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Abstract. Specification decomposition is a theoretically interesting and
practically relevant problem for which two approaches were indepen-
dently developed by the control theory and verification communities:
natural projection and partial model checking. In this paper we show
that, under reasonable assumptions, natural projection reduces to partial
model checking and, when cast in a common setting, the two are equiv-
alent. Aside from their theoretical interest, our results build a bridge
whereby the control theory community can reuse algorithms and results
developed by the verification community. In addition, we present an algo-
rithm and a tool for the partial model checking of finite-state automata
that can be used as an alternative to natural projection.

1 Introduction

System verification requires comparing a system’s behavior against a specifi-
cation. When the system consists of several components, we can distinguish
between local and global specifications. A local specification applies to a single
component, whereas a global specification should hold for the entire system.
Since these specifications are needed to reason at different levels of abstraction,
both of them are often present.

Ideally, we would like to freely pass from local to global specifications and vice
versa. Most specification formalisms natively support specification composition.
Logical conjunction, set intersection, and the synchronous product of automata
are all examples of operators for composing specifications. Unfortunately, the
same does not hold for specification decomposition: obtaining local specifications
from a global one is, in general, extremely complex, as illustrated below.
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Example 1. Consider the classical submodule construction problem (SCP) [27]:
given a system and a global specification, find a submodule whose composition
with the system leads to a global behavior conformant to the global specification.
For instance, imagine that we aim to control the usage of a buffer of size n, where
two agents, A and B, can insert and remove items. Now assume that A’s behav-
ior is to “insert one item when the buffer is empty and delete one item when it
is full”, while B’s behavior is unknown. If we want to prevent buffer overflow
and underflow, some questions arise about B. For example, are there compat-
ible behaviors for B? Is there a most general one? How could we effectively
compute it? These questions require decomposing the buffer overflow/underflow
specification so that it only refers to B, while exploiting the known structure
of A. ��

Over the past decades, researchers have investigated methods for decompos-
ing specifications. Interestingly, different communities have tackled this prob-
lem independently, each considering specification formalisms and assumptions
appropriate for their application context. In particular, important results were
obtained in two distinct fields: control theory and formal verification.

In control theory, natural projection [33] is used for simplifying systems built
from multiple components, modeled as automata. It is often applied component-
wise to synthesize local controllers from a global specification of asynchronous
discrete-event system [9], namely the controller synthesis problem (CSP). Briefly,
local controllers guarantee that the global specification is not violated by inter-
acting only with a single component of a system. The local controllers can be
used to implement distributed control systems [34,35] by composing them in
parallel with other sub-systems.

In the formal verification community, partial model checking [1] was proposed
as a technique for mitigating the state explosion problem when verifying large
systems built from many parallel processes. Partial model checking tackles this
problem by decomposing a specification, given as a formula of the μ-calculus [22],
using a quotienting operator, thereby supporting the analysis of the individual
processes independently. Quotienting carries out a partial evaluation of a spec-
ification while preserving the model checking problem. Thus, a system built by
composing two modules satisfies a specification if and only if one of the modules

Table 1. Summary of existing results on natural projection and partial model checking.
Notice that the algorithm in [32] runs in PTIME on a specific class of discrete-event
systems.

Natural Projection Partial MC

Spec. Lang. FSA [19,31] μ-calculus [1,3]

Theory FSA [19,31] LTS [1,3]

Complexity EXPTIME [14,32] EXPTIME [1,3]

Tools TCT [13], IDES3 [30],
DESTool [28]

mCRL2 [18],
CADP [23], MuDiv [2]
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satisfies the specification after quotienting against the other [1]. This may reduce
the problem size, resulting in smaller models and hence faster verification.

Table 1 summarizes some relevant facts about the two approaches and we
refer the reader to Sect. 5 for a more detailed analysis. Since natural projection
and partial model checking apply to different formalisms, they cannot be directly
compared without defining a common framework (see below). For instance, a
relevant question is comparing how specifications grow under the two approaches.
Although it is known that both may lead to exponential growth (see [3,21,32]),
these results apply in one case to finite-state automata (FSAs) and in the other
case to μ-calculus formulae.

Over the past few years, there has been a substantial cross-fertilization
between the two research communities [12]. For instance, methods for synthe-
sizing controllers using partial model checking are given in [6,25]. The authors
of [15,17] propose similar techniques, but they use fragments of the μ-calculus
and CTL∗, respectively.

We follow here the suggestion of Ehlers et al. [12], who advocate formally
connecting these two approaches so as to make them interchangeable. In their
words:

“Such a formal bridge should be a source of inspiration for new lines
of investigation that will leverage the power of the synthesis techniques
that have been developed in these two areas. [...] It would be worthwhile
to develop case studies that would allow a detailed comparison of these
two frameworks in terms of plant and specification modeling, computa-
tional complexity of synthesis, and implementation of derived supervisor/
controller.”

