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Abstract 

A reliable method for the determination of carbonyl compounds in exhaled breath based on on-sorbent 

derivatization coupled with thermal desorption and gas chromatography-tandem mass spectrometry is 

described. The analytical performances were optimized for a mixture of C2-C9 aldehydes and C3-C9 

ketones, particularly interesting for clinical applications, by using an internal standard and applying a 23 full 

factorial design. A volume of sample (250 mL) was loaded at 50 mL/min into a Tenax GR sorbent tube 

containing 130 nmol of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride. All compounds 

showed a limit of detection lower than 200 pptv. The yield of the derivatization procedure was normalised by 

adding to the sample a known amount of 6D-acetone as internal standard. This allowed to halve the relative 

standard deviation to 10 and 15% for mono- and di-carbonyl compounds, respectively, thus improving 

reliability. The optimized method was applied to the determination of carbonyl compounds in twelve breath 

samples collected from four patients suffering from heart failure during the hospitalization. 
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1. Introduction 

Over the last decades, exhaled breath analysis has become more and more attractive [1, 2] for its potential as 

an easy, painless and non-invasive tool to monitor in real time physiological and pathological conditions [3] 

as well as exposure to environmental contaminants [4]. A main advantage of the approach is that it can be 

used with people of all ages and conditions (e.g. newborns, infants [5] and mechanically ventilated patients 

[6]) to reduce problems associated with blood sampling (e.g. acceptance from patients, risk of infections, 

production of potentially infected waste and need of trained personnel working in dedicated environment). 

Despite potential, the development of diagnostic breath tests and their use in the clinical practice is hampered 

from the lack of standardized procedures for breath collection [7]. Several studies highlighted that real-time 

monitoring of carbon dioxide during breath sampling allows to selectively collect the end-tidal fraction, 

reduce the variability of the composition and improve the representativeness of samples [8, 9]. 

Off-line breath analysis is generally carried out in three steps: (i) collection of the sample in a canister [10] 

or a sampling bag [11, 12], (ii) pre-concentration of the compounds of interest using different techniques 

(e.g. solid phase extraction [13], solid phase micro-extraction [14] and needle trap micro-extraction [15]) and 

finally, (iii) analysis by thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). 

Devices that allow combining breath sample collection and analyte extraction/pre-concentration in a single 

step [6, 14, 15] and prompt analysis by TD-GC-MS minimize the possible losses of compounds from bags 

[16, 17]. Instruments like proton-transfer-reaction mass spectrometer and selected-ion flow-tube mass 

spectrometer are commercially available for the real-time analysis of trace gases in breath with high 

sensitivity and wide dynamic range [18, 19], but the high cost and the uncertain identification of isobaric 

compounds make off-line methods still more common for breath analysis. 

Various classes of volatile organic compounds (VOCs) can be detected in exhaled breath [20]. A total of 

870 compounds have been found in exhaled breath, and many of them have been also identified in urine 

(10%), skin emanations (19%), blood (5%), saliva (13%) and faeces (13%) [21]. Among these compounds, 

there is a considerable interest for monitoring in breath oxygen-containing substances like aldehydes and 

ketones because they mainly result from oxidative stress [22]. Liver, heart, and brain represent tissues with a 

higher oxygen consumption rate and physiologically express higher antioxidant enzyme levels than those 

with lower oxygen consumption [23]. In fact, considerable evidences are now emerging that these carbonyls 

are also involved in the progression of chronic obstructive pulmonary disease [24], neurodegenerative 

disease [25], liver disease [26] and heart failure [27], due to their chemical reactivity that may cause further 

lesions to proteins and membranes [22]. These pathways may in turn exaggerate oxidative stress, forming a 

vicious cycle [28]. 

Unfortunately, the low concentration levels (ranged between tens and hundreds of pptv) of most carbonyls 

in exhaled breath and the instability due to their chemical reactivity make the analysis of these compounds 

quite challenging. Underestimation of concentrations due to carbonyls’ reactivity can be reduced by direct 

sampling in sorbent tubes instead of bags, although several studies discussed the hypothesis of on-tube 

oxidation of aldehydes [29, 30]. Chemical derivatization coupled with pre-concentration techniques may 

overcome the reactivity issue and allow the analysis of carbonyl in breath. Several analytical approaches 

have been proposed for the determination of carbonyls in ambient air [31, 32]. Sorbent cartridges coated with 

a derivatization agent (e.g. 2,4-dinitrophenylhydrazine, DNPH) are typically used for the collection of 

aldehydes and ketones from gaseous samples [33-35]. The hydrazone derivatives are eluted from the 

cartridge with acetonitrile and then analysed by high-pressure liquid chromatography (HPLC) coupled with 

an UV-Vis [36] or a mass spectrometric detector [37]. This approach is currently the standard analytical 

method suggested by US EPA [38] for the determination of carbonyls in ambient air. However, the effect of 

humidity on the collection efficiency and the co-elution of larger carbonyl compounds (e.g. >C5) are the 

main drawbacks of the DNPH approach [31] that limit its application to breath analysis. Hence, various 

attempts have been made to find more reliable methods based on different derivatization reagents. In this 

perspective, pentafluorobenzylhydroxylamine (PFBHA) has shown better performance in GC-based analysis 

compared to the classical DNPH method [39-41]. Only few authors have proposed the use of PFBHA for the 

determination of carbonyls in breath [42-44]. In these procedures, reactive aldehydes and ketones were 

transformed into stable oximes by means of on-fiber derivatization (SPME-OFD). To the best of our 

knowledge, no study has been published on the determination of carbonyls in breath samples based on 

sorbent tubes derivatization with PFBHA coupled with TD-GC-MS/MS analysis. This approach should 

improve selectivity and sensitivity and also allow the analysis of a larger number of analytes than SPME. 
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2. Materials and methods 

2.1. Chemicals and materials 

A stock liquid mixture (L1) of 2-butanone, 2-pentanone, 3-pentanone, 2-hexanone, 4-heptanone, 3-

heptanone, 2-heptanone, 3-octanone, 2-octanone, 5-nonanone, and 2-nonanone was purchased from 

AccuStandard, Inc. Chemical Reference Standard (USA). Acetone, 3-hydroxy-2-butanone, 2,3-butanedione, 

acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, benzaldehyde, glyoxal, 

methylglyoxal, methacrolein, acrolein and methanol were purchased from Sigma Aldrich (Italy). All 

compounds were GC grade standard with a purity higher than 99%. 

O-2,3,4,5,6-pentafluorobenzylhydroxylamine hydrochloride powder (purity >99%) was purchased from 

Alfa Aesar (Germany). 

