fd . It looses stability through a flip 
bifurcation when the degree of product differentiation increases up to the point in which the 
two firms act as two separate monopolists in their own market. 
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Case (3.3).   41.28.0  wa  and 
wa 


2 . Then 10 1  Fd . The Cournot-Nash 

equilibrium Eq. (9) looses stability through a flip bifurcation when products of variety 1 and 
2  from perfect substitutes (homogeneous) tend to become less substitutable between them. 
 
4. A numerical illustration 
 
The main purpose of this section is to show that the qualitative behaviour of the solutions of 
the duopoly game with heterogeneous player described by the dynamic system (8.2) can 
generate, in addition to the local flip bifurcation and the resulting emergence of a two-period 
cycle, complex behaviours. To provide some numerical evidence for the chaotic behaviour of 
system (8.2), we present several numerical results, including bifurcations diagrams, strange 
attractors, Lyapunov exponents, sensitive dependence on initial conditions and fractal 
structure. 
    According with the aim of the paper, we take the degree of product differentiation d  as the 
bifurcation parameter, and choose the following parameter set only for illustrative purposes: 

2.2 , 2a  and 1w , which represents Case (3.3). 
    Figure 2 depicts the bifurcation diagram for d . The figure clearly shows that an increase in 
the extent of product differentiation (i.e., the parameter d  moves from 1 to values smaller 
than 1), implies that the map (8.2) converges to a fixed point for 2287.01  d . Starting from 
this interval, in which the positive fixed point (9) of system (8.2) is stable, Figure 2 shows that 
the equilibrium output undergoes a flip bifurcation at 2287.01 Fd . Then, a further increase 
in product differentiation implies that a stable two-period cycle emerges for 

2.02287.0  d . As long as the parameter d  reduces a four-period cycle, cycles of highly 
periodicity and a cascade of flip bifurcations that ultimately lead to unpredictable (chaotic) 
motions are observed when product are complements. As an example, the phase portrait of 
Figure 3 depicts the strange attractor and basin of attraction for 46.0d . 
    Another numerical tool useful in order to determine the parameter sets for which the 
system (6) converges to periodic cycles, quasi-periodic and chaotic attractors, is the study of 
the largest Lyapunov exponent, as a function of the parameter of interest (which, in the 
present paper, is the degree of product differentiation). As is known, there exists evidence for 
quasi periodic behaviour (chaos) when the largest Lyapunov exponent is zero (positive). Let 

1Le  be the largest Lyapunov exponent of our system. Then, for the above parameter 
constellation and initial conditions, in Figure 3 we plot 1Le  against the parameter d  (see, e.g., 
Fanti and Manfredi, 2007). In order to better characterise the largest exponent from a 
quantitative point of view, and take account for the fact that since there may be very long 
(periodic or aperiodic) transients, the dynamical system is left to evolve for 510t  time units 
and then the Lyapunov exponents are calculated during a time of order 510t . This allows to 
unambiguously detect the existence of chaotic motions in the range of values of d  with 
respect to which 1Le  is steadily positive. Moreover, the Lyapunov dimension evaluated 
according to the well-known Kaplan-Yorke conjecture (see Kaplan and Yorke, 1979), 
corresponding to 46.0d  is 175.1DL .5 

                                                

5 The Lyapunov dimension is computed as 
1

1




s

s

k ksDL



, where k  is the k th Lyapunov exponent, s  is 

the largest number for which 0
1

 

s

k k  and 0121  s   (see Medio, 1992). 
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    As known, the sensitivity to initial conditions is a characteristic of deterministic chaos. In 
order to show the sensitivity to initial conditions of system (8.2), we have computed two 
orbits of the variable 1q  whose coordinates of initial conditions differ by 0.00001. Figures 4 
depicts the orbits of 1q  with initial conditions 03.00,1 q  and 01.00,2 q , and 03001.00,1 q  and 

01001.00,2 q  at 46.0d . As expected, the orbits rapidly separate each other, thus 

suggesting the existence of deterministic chaotic. 
 

 
Figure 1. Bifurcation diagram for d . Initial conditions: 03.00,1 q  and 01.00,1 q . 
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Figure 2. Phase portrait ( 46.0d ). 

 

 
Figure 3. Largest Lyapunov exponent for 15.05.0  d  (one million iterations). 
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Figure 4. Sensitivity dependence to initial conditions ( 1q  versus time). Initial conditions: 

03.00,1 q  and 01.00,2 q  (red line), and 03001.00,1 q  and 01001.00,2 q  (blue line). 

( 46.0d ). 
 