As for the first remark, we show that, under reasonable assumptions, natural pro-
jection reduces to partial model checking and, when cast in a common setting,
they are equivalent. To this end, we first define a common theoretical framework
for both. In particular, we slightly extend both the notion of natural projec-
tion and the semantics of the μ-calculus in terms of the satisfying traces. These
extensions allow us to apply natural projection to the language denoted by a
specification. In addition, we extend the main property of the quotienting oper-
ator by showing that it corresponds to the natural projection of the language
denoted by the specification, and vice versa (Theorem 4).

We provide additional results that contribute to the detailed comparison
referred to in the second remark. Namely we define a new algorithm for partial
model checking directly on LTSs (rather than on the μ-calculus). We prove our
algorithm correct with respect to the traditional quotienting rules and we show
it runs in polynomial time, like the algorithms based on natural projection. We
have implemented this algorithm in a tool, which is available online [11]. Along
with the tool, we developed several case studies illustrating its application to
the synthesis of both submodules and local controllers.

Structure of the paper. Section 2 presents our unified theoretical framework
for natural projection and partial model checking. Section 3 contains our main
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theoretical results, in particular Theorem 4 on the equivalence of quotienting
and natural projection. In Sect. 4 we introduce a novel quotienting algorithm,
discuss its properties, and apply it to our running example. In Sect. 5 we briefly
survey the related literature and in Sect. 6 we draw conclusions. The formal
proofs together with the correctness and the complexity of our algorithm, and
our experimental results are available at https://github.com/SCPTeam/pests/
blob/master/proofs and experiments.pdf.

2 A General Framework

In this section we cast both natural projection and partial model checking in a
common framework. We start with a running example: a scenario inspired by
[10,33], which is an instance of Example 1.

Example 2 (Running example). A drone package delivery (DPD) system relies
on unmanned aerial vehicles (UAVs) to transport goods within a given area.
Drones interact with docking stations where they can pick up (action u) or
deposit (action d) an item. These actions are only observable to the docking
station. Additional interactions are represented by the two control actions s
(for synchronize) and t (for terminate). An action t takes place when UAVs are
requested to leave the station, e.g., due to a maintenance operation, while s is
used for the global synchronization of both the docking station and UAVs.

Figure 1 depicts a transition system that encodes the specification of an n-
position buffer P (n) handled by a docking station. Intuitively, UAVs cannot
perform d actions when the buffer is full (state pn) and u actions when the
buffer is empty (state p0). Since synchronization actions s and t are immaterial,
they label self-loops. ��

p0 p1 · · · pn

d

s, t

u

d

s, t

u

d

u

s, t

Fig. 1. An n-positions buffer specification P (n).

2.1 Language Semantics Versus State Semantics

Natural projection is commonly defined over (sets of) words [33]. Words are finite
sequences of actions, i.e., symbols labeling each transition between two states of
a finite-state automaton (FSA). The language of an FSA is the set of all words
that label a sequence of transitions from an initial state to some distinguished
state, like a final or marking state. We call the function L that maps each FSA
to the corresponding language semantics. Given a system T and a specification
S, both FSAs, then T is said to satisfy S whenever L(T ) ⊆ L(S).

https://github.com/SCPTeam/pests/blob/master/proofs_and_experiments.pdf
https://github.com/SCPTeam/pests/blob/master/proofs_and_experiments.pdf
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For partial model checking, the specification S is defined by a formula of the
μ-calculus. In this case, the standard interpretation is given by a state semantics,
i.e., a function that given a system T and a formula Φ returns the set of states
of T that satisfy Φ. Usually, T is given as a labeled transition system (LTS).
An LTS is similar to an FSA, but with a weaker notion of acceptance, where
all states are final. A set of evaluation rules formalizes whether a state satisfies
a formula or not. Given an LTS T and a μ-calculus formula Φ, we say that T
satisfies Φ whenever its initial state does.

The language semantics of temporal logics is strictly less expressive than the
state-based one [16]. A similar fact holds for FSA and regular expressions [5].
Here we use a semantics from which both the state-based and the language
semantics can be obtained.

2.2 Operational Model and Natural Projection

We now generalize slightly the existing approaches based on partial model check-
ing and on supervisory control theory used for locally verifying global properties
of discrete event systems. We then constructively prove that the two approaches
are equally expressive so that techniques from one can be transferred to the other.
To this end, we consider models expressed as (finite) labeled transition systems,
which describe the behavior of discrete systems. In particular, we restrict our-
selves here to deterministic transition systems.