Labelled 6D-acetone with a purity of 99.8% was purchased from ARMAR Chemicals (Switzerland). 

Ultrapure water was obtained using a PureLab Classic Pro, USF Elga instrument (Italy). 

Helium 5.6 IP, medical air (hydrocarbon free, purity of 99.95%) and nitrogen 5.0 IP were purchased from 

Sol Group Spa (Italy). Each gas was further purified with a super clean filter from Agilent Technologies 

(USA) to remove water, oxygen and hydrocarbon contaminants. 

Commercial stainless steel sorbent tubes for thermal desorption (O.D. 6.4 mm, I.D. 5 mm, 89 mm length) 

packed with 250 mg of 60/80 mesh Tenax GR phase (70% Tenax TA, 2,6-diphenyl-p-phenylene oxide and 

30% graphite) were purchased by Markes International (UK). 

Handmade Nalophan bags were fabricated at (film) surface-to-(sample) volume ratio (S/V) of 0.3 cm-1 

from a roll of Nalophan tube (diameter 47 or 23.5 cm, film thickness 20 µm), supplied by Kalle (Germany), 

according to the procedure described elsewhere [17]. 

 

2.2. Preparation of standards 

2.2.1. Liquid mixtures 

A stock liquid mixture of aldehydes (L2) was prepared by mixing 50 μL each of these compounds, 

acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, benzaldehyde, glyoxal, 

methylglyoxal, methacrolein, acrolein, in a 1 mL glass vial equipped with a screw cap Mininert Valve 

(Supelco, USA). In the same way, another 1 mL glass vial was used to prepare a stock liquid mixture (L3) by 

mixing 50 μL of 3-hydroxy-2-butanone, 50 μL of 2,3-butanedione and 150 μL of acetone. These two stock 

solutions (L2 and L3) were prepared daily and stored at 4 °C. 

Each stock liquid mixture (L1, L2 and L3) was diluted (100-fold) with methanol into a 1 mL vial equipped 

with a screw cap Mininert Valve. For the optimization of GC-MS parameters, the oximes were prepared in 

accordance to Cancho et al [45] by mixing 100 µL of each diluted solution with 1 mL of methanol 

containing 1 g/L of PFBHA and keeping the solution at 40 °C for two hours. Then, 1 µL of this solution was 

loaded into Tenax GR sorbent tubes using the calibration solution loading rig (CSLR) supplied by Markes 

International (UK). This device, specifically designed for loading sorbent tubes with gaseous or liquid 

standards, consists of an unheated injector port with a valve to flow the carrier gas sequentially through each 

tube. The methanol solution was introduced at room temperature (25 ± 2 °C) through the injector septum 

using a 1 µL syringe (Hamilton, USA) and then vaporized with a flow of 250 mL of dried medical air (50 

mL/min) that allowed the oximes to reach the sorbent bed in the vapour phase. Under these conditions, 

methanol was completely purged out from the sorbent tube since its breakthrough volume at 20 °C for 1 g of 

Tenax GR is 0.2 L [46]. 

PFBHA solutions were prepared by dissolving the required amount of derivatizing agent in 50 mL of 

methanol. These solutions were prepared weekly and stored at 4 °C. 

 

2.2.2. Gaseous mixtures 

Three different stock gaseous mixtures of aldehydes and ketones were prepared by injecting 20 μL of L1, L2 

and L3 solutions into three pre-evacuated 2 L glass flasks equipped with a screw cap Mininert Valve. Each 

glass flask was heated at 37 ± 1 °C until complete evaporation of the liquid and subsequently filled with 

dried medical air from a bag up to the ambient pressure. These gaseous mixtures were kept in a 1.1 m3 

thermostat at 37 ± 1 °C (RH 15 ± 3%) for 1 week. The concentrations of carbonyls in the glass flask are 

reported in table 1. 
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Table 1. Concentrations of analytes in the glass flask calculated at 37 °C and ambient pressure. 

 

Concentration in the 

glass flask (ppmv) 

Acetaldehyde 130 

Acetone 2550 

Propanal 100 

Acrolein 110 

2-butanone 200 

Methacrolein 140 

Butanal 180 

2-pentanone 170 

3-pentanone 170 

3-hydroxy-2-butanone 430 

Pentanal 100 

2-hexanone 150 

4-heptanone 130 

Hexanal 210 

3-heptanone 130 

2-heptanone 130 

3-octanone 120 

Heptanal 200 

2-octanone 120 

5-nonanone 110 

Benzaldehyde 350 

Octanal 230 

2-nonanone 110 

Nonanal 260 

Glyoxal 320 

Methylglyoxal 320 

2,3-butanedione 350 

 

These stock gaseous mixtures were further diluted with humidified medical air into Nalophan bags to 

simulate water vapour contained in breath samples. Humid working gaseous mixtures were prepared at room 

conditions (25 ± 2 °C and RH of 50 ± 5%) by flowing medical air (500 mL/min) through a gas bubbler filled 

with 5 mL of ultrapure water. In these conditions, the RH values in the gaseous mixtures ranged between 

80% and 90%. After preparation, Nalophan bags were stored in the thermostat for half an hour to reduce the 

sample humidity down to 15 ± 3% of RH. 

In the same way, a stock gaseous solution of 6D-acetone was obtained by evaporating 5 μL of liquid 

labelled standard into a 2 L glass flask equipped with a screw cap Mininert Valve. This gaseous solution was 

kept in the thermostat at 37 ± 1 °C (RH 15 ± 3%) for 1 month. Under these conditions (37 °C and ambient 

pressure), the calculated concentration of 6D-acetone resulted 870 ppmv. 

 

2.3. Preparation of sampling tubes 

Prior to first usage, Tenax GR sorbent tubes were conditioned at 320 °C for 2 hours and then at 335 °C for 

30 min, under permanent He flow (70 mL/min) and a flow path temperature of 190 °C. After conditioning, 

tubes were capped at both ends with ¼” brass storage caps fitted with ¼” combined PTFE ferrules. Just 

before use, Tenax GR sorbent tubes were conditioned again for 15 min at 250 °C using a He flow of 70 

mL/min. 

Tenax GR tubes were spiked at room temperature (25 ± 2 °C and RH 50 ± 10%) by injecting 1 μL of 
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methanol solution containing 130 nmol of PFBHA, using the calibration solution loading rig. This aliquot 

was vaporized by a flow of 250 mL of dried medical air (50 mL/min) to let PFBHA reach the sorbent bed. 