5. Conclusions 
 
We analysed the dynamics of a differentiated Cournot duopoly with firms’ heterogeneous 
expectations, and investigated the effects of a micro-founded differentiated products demand. 
The main result is that a higher degree of product market differentiation may destabilise the 
unique Cournot-Nash equilibrium, while also showing the existence deterministic chaos. This 
result suggests a twofold effect: while an increase in the extent of product differentiation 
tends to increase profits, it may also cause the loos of stability of the equilibrium through a 
flip bifurcation. In this sense, our findings constitute a policy warning for firms that want to 
differentiate their products in order to reduce competition. 
    The economic intuition behind the result is that the higher the degree of product 
differentiation, the lower the level of competition and the higher the output produced by each 
firm whatever the quantity produced by the rival. The larger amount of output produced by 
each single firm in comparison with the case of homogenous products is responsible for the 
loss of stability of the market equilibrium and the resulting complex dynamic events. An 
interesting theoretical implication is that a fiercer (weaker) competition tends to stabilise 
(destabilise) the economy. 
    However, we ask ourselves whether and how this result is robust to the underlying 
economic theoretical extensions (for instance, when returns to labour are decreasing (i.e. 
quadratic wage costs) or the labour market is unionised). The answers to these questions are 
left for future research. 
 
Appendix 
 
Proof of Proposition 1 
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The proof of Proposition 1 amounts to simply show that (i) at most only the root 1

Fdd   can 
be included in the interval  1,1 , and (ii) 12  Fdd  always holds. 
    Let us begin by providing a standard version of the Budan-Fourier theorem. 
 
Theorem 1. [Budan-Fourier Theorem]. For any real number a  and b  such that ab  , let 
  0aF  and   0bF  be real polynomials of degree n , and  xC  denote the number of sign 

changes in the sequence         xFxFxFxF n,,,,  . Then the number of zeros in the interval 
 ba,  (each zero is counted with proper multiplicity) equals    bCaC   minus an even non-
negative integer. 
 
    Armed with this theorem, the following proposition holds. 
 
Proposition A.1. Only one of the two roots for d  ( 1

Fdd  ) of the flip bifurcation boundary 
  0 d  is included between 1  and 1, while the root 2

Fdd   is always larger than 1. 
 
Proof. Let us rewrite the flip bifurcation boundary as: 
       0484: 2  waddwad  . (A.1) 
Then, by denoting  waz   we define the function 

   844: 2  dzzddG . (A.2) 
    By a simple inspection of  dG , it is easy to establish that the discriminant of  dG  is 

negative for 41.2
5

12
z  and thus real solutions for d  of  d  do exist if, and only if, 

5

12
z . 

Then, we find that   42  zddG  and   zdG 2 . Therefore, the following inequalities 
hold: 

       01;201;
5

12
01)( 















GzGzGi , (A.3) 

       01;01;8.0
5

4
01)( 








 GGzGii . (A.4) 

    Tables 1 and 2 resume the numerical results of the application of the Budan-Fourier 
theorem. As is shown: (1) in the last row of Table 1 only one root of d  included between 1  
and 1 does exist; 2) in the last row of Table 2 two sign changes when d  does exist; (3) 
by comparing the number of sign changes when d  and when 1d , we observe that 

there exists no roots (one root) for d  included between   and 1  when 
5

4

5

12
 z  

(
5

4
z ); therefore, since from Table 1 we observe that there is one root (no roots) for d  

included between 1  and 1 when 
5

4

5

12
 z  (

5

4
z ), then we conclude that for any 

0
5

12
 z  one root 1d  always exists. 

 
Table 1. Threshold values and application of the Budan-Fourier theorem for the number of 
zeros in the interval  1,1d . 

 25/12  z  25/4  z  5/4z  
-1 1 -1 1 -1 1 
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 dG  - + - + + + 

 dG  + + + - + - 

 dG   - - - - - - 
Number of sing 

changes (C ) 
2 1 2 1 1 1 

Variation 
(    11 CC  ) 

1 1 0 

 
Table 2. Threshold values and application of the Budan-Fourier theorem for the number of 
zeros in the interval   ,d . 

 05/12  z  
    

 dG  - - 

 dG  + - 

 dG   - - 
Number of sing changes (C ) 2 0 

Variation (    11 CC  ) 2 
 
    It follows that since the Cournot-Nash equilibrium Eq. (9) of the two-dimensional system 
(8.2) is stable for any 21

FF ddd  , and since 11  Fd  and 12 Fd , then starting from a 
stability situation, the Cournot-Nash equilibrium Eq. (9) can loose stability only when d  

decreases beyond 1
Fdd  . Moreover, it can easily be ascertained that 01 Fd  if 

wa 


2 , 

01 Fd  for any 
wa 


2

0   and 01 Fd  for any 
wa 


2 . Q.E.D. 
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