Definition 1. A (deterministic) labeled transition system (LTS) is a tuple A =
(SA, ΣA,→A, ıA) where SA is a finite set of states (with ıA the initial state), ΣA

is a finite set of action labels, and →A: SA ×ΣA → SA is the transition function.
We write t = s

a−→ s′ to denote a transition, whenever →A (a, s) = s′, and we
call s the source state, a the action label, and s′ the destination state.

A trace σ ∈ T of an LTS A is either a single state s or a sequence of
transitions t1 · t2 · . . . such that for each ti, its destination is the source of ti+1

(if any). When unnecessary, we omit the source of ti+1, and write a trace as the
sequence σ = s0a1s1a2s2 . . . ansn, alternating elements of SA and ΣA (written
in boldface for readability). Finally, we denote by [[A, s]] the set of traces of A
starting from state s and we write [[A]] for [[A, ıA]], i.e., for those traces starting
from the initial state ıA. ��

Example 3. Consider again our running example. Figure 2 depicts the LTSs A
and B. A models an UAV that deposits (d) two items in the buffer and performs
a synchronization action (s). Optionally, A can also leave the docking station
(t). In contrast, B repeatedly picks an item and synchronizes. Both A and B
may also leave the docking station (t). Notice that the traces [[A]] starting from
the initial state of A are [[A]] = {q0, q0dq1, q0tq3, q0dq1dq2, q0dq1dq2sq0, . . .}. In
contrast, the traces starting from the initial state of B are

[[B]] = {r0, r0ur1, r0tr2, r0ur1sr0, r0ur1sr0ur1, . . .}. ��

Typically, a system, or plant in control theory terms, consists of multiple
interacting components running in parallel. Below we rephrase the synchronous
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product of [33]. Intuitively, when two LTSs are put in parallel, each proceeds asyn-
chronously, except on those actions they share, upon which they synchronize.

Definition 2. Given two LTSs A and B such that ΣA ∩ ΣB = Γ , the syn-
chronous product of A and B is A ‖ B = (SA × SB, ΣA ∪ ΣB ,→A‖B , 〈ıA, ıB〉),
where →A‖B is as follows:

〈sA, sB〉 a−→A‖B 〈s′
A, sB〉 if sA

a−→A s′
A and a ∈ ΣA \ Γ

〈sA, sB〉 b−→A‖B 〈sA, s′
B〉 if sB

b−→B s′
B and b ∈ ΣB \ Γ

〈sA, sB〉 γ−→A‖B 〈s′
A, s′

B〉 if sA
γ−→A s′

A, sB
γ−→A s′

B, and γ ∈ Γ. ��

Example 4. Consider again the LTSs A and B of Fig. 2. Their synchronous prod-
uct A ‖ B (with Γ = {s, t}) is depicted in Fig. 3. ��

q0q3 q1 q2
d d

s

t
r0 r1r2

u

t
s

Fig. 2. From left to right, two UAVs adding to (A) and removing from (B) the buffer.

〈q0, r0〉 〈q1, r0〉 〈q2, r0〉 〈q2, r1〉 〈q1, r1〉 〈q0, r1〉〈q3, r2〉 d

t

d

dd

s

u

u

u

Fig. 3. Synchronous product A ‖ B where bold transitions denote synchronous moves.

Next, we generalize the natural projection on languages, which is a kind of
inverse operation of the synchronous product of two LTSs. Given a computa-
tion of A ‖ B, the natural projection extracts the relevant trace of one of the
LTSs, including the synchronized transitions (see the second case below). Note
that, unlike the definition given, for example in [33], our definition returns a
sequence of transitions, including both states and actions. We also define the
inverse projection in the expected way.
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Definition 3. For LTSs A and B with Γ = ΣA ∩ ΣB, the natural projection
on A of a trace σ, in symbols PA(σ), is defined as follows:

PA(〈sA, sB〉) = sA

PA(〈sA, sB〉 a−→A‖B 〈s′
A, s′

B〉 · σ) = sA
a−→A s′

A · PA(σ) if a ∈ ΣA

PA(〈sA, sB〉 b−→A‖B 〈sA, s′
B〉 · σ) = PA(σ) if b ∈ ΣB \ Γ.

Natural projection on second component B is analogously defined. We extend the
natural projection to sets of traces in the usual way: PA(T ) = {PA(σ) | σ ∈ T}.

The inverse projection of a trace σ over an LTS A ‖ B, in symbols P−1
A (σ),

is defined as P−1
A (σ) = {σ′ | PA(σ′) = σ}. Its extension to sets is P−1

A (T ) =⋃

σ∈T

P−1
A (σ). ��

Example 5. Consider the two traces σ1 = 〈q0, r0〉d〈q1, r0〉u〈q1, r1〉d〈q2, r1〉s
〈q0, r0〉 and σ2 = 〈q0, r0〉u〈q0, r1〉d〈q1, r1〉d〈q2, r1〉s〈q0, r0〉. We have that
the projections PA(σ1) = PA(σ2) = q0dq1dq2sq0 ∈ [[A]], and σ1, σ2 ∈
P−1

B (q0dq1dq2sq0). Also notice that all the traces of the form (〈q0, r0〉d)∗σ1

belong to P−1
B (q0dq1dq2sq0). ��

Two classical properties [33] concerning the interplay between the syn-
chronous product and the natural projection hold, the proofs of which are trivial.