Afterwards, tubes were capped at both ends using the same storage caps to avoid any contamination. 

 

2.4. Sample collection and analysis 

Mixed breath samples were collected by using Nalophan bags prepared according to the procedure described 

elsewhere [17]. All the components of the sampling system consisted of sterile inert materials. Each subject 

was asked to calmly fill the bags with multiple deep breaths. All breath samples were processed within 3 hr 

from sampling. 

After collection, Nalophan bags were stored in the thermostat for half an hour to reduce the sample 

humidity down to 15 ± 3% of RH and prevent water condensation on the bag walls. Then, 250 mL of sample 

were flowed at 50 mL/min through a drying tube, filled with 9 g of anhydrous sodium sulphate (SKC, USA) 

for water removal, connected to a Tenax GR sorbent tube previously spiked with PFBHA (130 nmol). An 

aliquot (25 μL) of 6D-acetone gaseous solution (870 ppmv) was injected during the sample loading using a 

long life non-stick septum (Agilent Technologies, USA). The sample flow through the tubes was controlled 

by a rotameter (0–150 mm) connected to the pump (KNF, Italy) (figure 1). The Tenax tube was capped as 

described before and stored in the thermostat for 24 h. 

 

 
Figure 1. Sample transfer from Nalophan bags into Tenax GR sorbent tubes: 1) drying tube packed with 9 g 

of anhydrous sodium sulphate, 2) septum to inject 6D-acetone, 3) Tenax GR sorbent tube and 4) rotameter 

and sampling pump. 

 

After derivatization, adsorption tubes were thermally desorbed by a TD-100 multi-tube auto-sampler 

equipped with an automated re-collection system controlled by Maverick TD software (Markes International, 

UK). Tubes were desorbed in splitless mode at 250 °C for 8 min with a helium flow rate of 35 mL/min and 

compounds were cryogenically trapped at 5 °C into an internal focusing trap packed with 70 mg of 

Graphitized Carbon (Markes International, UK). Finally, the analytes were transferred to the 

chromatographic column in split mode (split ratio of 11) by heating the cold trap at 100°C/s up to 300 °C for 

60 min. A flow path temperature of 140 °C was used during sample analysis. The thermal desorption unit 

was directly connected to the GC column via a fused silica transfer line (I.D. 0.25 mm) supplied by Markes 

International (UK). Analyses were performed by a 7890B GC (Agilent Technologies, USA) coupled to a 

7010 triple quadrupole GC/MS (Agilent Technologies, USA) with an electron ionization source operating at 

70 eV. The GC-MS/MS system was controlled by the MassHunter Workstation software (Agilent 

Technologies, USA). A reference library (NIST/MS software v. 2.2) was used to support the identification of 

the compounds by comparing the obtained MS spectra with the spectra reported in the library. 

Chromatographic separation of oximes was carried out by a DB-5ms ultra inert capillary column (60 m × 

0.25 mm, 1.0 μm film thickness) from Agilent Technologies (USA) at constant He flow of 1 mL/min. The 

oven temperature program was: 100 °C for 1 min and 4 °C/min to 250 °C (9.5 min hold time). After the 

elution of the last compound (i.e. 2,3-butanedione-PFBHA, retention time of 45.93 min), a post run step of 

13 min with an oven temperature of 260 °C and a carrier gas flow of 1 mL/min was accomplished. The triple 

quadrupole mass spectrometer was operated in full scan (m/z 31–500), selected ion monitoring (SIM) and 

MS/MS mode (multiple reaction monitoring, MRM). Temperatures of transfer line, ion source and 

quadrupoles were set at 260, 250 and 150 °C, respectively. Helium was used as the quench gas at a flow of 4 

mL/min and nitrogen as the collision gas at a flow of 1.5 mL/min. The retention times of the investigated 

oximes obtained in our conditions as well as ions or MRM transitions used for the quantification in real 
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breath samples are shown in table 2. A deviation of ±0.10 min of the expected retention time compared to 

stock carbonyl mixture and a qualifier/quantifier (q/Q) ratio within 10% of the ratio measured in stock 

mixtures were required for analyte identification [47]. 

 

Table 2. Retention times, molecular weights and quantifier ions (m/z values) or MRM transitions (Precursor 

ion->Product ion) of the investigated compounds. Collision energy (eV) is reported in round brackets. 

Compound 
Retention time 

(min) 
MW 

Quantifier 

ion 

Quantifier MRM 

transition 
6D-acetone 4.72 64a 64  

PFBHA 16.63 213 181  

Acetaldehyde-PFBHA (E) 16.98 
239 

 
239->181 (1 eV) 

Acetaldehyde-PFBHA (Z) 17.62  
6D-acetone-PFBHA 18.94 259 181  

Acetone-PFBHA 19.11 253 181  

Propanal-PFBHA (E) 19.96 253  253->236 (2 eV) 

Acrolein-PFBHA (E) 20.05 251  251->181 (2 eV) 

Propanal-PFBHA (Z) 20.21 253  253->236 (2 eV) 

Acrolein-PFBHA (Z) 20.58 251  251->181 (2 eV) 

2-butanone-PFBHA (E) 21.82 
267 

 
267->250 (6 eV) 

2-butanone-PFBHA (Z) 21.95  

Methacrolein-PFBHA (E) 22.57 
265 

 
265->181 (6 eV) 

Methacrolein-PFBHA (Z) 22.86  

Butanal-PFBHA (E) 23.11 
267 181 

 

Butanal-PFBHA (Z) 23.32  

2-pentanone-PFBHA (E) 23.47 281  281->181 (12 eV) 

3-pentanone-PFBHA 24.26 281  281->264 (12 eV) 

2-pentanone-PFBHA (Z) 24.66 281  281->181 (12 eV) 

3-hydroxy-2-butanone (E) 24.93 
283 181 

 

3-hydroxy-2-butanone (Z) 25.22  

Pentanal-PFBHA (E) 26.32 
281 181 

 

Pentanal-PFBHA (Z) 26.45  

2-hexanone-PFBHA (E) 27.14 
295 181 

 

2-hexanone-PFBHA (Z) 27.56  

4-heptanone-PFBHA 28.91 309  309->128 (8 eV) 

Hexanal-PFBHA (E) 29.30 
295 181 

 

Hexanal-PFBHA (Z) 29.56  

3-heptanone-PFBHA 29.53 309 181  

2-heptanone-PFBHA (E) 30.01 
309 181 

 