Fact 1. PA([[A ‖ B]]) ⊆ [[A]] and [[A ‖ B]] = P−1
B ([[A]]) ∩ P−1

A ([[B]]).

2.3 Equational µ-calculus and Partial Model Checking

Below, we recall the variant of μ-calculus commonly used in partial model check-
ing called modal equations [1]. A specification is given as a sequence of modal
equations, and one is typically interested in the value of the top variable that
is the simultaneous solution to all the equations. Equations have variables on
the left-hand side and assertions on the right-hand side. Assertions are built
from the boolean constants ff and tt , variables x, boolean operators ∧ and ∨,
and modalities for necessity [·] and possibility 〈·〉. Equations also have fix-
point operators (minimum μ and maximum ν) over variables x, and can be
organized in equation systems.

Definition 4 (Syntax of the μ-calculus). Given a set of variables x ∈ X
and an alphabet of actions a ∈ Σ, assertions ϕ,ϕ′ ∈ A are given by the syntax:

ϕ ::= ff | tt | x | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | [a]ϕ | 〈a〉ϕ.

An equation is x =π ϕ, where π ∈ {μ, ν}, μ denotes a minimum fixed point
equation, and ν a maximum one. An equation system Φ is a possibly empty
sequence (ε) of equations, where each variable x occurs in the left-hand side of
at most a single equation. Thus Φ is given by

Φ ::= x =π ϕ;Φ | ε.

A top assertion Φ↓x projects the simultaneous solution of an equation system Φ
onto the top variable x. ��
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We define the semantics of modal equations in terms of the traces of an LTS
by extending the usual state semantics of [1] as follows. First, given an assertion
ϕ, its state semantics ‖ϕ‖ρ is given by the set of states of an LTS that satisfy ϕ
in the context ρ, where the function ρ assigns meaning to variables. The boolean
connectives are interpreted as intersection and union. The possibility modal-
ity ‖〈a〉ϕ‖ρ (respectively, the necessity modality ‖[a]ϕ‖ρ) denotes the states for
which some (respectively, all) of their outgoing transitions labeled by a lead to
states that satisfy ϕ. For more details on μ-calculus see [8,22].

Definition 5 (Semantics of the μ-calculus [1]). Let A be an LTS, and
ρ : X → 2SA be an environment that maps variables to sets of A’s states. Given
an assertion ϕ, the state semantics of ϕ is the mapping ‖·‖ : A → (X → 2SA) →
2SA inductively defined as follows.

‖ff ‖ρ = ∅ ‖tt‖ρ = SA ‖x‖ρ = ρ(x)

‖ϕ ∧ ϕ′‖ρ = ‖ϕ‖ρ ∩ ‖ϕ′‖ρ ‖[a]ϕ‖ρ = {s ∈ SA | ∀s′.s a−→A s′ ⇒ s′ ∈ ‖ϕ‖ρ}

‖ϕ ∨ ϕ′‖ρ = ‖ϕ‖ρ ∪ ‖ϕ′‖ρ ‖〈a〉ϕ‖ρ = {s ∈ SA | ∃s′.s a−→A s′ ∧ s′ ∈ ‖ϕ‖ρ}

We extend the state semantics from assertions to equation systems. First
we introduce some auxiliary notation. The empty mapping is represented by [ ],
[x �→ U ] is the environment where U is assigned to x, and ρ ◦ ρ′ is the mapping
obtained by composing ρ and ρ′. Given a function f(U) on the powerset of SA,
let πU.f(U) be the corresponding fixed-point. We now define the semantics of
equation systems by:

‖ε‖ρ = [ ]
‖x =π ϕ;Φ‖ρ = R(U∗) where U∗ = πU.‖ϕ‖ρ◦R(U)

and R(U) = [x �→ U ] ◦ ‖Φ‖ρ◦[x�→U ].

Finally, for top assertions, let ‖Φ ↓ x‖ be a shorthand for ‖Φ‖[ ](x). ��

Note that whenever we apply function composition ◦, its arguments have disjoint
domains. Next, we present the trace semantics: a trace starting from a state s
satisfies ϕ if s does.

Definition 6. Given an LTS A, an environment ρ, and a state s ∈ SA, the trace
semantics of an assertion ϕ is a function 〈〈·〉〉 : A → SA → (X → 2SA) → T ,
which we also extend to equation systems, defined as follows.