2-heptanone-PFBHA (Z) 30.54  

3-octanone-PFBHA 30.79 323 181  

Heptanal-PFBHA 32.52 309 181  

2-octanone-PFBHA 33.43 323 181  

5-nonanone-PFBHA 33.91 337  337->253 (3 eV) 

Octanal-PFBHA 35.44 323 181  

2-nonanone-PFBHA 35.64 337 181  

Benzaldehyde-PFBHA (E) 36.30 
301 

 
301->284 (12 eV) 

Benzaldehyde-PFBHA (Z) 36.66  

2,3-butanedione-PFBHA 38.97 476 181  
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(isomer 1) 

2,3-butanedione-PFBHA 

(isomer 2) 
40.03 

476 
181  

Nonanal-PFBHA 41.07 337 181  

Methylglyoxal-PFBHA 

(isomer 1) 
42.06 

462 
181  

2,3-butanedione-PFBHA 

(isomer 3) 
42.31 

476 
181  

Glyoxal-PFBHA (isomer 1) 43.26 448 181  

Glyoxal-PFBHA (isomer 2) 43.51 448 181  

Methylglyoxal-PFBHA 

(isomer 2) 
43.58 

462 
181  

Glyoxal-PFBHA (isomer 3) 43.69 448 181  

Methylglyoxal-PFBHA 

(isomer 3) 
44.17 

462 
181  

Methylglyoxal-PFBHA 

(isomer 4) 
44.88 

462 
181  

2,3-butanedione-PFBHA 

(isomer 4) 
45.93 

476 
181  

a molecular weight of non-derivative compound. 

 

2.5. Optimization of the derivatization reaction 

The influence of temperature (x1, °C), time (x2, min) and amount of PFBHA added into sorbent tubes (x3, 

nmol) on the oxime signals was evaluated by a 23 full factorial design, which includes the eight possible 

combinations of three variables at two levels. Tests were carried out by inflating Nalophan bags with 

gaseous working mixtures obtained with a 40000-fold dilution of the stock mixtures with humidified medical 

air. After preparation, Nalophan bags were stored in the thermostat for half an hour to reduce sample 

humidity down to 15 ± 3%. Aliquots (250 mL) of these mixtures were transferred at 50 mL/min into sorbent 

tubes spiked with different amount of PFBHA and analysed according to the procedure described in section 

2.4. In our experiments, temperature was evaluated at 25 and 100 °C, time at 240 and 2880 min and amount 

of PFBHA at 0.4 and 4 nmol. These amounts lead to PFBHA/total carbonyl molar ratios of 1 and 8, 

respectively. Three replicate experiments were performed at the centre of the experimental domain (60 °C, 

1560 min and 2.2 nmol of PFBHA) to assess reproducibility and to validate the models, so eleven 

experiments were performed overall in a random order. Results were analysed by a dedicated software 

(MODDE 11.0, Umetrics, Sweden). 

The yield of reaction (%) between 6D-acetone and PFBHA was estimated. For this purpose, three aliquots 

(10, 25 and 50 µL) of 6D-acetone (870 ppmv) were spiked in two sets of sorbent tubes during the transfer of 

250 mL of medical air at 50 mL/min. The first set included five tubes without derivatizing agent, whereas the 

other five tubes were spiked with PFBHA (4 nmol). These latter tubes were capped as described before and 

stored in the thermostat (37 ± 1 °C and RH 15 ± 3%) for 24 h. Both sets were analysed according to the 

procedure described in section 2.4. The yield of reaction (%) was estimated from the ratio of 6D-acetone 

peak areas obtained from sorbent tubes containing and not containing PFBHA. 

 
2.6. Validation of the method 

Detection limits were evaluated by analysing five times a gaseous humid standard mixture prepared in 

Nalophan bag (50 cm × 47 cm, S/V = 0.3 cm-1) by diluting 320000-fold stock gaseous mixtures. Limits of 

detection were calculated in accordance with IUPAC guidelines as three times the standard deviation (sb) of 

the lowest level spiked blank [48]. 

Calibration curves were determined from ratios between the sum of peak areas of isomers of a same 

carbonyl-PFBHA and 6D-acetone-PFBHA (Y, AOxime/AIS) versus the concentration ratio (X, COxime/CIS) of 

the five calibration standards, which were prepared by diluting (320000-, 100000-, 20000-, 5000- and 100-

fold) stock gaseous mixtures in humidified medical air. The calibration curves (Y = mX) for all the carbonyls 
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were evaluated by the Deming regression analysis, which considers measurement errors for both dependent 

and independent variable [49]. 

According to the US EPA guidance (no. TO-15), the linearity of the 5-point calibration curves was 

calculated as percent relative standard deviation (RSD) of the relative response factor (RRF), which is 

calculated as follow AOxime/AIS × CIS/COxime [50]. 

Five gaseous working mixtures were prepared by diluting (320000-, 100000-, 20000-, 5000- and 100-fold) 

stock gaseous mixtures with humidified medical air. Each mixture was analysed in triplicate within the same 

day and on three consecutive days to evaluate intra- and inter-day precision, respectively. 

 

2.7. Influence of sample volume on the recovery of extracted carbonyl compounds and carry over 

The effect of sample volume on the amount of extracted carbonyls was evaluated in triplicate at four 

volumes (50, 100, 250 and 500 mL) and a fixed flow rate (50 mL/min), using a diluted (10000-fold) 

humidified gaseous mixture of selected compounds prepared in a Nalophan bag. After preparation, the bag 

was stored in the thermostat for half an hour to reduce sample humidity down to 15 ± 3%. The corresponding 

PFBHA/carbonyl molar ratios were 43, 25, 11 and 6, respectively. After sample transfer, the Tenax GR tubes 

were analysed according to the procedure described in section 2.4. 

Five sorbent tubes containing 130 nmol of PFBHA were loaded (flow rate 50 mL/min) with 250 mL of the 

40000-fold diluted mixture to assess carry over. Each tube was analysed two times consecutively. Carry over 

of the internal focusing trap was evaluated by analysing an empty stainless steel tube after desorption of a 

sorbent tube containing 130 nmol of PFBHA and loaded with 500 mL of gaseous sample (40000-fold 

dilution from the stock gaseous mixtures). 

 

2.8. Stability 

A PFBHA solution in methanol (1.4 g/L) was split in two aliquots after preparation, one stored at room 

temperature (25 ± 2 °C) and the other at 4 °C. The stability of this solution over time was evaluated weekly 

up to four weeks after preparation. For this purpose, 1 µL of each solution was spiked every week into three 

Tenax GR sorbent tubes using the CSLR system, then tubes were analysed according to the procedure 

described in section 2.4. 

Six Tenax GR sorbent tubes were loaded with 1 µL of a methanol solution containing 1.4 g/L of PFBHA 

using the CSLR system. After purging out the solvent, three tubes were analysed immediately (t0), whereas 

the other three were capped and analysed after one-day storage (t0+24h) at room conditions (T = 25 ± 2 °C, RH 

= 50 ± 10 %) according to the procedure described in section 2.4. 

The stability of PFBHA adducts in Tenax GR sorbent tubes during a typical sequence of chromatographic 

analyses (storage at room temperature in the thermal desorption autosampler for about 24 h) was also 

evaluated. For this purpose, a diluted gaseous working mixture (40000-fold from the stock mixtures of 

selected compounds with humidified medical air) was prepared in a Nalophan bag and then stored in the 

thermostat for half an hour to reduce the sample humidity down to 15 ± 3%. This mixture was transferred 

into six Tenax GR tubes spiked with PFBHA (130 nmol). Three sorbent tubes were immediately analysed 

whereas the remaining three tubes were closed using autosampler caps, stored into the thermal desorption 

unit and then analysed after 24 h. All the analyses were carried out according to the procedure described in 

section 2.4. 

 
3. Results and discussion 

3.1. Optimization of thermal desorption, gas-chromatographic and mass-spectrometric conditions 

The influence of split ratio during the primary (i.e. from sorbent tube to internal focusing trap) and secondary 

desorption (i.e. from internal focusing trap to GC column) was investigated. Data (not shown) highlighted 

that a good compromise between the sensitivity and peak shape was obtained by desorbing the sorbent tube 

in splitless mode and applying a split ratio of 11 in the secondary desorption. Flow path temperature is 

reported to be critical for labile and reactive species (e.g. terpenes and sulphur compounds) [51] but in our 

conditions a flow path temperature of 80 or 140 °C does not show any statistically significant influence on 

the oximes signals (p >0.05). Table S1 (supplementary information) reports the optimal conditions for the 

desorption of oximes, which were produced in the reaction between aldehydes and ketones with PFBHA, 

from Tenax GR sorbent tube. 
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Many analytes (table 2) showed two chromatographic peaks corresponding to (E) and (Z) isomers. Both 

isomers are formed for asymmetrical carbonyl compounds that are not sterically hindered due to the rigid 

nitrogen–carbon double bond. The first eluting peak has been assigned to isomer (E) and the second peak to 

(Z) [52], thus we followed this assumption. In our conditions the (E) and (Z) isomers of 3-heptanone, 

heptanal, 2-octanone, octanal and nonanal were not chromatographically resolved, although the GC column 

used in this work had a phase ratio (ß = 63) lower to those reported in other works (ß = 250) [53]. Moreover, 

compounds with two carbonyl groups have even more possible isomers. In our conditions, glyoxal showed 

three (ZE, EE and ZZ) isomers, whereas methylglyoxal and 2,3-butanedione showed four (ZE, EE, EZ and 

ZZ) isomers, confirming the results reported elsewhere [54]. 

The optimization of the mass spectrometric method was performed in three steps: i) acquisition of full scan 

spectra (m/z 31–500) to select a suitable precursor ion for each compound, ii) acquisition of the full product 

ion scan mass spectra to identify the most suitable collision energy value and iii) set up a reliable MRM 

method by considering at least two transitions for each compound. The most intense transition was identified 

as the quantifier (Q), whereas the other transitions were labelled as qualifier (q). 

Figure S1 (supplementary information) shows the product ion mass spectrum (precursor ion m/z 265) of 

methacrolein-PFBHA oxime at three collision energies (2, 4 and 6 eV). Four transitions (m/z 265->84, m/z 

265->56, m/z 265->248 and m/z 265->181) were selected for this oxime, setting the collision energy at 6 eV. 

Some compounds (e.g. 3-heptanone) were detected in SIM mode, by monitoring at least two ions per 

compound, since even at the lowest collision energy (1 eV) they did not show precursor ion. Also in this 

case, the most intense ion signal was used as quantifier whereas the other was used as qualifier. Table S2 

(supplementary information) reports the qualifier (q) and quantifier (Q) ions or MRM transitions and their 

qualifier/quantifier ratio (q/Q) calculated for all analytes. 

 

3.2. Optimization of the derivatization reaction parameters 

Derivatization temperature (x1, °C), derivatization time (x2, min) and amount of PFBHA spiked into sorbent 

tubes (x3, nmol) were selected as the parameters determining the oxime yield and consequently the peak area 

(y) to be included in the 23 full factorial design. For each analyte, peak areas resulting from the experiments 

were used to fit the following model: 

 

y = b0 + b1x1 + b2x2 + b3x3 + b1,2x1x2 + b1,3x1x3 + b2,3x2x3 + b1,2,3x1x2x3 

 

where y represents the predicted response (oxime peak area), xi and bi the model parameters and coefficients, 

respectively. 

Figure 2 shows an overview of results obtained for two representative compounds (i.e. butanal and 2-

butanone). 
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Figure 2. Analysis of results obtained for butanal (a) and 2-butanone (b): plot of replicates, summary of fit 

(R2 (green), Q2 (blue), model validity (yellow) and reproducibility (light blue)), plot of coefficients and 

model predictions (observed vs. predicted). The values of the coefficient of determination (R2 = 0.99 for both 

analytes) prove that the regression models appropriately fit the raw data. The fraction of the total variation 

(Q2) of X or Y variables that can be predicted by the model was 0.4 for both analytes, proving a satisfactory 

prediction power of the model. All these statistical indexes (R2, Q2, model validity and reproducibility are 

dimensionless. Confidence interval bars are included for each factor. 