〈〈ϕ〉〉s
ρ =

{
[[A, s]] if s ∈ ‖ϕ‖ρ

∅ otherwise
〈〈Φ〉〉ρ = λx.

⋃

s∈‖Φ‖ρ(x)

[[A, s]].

We write 〈〈Φ↓x〉〉 in place of 〈〈Φ〉〉[ ](x). ��

Example 6. Consider Φ↓x where Φ = {x =μ [d]y ∧ 〈u〉tt ; y =ν 〈d〉x ∨ 〈s〉x} .
We compute ‖Φ↓x‖ with respect to A ‖ B. ‖Φ ↓ x‖ = U∗ = μU.F (U), where
F (U) = ‖[d]y ∧ 〈u〉tt‖[x�→U,y �→G(U)] and G(U) = νU ′.‖〈d〉x ∨ 〈s〉x‖[x�→U,y �→U ′] =
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‖〈d〉x ∨ 〈s〉x‖[x�→U ] (since y does not occur in the assertion). Following the
Knaster-Tarski theorem, we compute U∗ =

⋃n
Fn(∅):

1. G(∅) = ‖〈d〉x ∨ 〈s〉x‖[x�→∅] = ∅ and U1 = F (∅) = ‖[d]y ∧ 〈u〉tt‖[x�→∅,y �→∅] =
{〈q2, r0〉} (i.e., the only state that admits u but not d).

2. G({〈q2, r0〉}) = ‖〈d〉x ∨ 〈s〉x‖[x�→{〈q2,r0〉}] = {〈q1, r0〉} (since 〈q1, r0〉 d−→
〈q2, r0〉) and U2 = F ({〈q2, r0〉}) = ‖[d]y ∧ 〈u〉tt‖[x�→{〈q2,r0〉},y �→{〈q1,r0〉}] =
{〈q0, r0〉, 〈q2, r0〉}.

3. G(U2) = ‖〈d〉x ∨ 〈s〉x‖[x�→{〈q0,r0〉,〈q2,r0〉}] = {〈q1, r0〉, 〈q2, r1〉} and
U3 = F (U2) = ‖[d]y ∧ 〈u〉tt‖[x�→U2,y �→G(U2)] = {〈q0, r0〉, 〈q2, r0〉}.

Since U2 = U3, we have obtained the fixed point U∗. Finally, we can compute
〈〈Φ↓x〉〉, which amounts to [[A, 〈q0, r0〉]] ∪ [[A, 〈q2, r0〉]]. ��

We now define when an LTS satisfies an equation system. Recall that [[A]] stands
for [[A, ıA]].

Definition 7. An LTS A satisfies a top assertion Φ↓x, in symbols A |=s Φ↓x, if
and only if ıA ∈ ‖Φ↓x‖. Moreover, let A |=σ Φ↓x if and only if [[A]] ⊆ 〈〈Φ↓x〉〉. ��

The following fact relates the notion of satisfiability defined in terms of state
semantics (|=s) with the one based on trace semantics (|=σ); its proof is imme-
diate by Definition 6.

Fact 2. A |=s Φ↓x if and only if A |=σ Φ↓x.

As previously mentioned, partial model checking is based on the quotienting
operation //. Roughly, the idea is to specialize the specification of a composed
system on a particular component. Below, we define the quotienting operation [1]
on the LTS A ‖ B. Quotienting reduces A ‖ B |=s Φ to solving B |=s Φ↓x//BA.
Note that each equation of the system Φ gives rise to a system of equations,
one for each state si of A, all of the same kind, minimum or maximum (thus
forming a π-block [3]). This is done by introducing a fresh variable xsi

for each
state si. Intuitively, the equation xsi

=π ϕ//ΣB
si represents the requirements on

B when A is in state si. Since the occurrence of the variables on the right-hand
side depends on the A’s transitions, Φ↓x//BA embeds the behavior of A.

Definition 8. Given a top assertion Φ ↓ x, we define the quotienting of the
assertion on an LTS A with respect to an alphabet ΣB as follows.