 

The plot of replicates shows the peak areas obtained in the different experiments, allowing a quick 

inspection of raw data. Measurements performed in repeated experiments (9-11) appear as blue points 

connected by a line. Model diagnostics are plotted in the summary of fit. In this plot, the coefficient of 

determination R2 (green box) quantifies how well the model is able to reproduces the training set data 

(experiments 1-8) from which it was constructed, while the predictive power Q2 (blue box) indicates how 

well the model predicts results of an independent set of validation observations (experiments 9-11). 
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Generally, a significant model should have R2 and Q2 values higher than of 0.5 and 0.1, respectively. The 

model validity (yellow bar) tests if the right type of model has been used to fit the data (e.g. a linear or a 

quadratic model). A value lower than 0.25 indicates the existence of statistically significant deviations of the 

data from the model, as it may happen in the presence of outliers. The light blue bar indicates 

reproducibility, and typically repeated experiments are performed at the centre of the experimental domain 

(in our case it was 60 °C, 1560 min and 2.2 nmol of PFBHA). Reproducibility is close to 1 in case of low 

variability, but a value greater than 0.5 is sufficient to validate the experimental model. For all the 

investigated analytes, all these statistical indexes (R2, Q2, model validity and reproducibility) were always 

higher than recommended values, highlighting that the experimental model appropriately fitted the raw data 

and was validated. The plot of coefficients shows values of model coefficients, if positive (e.g. time and 

amount of PFBHA) an increase of the corresponding parameter increases the response, whereas the contrary 

is true for parameters having negative coefficients (e.g. derivatization temperature). The error bars reflect the 

uncertainty on the estimate of a coefficient and the significance of the related parameter. Coefficients that 

have a confidence interval overlapping zero (e.g. temperature) are non-significant term. Experimental values 

and model predictions are compared in the observed vs predicted plot. 

The amount of PFBHA spiked into sorbent tubes and the derivatization time (in the case of 2-butanone) 

were the only significant coefficients, and this means that increasing the amount of derivatizing agent or 

letting the reaction to proceed longer results in higher signals, as expected. The effect of both parameters on 

the oxime signals can be discussed considering the reaction mechanism between carbonyl compounds and 

PFBHA [55, 56]. In fact, nucleophilic addition of the active electron pair on the nitrogen atom in PFBHA to 

the carbonyl group is greatly determined by the partial positive charge on this carbon atom. This charge is 

caused by the strong negative inductive effect of the oxygen atom. Substitution with alkyl groups on the 

other hand, will render the carbon atom less positive due to a weak positive inductive effect. Additionally, 

because of the large size of the pentafluorobenzyl group, steric hindrance can exert a large effect on the 

reaction progress. Therefore, compounds with a carbonyl group that is substituted with the weaker electron-

releasing and less voluminous groups, such as aldehydes, will react fast with PFBHA and consequently they 

can be more easily analysed. In fact, the ratio between the peak area observed in the experiment 5 (x1 = 25 

°C, x2 = 240 min and x3 = 4 nmol) and experiment 6 (x1 = 25 °C, x2 = 2880 min and x3 = 4 nmol) resulted 0.4 

and 1.0 for 2-butanone and butanal, respectively. The influence of the PFBHA amount on the oxime peak 

area can be discussed considering the reaction mechanism between PFBHA and carbonyl compounds. In 

fact, being an equilibrium reaction, the concentration of PFBHA-oxime at equilibrium (assuming the activity 

coefficient equal to 1) is expressed as follow: 

 

[PFBHA-oxime] = Kn × [PFBHA]n × [carbonyln] 

 

where n = 1 and 2 for mono-carbonyl and di-carbonyl compounds, respectively. Therefore, according to this 

equation, a higher amount of PFBHA reagent will produce more oxime, which forces the equilibrium of 

reaction heavily in favour of the oxime formation. In our case, a quantitative reaction of aldehydes and 

ketones was assured by adding PFBHA in excess (at least 3-fold based on molar ratios). Thus, a PFBHA 

amount of 130 nmol guarantees the detection of carbonyls in a typical breath sample collected from healthy 

[57] and patients suffering from oxidative stress-related diseases (e.g. lung cancer [43]). 

Although we achieved the maximum oxime areas at the maximum derivatization time tested (2880 min), 

subsequent experiments were carried out using a reaction time of 1440 min to reduce the time of analysis 

required to process a sample. Generally, in this condition the peak area of each oxime was 20% lower to 

those observed at 2880 min, confirming the results discussed by other authors [58, 59]. 

Using the final experimental conditions, the yield of reaction (%) was estimated considering the reaction 

between 6D-acetone and PFBHA. Results obtained from the first set of tubes (n = 5), highlighted that the GC 

signal (m/z 64, SIM mode) of 6D-acetone increased linearly (R2 >0.970) with the sampling volume without 

saturation of the sorbent material. This calibration curve was used to determine the concentration of 

unreacted 6D-acetone with the excess of PFBHA (second set of tubes, n = 5). The ratio (mean ± standard 

deviation) between the concentration of unreacted 6D-acetone and the concentration of 6D-acetone spiked 

into sorbent tube was 0.10 ± 0.01, thus the reaction between 6D-acetone and PFBHA can be considered 

almost quantitative. 
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3.3. Analytical figures of merits 

3.3.1. Limits of detection, calibration curves and linearity 

Table 3 reports the linear regression parameters for the calibration curves, calibration ranges and limits of 

detection for the investigated carbonyl compounds. 

 

Table 3. Summary of linear regression parameters for the calibration curves, calibration range and limits of 

detection of carbonyl compounds. 

Carbonyl 
Range 

(ppbv) 

Slopea 

(RSD) R2 
LOD 

(pptv) 

Acetaldehyde 6.5-130.3 0.03 (7%) 0.996 1100 

Acetone 8.0-2550.0 11.3 (6%) 0.991 180 

Propanal 0.3-100.0 0.002 (13%) 0.998 80 

Acrolein 0.3-110.0 0.006 (15%) 0.997 110 

2-butanone 0.6-200.0 0.005 (7%) 0.993 140 

Methacrolein 0.4-140.0 0.001 (12%) 0.998 20 

Butanal 0.6-180.0 0.8 (15%) 0.986 150 

2-pentanone 0.5-170.0 0.001 (7%) 0.998 60 

3-pentanone 0.5-170.0 0.001 (15%) 0.998 5 

3-hydroxy-2-butanone 1.3-430.0 1.1 (13%) 0.998 80 

Pentanal 0.3-100.0 0.7 (12%) 0.992 160 

2-hexanone 0.5-150.0 0.4 (7%) 0.997 90 

4-heptanone 0.4-130.0 0.004 (12%) 0.996 10 

Hexanal 0.7-210.0 1.0 (14%) 0.998 10 

3-heptanone 0.4-130.0 0.4 (10%) 0.991 90 

2-heptanone 0.4-130.0 0.4 (10%) 0.998 70 

3-octanone 0.4-120.0 0.4 (13%) 0.981 190 

Heptanal 0.6-200.0 1.2 (12%) 0.997 80 

2-octanone 0.4-120.0 0.001 (10%) 0.982 180 

5-nonanone 0.3-110.0 0.001 (13%) 0.994 5 

Octanal 1.1-350.0 0.7 (13%) 0.999 90 

2-nonanone 0.7-230.0 0.04 (14%) 0.991 160 

Benzaldehyde 0.3-110.0 0.5 (13%) 0.998 130 

Nonanal 0.8-260.0 2.6 (11%) 0.997 130 

Glyoxal 1.0-320.0 0.2 (13%) 0.997 360 

Methylglyoxal 1.0-320.0 0.2 (14%) 0.991 350 

2,3-butanedione 1.1-350.0 2.6 (11%) 0.999 100 
a Calculated from three replicates at five concentration levels (320000-, 100000-, 20000-, 5000- and 100-fold 

dilution from stock gaseous mixtures) according to the following formula: AOxime/AIS × CIS/COxime 

 
As reported in table 3, we observed detection limits in the range 10-350 pptv and 5-200 pptv for aldehydes 

and ketones, respectively. Only acetaldehyde showed a detection limit close to 1 ppbv as a consequence of 

the higher standard deviation of spiked blank samples due to sample contamination from ambient air. 

Mochalski et al determined very low concentration levels of most carbonyl compounds in breath of healthy 

subjects [60]. For example, 2-butanone, 2-pentanone, hexanal, 2-hexanone and heptanone isomers were 

detected at concentrations ranging between 10 and 600 pptv. Therefore, considering that the rate of 

carbonyls production is enhanced in oxidative stress-related diseases, such as chronic obstructive pulmonary 

disease [24], neurodegenerative disease [25] and heart failure [27], these limits are very satisfactory and 

allow a reliable monitoring of carbonyl compounds in breath samples. 
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For all the investigated carbonyls, the RSD values of the RRFs were below 20%, indicating a high degree 

of linearity over the tested concentration range. 

 

3.3.2. Effect of sample volume on the recovery of extracted carbonyl compounds 

A reliable quantification of VOCs using sorbent tubes can be performed when the amount of retained analyte 

linearly increases with sample volume until breakthrough occurs [61]. 

Acetone and 3-hydroxy-2-butanone showed a linear behaviour up to 250 mL, whereas all the other 

carbonyls had a linear behaviour within the investigated volumes range (50-500 mL), showing a coefficient 

of determination (R2) higher than 0.995. 

A desorption efficiency close to 100% was observed for all the investigated carbonyls, highlighting that 

Tenax GR material can be used without fear of any carry over effect. Moreover, no peaks of target 

compounds were observed when an empty stainless steel tube was analysed after the desorption of a sorbent 

tube, containing 130 nmol of PFBHA and loaded with 500 mL of sample (40000-fold dilution from the stock 

gaseous mixtures). 

 

3.3.3. Method precision 

Most carbonyls showed RSDs between 15 and 20%, whereas RSDs close to 30% were observed for di-

carbonyl compounds such as 2,3-butandione. In a derivatization reaction, the use of an internal standard 

generally allows to improve the analytical performance. For example, Poli et al used 2-methylpentanal as an 

internal standard and obtained a method variability (RSD) close to 10% [42], but the possible presence of 

this branched aldehyde in breath samples [20] makes its use as internal standard critical for the quantification 

of analytes. For this reason, we tested 6D-acetone, surely absent in the breath samples, to normalize the yield 

of the derivatization reaction. Results highlighted that this approach halved the relative standard deviation to 

10% and 15% for mono- and di-carbonyl compounds, respectively. 

The reproducibility of derivatization procedure was controlled by monitoring the 6D-acetone-PFBHA 

signal over time. A control chart was drawn with the daily average 6D-acetone-PFBHA peak areas, the 

relevant average area during the whole experimental period, the warning limits (average ± 1 standard 

deviation) and the control limits (average ± 2 standard deviations). The overall variability during six months 

was close to 10%, confirming that our derivatization procedure was highly reproducible and allowed a 

reliable determination of carbonyl compounds. 

 

3.3.4. Stability 

The stability of PFBHA was evaluated at 1, 2, 3 and 4 weeks after the preparation by analysis of variance 

(ANOVA) at a confidence level of 95%. We observed a significant decrease of concentration values (about 

10% for week) over this time span, probably for the reaction of PFBHA with volatile contaminants during 

storage. In fact, a progressive increase of the formaldehyde-PFBHA adduct signal was observed after 2, 3 

and 4 weeks in the solution stored at room temperature and 4 °C. Based on this, we suggest to prepare 

weekly a fresh PFBHA solution. 

The stability of PFBHA in Tenax GR sorbent tubes at room conditions (25 ± 2 °C and RH 50 ± 10 %) was 

determined by spiking 1 µL of a PFBHA solution in methanol (1.4 g/L) into six tubes. Three of them were 

analysed immediately (t0), whereas the others were closed with Swagelok cap, stored at room conditions and 

analysed after 24 h (t0+24h). The mean area values measured at t0 and t0+24h were not statistically different and 

there was no increase of the signal produced from the formaldehyde-PFBHA adduct, thus meaning that 

PFBHA was stable for one day in Tenax GR. Similar results for PFBHA adducts were obtained with sorbent 

tubes sealed with the autosampler caps and stored into the thermal desorption unit. The different stability of 

PFBHA in solution and adsorbed in Tenax GR may be related to the more efficient protection from ambient 

contaminants of the tubes. 

 

3.3.5. Interferences 

The ratio of the peak areas of each isomer pair (Z/E) was monitored for quality control to avoid possible 

biases in the results caused by interfering compounds. In fact, comparable ratios of the (Z/E) isomer signals 

produced by each analyte should be calculated when analysing standards and real samples with the same 

procedure. According to US EPA guidance (no. 556), the (Z/E) isomer ratio should be within 50% of the 
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ratio observed in standards [62]. In our experimental conditions, the variability of (Z/E) ratio was below 20% 

and close to 30% for mono- and di-carbonyl compounds, respectively. 

 

3.4. Application to real samples 

The optimized on-sorbent derivatization procedure was tested by analysing 12 mixed breath samples 

collected from 4 patients (2 males and 2 females) suffering from chronic heart failure (HF) and hospitalized 

at the Cardio-Thoracic-Vascular Department of the Azienda Ospedaliera-Universitaria Pisana (AOUP) in the 

occasion of an acute exacerbation. The study was approved from the Ethics Committee of the Area Vasta 

Nord-Ovest (CEAVNO- Tuscany Region). Breath samples were collected in the morning (10.00 to 12.00 

AM) at the time of hospital admission (t0), after 48 h and at the discharge (td). The possible interference from 

fasting was partially reduced by collecting breath samples always in the morning, 2 h after breakfast. 

Table 4 reports the carbonyl concentrations measured in the patients’ breath samples during hospitalization. 