Φ↓x//ΣB
A = (Φ//ΣB

A)↓xıA
, where

ε//ΣB
A = ε (x =π ϕ;Φ)//ΣB

A =

⎧
⎪⎨

⎪⎩

xs1 =π ϕ//ΣB
s1

...
xsn

=π ϕ//ΣB
sn

; Φ//ΣB
A (∀ si ∈ SA)

x//ΣB
s = xs tt//ΣB

s = tt ff //ΣB
s = ff
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ϕ ∨ ϕ′//ΣB s = ϕ//ΣB s ∨ ϕ′//ΣB s ϕ ∧ ϕ′//ΣB s = ϕ//ΣB s ∧ ϕ′//ΣB s

(〈a〉ϕ)//ΣB s =
∨

s
a−→s′

ϕ//ΣB s′ ([a]ϕ)//ΣB s =
∧

s
a−→s′

ϕ//ΣB s′ if a ∈ ΣA \ Γ

(〈b〉ϕ)//ΣB s = 〈b〉(ϕ//ΣB s) ([b]ϕ)//ΣB s = [b](ϕ//ΣB s) if b ∈ ΣB \ Γ

(〈γ〉ϕ)//ΣB s =
∨

s
γ−→s′

〈γ〉(ϕ//ΣB s′) ([γ]ϕ)//ΣB s =
∧

s
γ−→s′

[γ](ϕ//ΣB s′) if γ ∈ Γ.

��
Example 7. Consider the top assertion Φ ↓ x of Example 6 and the LTSs A and
B of Example 3. Quotienting Φ ↓ x against B, we obtain Φ//ΣA

B ↓ xr0 where

Φ//ΣAB =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xr0 =μ [d]yr0 ∧ tt
xr1 =μ [d]yr1 ∧ ff
xr2 =μ [d]yr2 ∧ ff
yr0 =ν 〈d〉xr0 ∨ ff
yr1 =ν 〈d〉xr1 ∨ 〈s〉xr0

yr2 =ν 〈d〉xr2 ∨ ff

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xr0 =μ [d]yr0

xr1 =μ ff
xr2 =μ ff
yr0 =ν 〈d〉xr0

yr1 =ν 〈d〉xr1 ∨ 〈s〉xr0

yr2 =ν 〈d〉xr2

=

{
xr0 =μ [d]yr0

yr0 =ν 〈d〉xr0 .

The leftmost equations are obtained by applying the rules of Definition 8. Then
we simplify on the right-hand sides. Finally we reduce the number of equations by
removing those unreachable from the top variable xr0 . For a detailed description
of our simplification strategies we refer the reader to [3]. By proceeding as in
Example 6, we obtain {q0, q2, q3} as the fixpoint. ��

3 Unifying the Logical and the Operational Approaches

In this section we prove the equivalence between natural projection and partial
model checking (Theorem 4). To start, we introduce an auxiliary definition that
roughly acts as a quotienting of an environment ρ. Below, we will write

⊕

i∈I

ρi

for the finite composition of functions ρi over the elements of an index set I.

Definition 9. Given a synchronous product A ‖ B, we define
ΔB(·) : (X → 2SA×SB ) → (XSA

→ 2SB ) as

ΔB(ρ) =
⊕

x∈Dom(ρ)

⊕

sA∈SA

[xsA 	→ Ux
B(sA)], where Ux

B(sA) = {sB | 〈sA, sB〉 ∈ ρ(x)}.

��

A technical lemma follows. Intuitively, quotienting an assertion (and an envi-
ronment) preserves the semantics, i.e., a state 〈sA, sB〉 satisfies ϕ if and only if sB

satisfies the quotient of ϕ on B. Indeed, the following statement can be rewritten
as ‖ϕ//ΣB

sA‖ΔB(ρ) = {sB | 〈sA, sB〉 ∈ ‖ϕ‖ρ}.

Lemma 1. For all A,B, ρ and ϕ on A ‖ B, 〈sA, sB〉 ∈ ‖ϕ‖ρ ⇐⇒ sB ∈
‖ϕ//ΣB

sA‖ΔB(ρ).

We next extend Lemma 1 to a system of equations, providing an alternative
view of quotienting an assertion on a component of a synchronous product.
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Lemma 2. For all A,B, ρ and Φ on A ‖ B, ΔB(‖Φ‖ρ) = ‖Φ//ΣB
A‖ΔB(ρ).

The following corollary is immediate (recall that xsA
is the variable corre-

sponding to the quotient of x on sA).

Corollary 1. For all A,B, ρ, x and Φ on A ‖ B,

〈sA, sB〉 ∈ ‖Φ‖ρ(x) ⇐⇒ sB ∈ ‖Φ//ΣB
A‖ΔB(ρ)(xsA

).

We next establish the correspondence between quotienting and natural
projection.

Theorem 3. For all A,B, x and Φ on A ‖ B, 〈〈Φ↓x//ΣB
A〉〉 = PB(〈〈Φ↓x〉〉).

The following theorem states that the synchronous product of two LTSs
satisfies a global equation system if and only if its components satisfy their
quotients, i.e., their local assertions.

Theorem 4. For all A,B, x and Φ on A ‖ B,

A ‖ B |=ς Φ↓x (ς ∈ {s, σ})

if and only if any of the following equivalent statements holds:
1. A |=ς Φ↓x//ΣA

B 2. B |=ς Φ↓x//ΣB
A

3. A |=σ PA(〈〈Φ↓x〉〉) 4. B |=σ PB(〈〈Φ↓x〉〉).

4 Quotienting Finite-State Systems

In this section we present an algorithm for quotienting a finite-state system
defined as an LTS. Afterwards, we prove its correctness with respect to the
standard quotienting operator and we study its complexity. Finally, we apply
it to our working example to address three problems: verification, submodule
construction, and controller synthesis.

4.1 Quotienting Algorithm

Our algorithm consists of two procedures that are applied sequentially. The
first, called quotient (Table 2), builds a non-deterministic transition system
from two LTSs, i.e., a specification P and an agent A. Moreover, it takes as an
argument the alphabet of actions of the new transition system. Non-deterministic
transition systems have a distinguished label λ, and serve as an intermediate
representation. The states of the resulting transition system include all the pairs
of states of P and A, except for those that denote a violation of P (line 1). The
transition relation (line 3) is defined using the quotienting rules from Sect. 2.
Also, note that the relation → is restricted to the states of S (denoted →S).

The second procedure, called unify (given in Table 3) translates a non-
deterministic transition system back to an LTS. Using closures over λ, unify
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groups states of the transition system. This process is similar to the standard
subset construction algorithm [19], except that we put an a ∈ ΣB \ Γ transition
between two groups Q and M only if (i) M is the intersection of the λ-closures
of the states reachable from Q with an a transition and (ii) all the states of
Q admit at least an a transition leading to a state of M (∧-move). Procedure
unify works as follows. Starting from the λ-closure of B’s initial state (line 1) it
repeats a partition generation cycle (lines 4–13). Each cycle removes an element
Q from the set S of the partitions to be processed. Then, for all the actions
in ΣB \ {λ}, a partition M is computed by ∧-move (line 7). If the partition
is nonempty, a new transition is added from Q to M (line 9). Also, if M is a
freshly generated partition, i.e., M �∈ R, it is added to both S and R (line 10).
The procedure terminates when no new partitions are generated.

Table 2. The quotienting algorithm.

Our quotienting algorithm is correct with respect to the quotienting oper-
ator and runs in PTIME. Intuitively, we avoid an exponential blow-up in our
contribution (in contrast to Table 1) since we only consider deterministic transi-
tion systems. Notice that a determinization step for non-deterministic transition
systems is exponential in the worst case.

4.2 Prototype and Application to the Running Example

We implemented the algorithm presented above as part of a tool suite for the
partial evaluation of finite state models called the partial evaluator of simple
transition systems (pests).1 We applied the prototype to some case studies,

1 The tools in our library work on FSA.
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Table 3. The unification algorithm.

including a real world one based on a flexible manufacturing system.2 For the
sake of presentation we only show here the application to the running example.
In particular, we leverage our algorithm to address three different problems: (i)
reducing the verification of a parallel composition to that of a single component,
(ii) synthesizing a submodule that respects a global specification (SCP), and
(iii) synthesizing a controller for a given component (CSP).

Verification. Here we want to check whether A ‖ B �|=s P (2). To do this we
follow the approach of [1], i.e., we start by quotienting the specification P (2)
against A (see Fig. 2). The result is a two-state specification P ′ having a single
transition labeled with t. Clearly B �|=s P ′ and a counterexample is the trace
σ = r0ur1sr0tr2, as σ ∈ [[B]] while σ �∈ [[P ′]]. As a consequence A ‖ B �|=s P .
Intuitively, this is because after the two d actions, A performs a single s, which
is insufficient to delimit a “safety zone” for actions u by B (which might occur
too late, e.g., after another d by A). Thus, P ′ does not allow an s that might
permit A to carry out the third d move before a u action.

Fixing the example. Given to the previous reasoning, we cannot synthesize mean-
ingful submodules and controllers starting from A. To fix our example, we there-
fore replace A with A′, as depicted in Fig. 4. A′ resembles A but has an extra
state q4 that enables a second s transition. Intuitively, it represents the “safety
zone” just described.

SCP. We now apply the quotienting algorithm to A′ in the case of buffer sizes 2
and 3 to construct the submodules that comply with P (2) and P (3), respectively.

2 FlexFact http://www.rt.eei.uni-erlangen.de/FGdes/productionline.html.

http://www.rt.eei.uni-erlangen.de/FGdes/productionline.html
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Fig. 4. Graphical representation of A′, B2 and B3 (from left to right).

Thus, we set ΣB = {u, s, t}. In this way, the quotienting algorithm generates a
component that not only synchronizes through actions s and t, but also performs
actions u autonomously. The resulting agents B2 and B3 appear in Fig. 4.

The agent B2 synchronizes on the first s transition of A′ to ensure that both
the d actions have been performed. Afterwards, the buffer must be cleared (two
u actions) before synchronizing again on s (thereby permitting A′ to cycle).
Synchronizing on t is also possible. In this case, no further modifications of the
buffer happen.