 

Table 4. Breath carbonyl concentrations (pptv) measured in heart failure patients during hospitalization: at 

the admission (t0), after 48-hour (t0+48h) and at the discharge (td). 

 
P1 P2 P3 P4 

t0 t0+48h td t0 t0+48h td t0 t0+48h td t0 t0+48h td 

Acetaldehydea 13 36 8 3 21 7 5 9 9 16 6 4 

Acetonea 2060 260 200 720 210 260 630 210 470 1190 430 140 

Propanala 6 1 3 4 5 5 180 110 260 4 4 2 

Acrolein 4990 1350 1550 1800 2930 2510 3170 1760 2780 3430 2910 2140 

2-butanone 2260 1080 1010 540 1000 1180 640 530 440 1150 800 370 

Methacrolein 2820 780 1010 1600 1900 1660 2050 1570 1160 2670 3280 3100 

Butanal 2280 790 1090 1940 1220 3000 1500 1210 1300 3500 3150 2800 

2-pentanone 1070 390 260 230 190 190 230 200 § 480 260 § 

3-pentanone 1290 530 660 730 1170 1290 1280 720 1480 1170 1440 1210 

3-hydroxy-2-

butanonea 
36 5 13 10 7 5 23 7 9 200 50 20 

Pentanal 870 710 640 690 1220 1370 * * * 1130 1030 900 

2-hexanone * * * * * * * * * * * * 

4-heptanone 60 § § § § § § * § 40 60 50 

Hexanal 270 190 140 310 100 140 290 130 180 180 60 40 

3-heptanone 340 § § § 280 390 290 390 410 400 490 420 

2-heptanone * * * * * * * * * * * * 

3-octanone * * * * * * * * * * * * 

Heptanal 2670 5600 760 810 1410 1390 * * * 2040 1970 1100 

2-octanone * * * * * * * * * * * * 

5-nonanone * * * * * * * * * * * * 

Benzaldehyde * * * * * * * * * * * * 

Octanal 4950 1400 1230 1230 2340 1920 * * § 2820 3100 2900 

2-nonanone * * * * * * * * * * * * 

Nonanal 1160 1120 890 1000 1410 1460 * * § 2450 2350 400 

Glyoxala 15 15 17 22 18 17 34 21 47 46 37 30 

Methylglyoxala 9 5 5 4 4 5 10 6 10 17 23 18 

2,3-butanedione 900 1080 930 870 420 460 2050 900 460 2950 1410 350 
a concentration expressed in ppbv 
* concentration lower than detection limit 
§ concentration lower than quantification limit 

 

Page 14 of 17AUTHOR SUBMITTED MANUSCRIPT - JBR-100799.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

page 15 of 21 

 

As reported in table 4, at the first collection time, patients showed high breath levels of acetone, 2-

pentanone, 3-hydroxy-2-butanone, 2,3-butandione and hexanal, whereas the remaining breath components 

did not change their levels during hospitalization. Acute exacerbations in chronic heart failure patients are 

characterized by signs and symptoms resulting from fluid overload. The excessive fluid volume starts 

building in the intravascular compartment and then in the interstitial spaces leading to an increase in body 

weight [63]. When water seeps into the air spaces of the lungs (pulmonary edema), gas exchange is reduced 

and eventually the patient experiences shortness of breath (dyspnea), thus requiring hospitalization. At this 

stage, he/she shows a reduced cardiac output, i.e. amount of blood pumped from the heart per minute. The 

heart tries to compensate its reduced efficiency by increasing heart rate, while peripheral vasoconstriction 

helps sustaining blood pressure. The heart gets exhausted in the effort to provide organs with the necessary 

amount of blood, and metabolism shifts to anaerobic conditions. At this stage of the disease, an imbalanced 

redox state as well as metabolic and neuroendocrine responses are observed, leading the release of many 

chemicals (e.g. ketone bodies and aldehydes) in blood-stream [64, 65]. During hospitalization, all patients 

were treated with diuretics and β-blockers to manage HF and improved their clinical conditions, as 

highlighted by the reduction of BNP plasma levels (by at least three times). We speculate that decreasing 

trends of breath acetone, 2-pentanone, 3-hydroxy-2-butanone, 2,3-butandione and hexanal resulted from the 

improved clinical conditions, as discussed elsewhere [15, 64-67]. 

The limited number of patients does not allow us to produce firm conclusions, however the longitudinal 

approach allows to cope with the inter-individual variability of breath composition [1, 2]. In fact, monitoring 

a patient over time permits to him/her to act as his/her own control and to correlate more easily variations of 

breath composition to the evolution of the disease. If these data will be confirmed in a larger number of 

patients, it will be possible to demonstrate the usefulness of breath carbonyls as a source of clinical 

information regarding the pathogenesis of HF or the identification of subjects at risk. 

 

4. Conclusions 

This paper reported an analytical protocol for the determination of carbonyl compounds in exhaled breath 

samples by on-sorbent derivatization coupled with thermal desorption and gas chromatography-tandem mass 

spectrometry. The procedure entails the transfer of an aliquot of sample (250 mL) at a flow rate of 50 

mL/min onto Tenax GR sorbent tubes spiked with 130 nmol of O-(2,3,4,5,6-pentafluorobenzyl) 

hydroxylamine hydrochloride. 

The method has a broad applicability in medicine since alterations of the aldehyde and ketone content in 

blood, and therefore in exhaled breath, are directly related to unsaturated lipid peroxidation. Diseases 

causing oxidative stress, and therefore alterations of the carbonyl compound pattern, are extremely numerous 

and important for human health. As an example, we can mention diabetes, obesity, cardiovascular disease, 

heart failure, neurodegenerative diseases, liver disease, etc. In many cases, the appearance of the disease 

corresponds to an alteration of the normal pattern of carbonyl compounds, rather than the appearance of new 

compounds. This requires the availability of analytical procedures that, in addition to adequate accuracy and 

detection limits, offer above all a high precision in measuring the concentration of a given compound. 

The analytical performance of the proposed method has confirmed that the PFBHA on-sorbent approach 

provides a sensitive and reliable procedure for the determination of carbonyls in human breath samples and, 

more importantly, ensures the required precision by using an internal standard. 

As a clinical example, the present method was applied to monitor the altered oxidation of fatty acids and 

imbalanced redox state in patients suffering from heart failure. Acetone, 2-pentanone, 3-hydroxy-2-

butanone, 2,3-butandione, and hexanal showed a clear decreasing trend that may correlate with the improved 

clinical conditions. These preliminary results are very encouraging for future applications of the method to 

monitor patients suffering from heart failure and other diseases. 
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