With a buffer of size 3, the agent B3 is more complex. Intuitively, A′ can
perform its two d actions only when the buffer contains at most one item. Thus,
B3 has two loops. The inner loop (passing through the states w0 w1 w2 w4) is
analogous to that of B2 (where two u actions are performed in sequence) and, if
completed, it empties the buffer. Moreover, the specification includes an external
loop (w2 w3 w6 w1) that removes two elements from the full buffer of size 3. As
expected, the two cycles can be combined. Finally, notice that the action t can
occur under two conditions: if the buffer contains no items (w0) or exactly 1
item (w3). In the second case, a final u action (w5) can occur.

〈q0, w0〉 〈q1, w0〉 〈q2, w0〉 〈q3, w1〉 〈q3, w2〉

〈q3, w4〉〈q4, w5〉〈q4, w7〉 〈q0, w3〉 〈q1, w3〉 〈q2, w3〉

〈q3, w6〉d

t

d s u

u
s

s

u
d

t

d

s

u

k0

k1

k2

s

t

Fig. 5. Graphical representation of A′ ‖ B3 and C (from left to right).

CSP. We consider now the problem of synthesizing a controller for A′ ‖ B3 (see
Fig. 5). In particular, we want a controller to enforce P (2) on it.3 To generate the
controller, we run the quotienting algorithm with ΣB = {s, t}, i.e., we force the

3 Notice that A′ ‖ B3 does not comply with P (2) as B3 was synthesized from P (3).
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algorithm to build a component that can only synchronize on the controllable
actions s and t. The resulting controller is depicted on the right of Fig. 5. Intu-
itively, the controller only admits two operations: either t or s. The first case is
when A′ and B3 terminate (state 〈q4, w7〉). Otherwise, only a single s action can
occur. In fact, after one s action, the target reaches 〈q3, w1〉 completely filling
in the stack with two d actions. The system can then reach both 〈q3, w2〉 and
〈q3, w4〉. Since an s action leads from 〈q3, w2〉 to 〈q0, w3〉, where the system can
perform other two d transitions, it is not allowed.

5 Related Work

Natural projection is mostly used by the community working on control the-
ory and discrete-event systems. In the 1980s, the seminal works by Wonham
et al. (e.g., [34,35]) exploited natural projection-based algorithms for synthe-
sizing both local and global controllers. Along this line of research, other
authors proposed extensions and refinements, relying on natural projection (e.g.,
see [13,14,24,32]).

Partial model checking has been successfully applied to the synthesis of con-
trollers. Given an automaton representing a plant and a μ-calculus formula, Basu
and Kumar [6] compute the quotient of the specification with respect to the
plant. The satisfiability of the resulting formula is checked using a tableau that
also returns a valid model yielding the controller. Their tableau works similarly
to our quotienting algorithm, but applies to a more specific setting, as they are
interested in generating controllers. In contrast, Martinelli and Matteucci [26]
use partial model checking to generate a control process for a partially unspec-
ified system in order to guarantee the compliance against a μ-calculus formula.
The generated controller takes the form of an edit automaton [7].

Some authors proposed techniques based on the formal verification of tempo-
ral logics for addressing CSP. Arnold et al. [4] were among the first to control a
deterministic plant with a μ-calculus specification. Also Ziller and Schneider [36]
and Riedwge and Pinchinat [29] reduce the problem of synthesizing a controller
to check the satisfiability of a formula of (a variant of) the μ-calculus. A simi-
lar approach was presented by Jiang and Kumar [20] and Gromyko et al. [17].
Similarly to [29,36], [20] puts forward an approach that reduces the problem of
synthesizing a controller to that of checking a CTL� formula’s satisfiability. In
contrast, [17] proposes a method based on symbolic model checking to synthesize
a controller. Their approach applies to a fragment of CTL.

6 Conclusion

Our work goes in the same direction of [12] and provides results that build a new
bridge between supervisory control theory and formal verification. In particular,
we have formally established the relationship between partial model checking
and natural projection by reducing natural projection to partial model checking
and proving them equivalent under common assumptions. This equivalence helps
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explain why some authors use partial model checking and others use natural
projection to synthesize controllers. We have also developed a working prototype
that we haven applied to our running example and to a realistic case study.

Besides establishing an interesting and novel connection, our work also opens
new directions for investigation. Since natural projection is related to language
theory in general, there could be other application fields where partial model
checking can be used as an alternative. The original formulation of partial model
checking applies to the μ-calculus, while our quotienting algorithm works on
LTSs. To the best of our knowledge, no quotienting algorithms exist for for-
malisms with a different expressive power, such as LTL or CTL.
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