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bDipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
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Abstract

This paper considers the special case of the robust network design problem where the dominant extreme
points of the demand polyhedron have a disjoint support. In this case static and dynamic routing lead to
the same optimal solution, both for the splittable and the unspittable case. As a consequence, the robust
network design problem with (splittable) dynamic routing is polynomially solvable, whereas it is coNP-Hard
in the general case. This result applies to particular instances of the single-source Hose model.

Keywords: Robust Optimization, Network Design, Hose model

1. Introduction

Let G = (V,A) be a directed network, with |V| =
n and |A| = m. Let K be a set of k origin-destination
pairs which represent users that wish to commu-
nicate, and cij denote the non-negative cost of in-
stalling a unit of capacity along (i, j) ∈ A. Let
D be a bounded non-empty polyhedron describing
the possible non-simultaneous demands between the
pairs inK. The robust network design problem (RND)
on G consists of determining a minimum cost capac-
ity allocation for the arcs of G such that the network
is able to support each demand in D.

Several variants and generalizations of RND have
been proposed in the literature in the last decade.
Concerning the routing constraints, each pair may
be required to communicate through a single path
(unsplittable routing), or the traffic can be split among
different paths (splittable routing). Moreover, the
routing can be dynamic, that is, it can change as
the demand varies in D, or static, that is, the same
routing template must be used for each demand in
D. Observe that static routing—also referred to as
“oblivious” [1] or “stable” [3]—can be preferable in
network applications where migrating from one rout-
ing to another one is costly [2]. Clearly, even if
the objective function only depends on the capac-
ity allocation costs, the optimal solution value de-
pends on the routing constraints. In general, split-
table routing leads to a cheaper solution than un-
splittable routing. RND with unsplittable routing is
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in fact a generalization of the directed Steiner tree
problem, whereas RND with splittable routing pro-
vides a fractional relaxation, and the gap between
the optimal values of the two problems is known to
be Ω(log2 n/(log log n)2) [12]. Similarly, dynamic
routing leads to cheaper solutions than static rout-
ing; for instance, [8] shows that the gap between the
costs of dynamic and static routing is Ω(log n) for a
family of instances of RND.

Concerning the shape of the demand polyhedron
D, the most widely studied case in the literature
is the so-called Hose model, which simply specifies
a bound on the maximum total traffic that each
node can receive (considering the destination nodes)
or send out (for the origins). The particular case
in which a single node can send traffic along the
network, while all the other nodes are potential re-
ceivers, is referred to as the single-source Hose model.

From a time complexity perspective, the very
special case in which D is a singleton (the so-called
nominal case) is clearly polynomially solvable both
in the unsplittable and in the splittable scenario, as
it can be easily solved by computing shortest paths
between the origin-destination pairs. The splittable
static case is still polynomially solvable for any sep-
arable convex D using the standard ellipsoid argu-
ment [10], in particular, compact linear program-
ming formulations can be devised when D is a poly-
hedral set [1, 13]. On the other hand, RND is NP-
Hard in the unsplittable routing model (both static
and dynamic) [4, 11]. RND is also difficult in the
splittable dynamic case, as it is coNP-Hard even
in the special case of the single-source Hose model
both in directed [11] and in undirected networks [5].
Thus, dynamic routing is, in general, substantially
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more difficult than static routing. This has moti-
vated the study of “intermediate scenarios” such as
the one where the demands in D can be served by
two alternative routing templates [16], which allows
one to obtain cheaper solutions w.r.t. static rout-
ing while being computationally tractable in some
cases. Another line of approach is to study special
cases of RND that are solvable in polynomial time
due to the special structure of the demand poly-
hedron D. Specifically, in the case of symmetric
Hose polyhedra on undirected networks, RND with
static unsplittable routing is polynomially solvable
[9]. Similarly, when D is built upon a discrete num-
ber of scenarios whose number is polynomial in n
and m, then RND with splittable dynamic routing
is polynomially solvable since a compact linear pro-
gramming formulation can be devised [14]. The fact
that the time complexity of the problem depends on
D has motivated approaches [15] where the demand
polyhedron can be reduced by discarding some dom-
inated demand vectors. Indeed, it is useful to remark
that in the nominal case (i.e., when D is a single-
ton) the problem is polynomially solvable because
static and dynamic routing lead to the same optimal
solution. For a more detailed survey on complexity
results concerning RND, its variants and its general-
izations, the interested reader is referred to [4] where
several interesting variants of RND are discussed,
such as cases where the optimum routing support is
required to be a tree, and where the objective func-
tion involves congestion aspects.

In this paper, we partially answer to one of the
open questions in [4]: in what cases RND with split-
table dynamic routing can be solved in polynomial
time? We prove that this is true if D is a disjoint
dominant extreme demand polyhedron. This is for
instance the case of the single-source Hose model
with unitary bounds, or when the source bound is
smaller than any receiver bound, or still when the
source bound is greater than or equal to the sum
of all receiver bounds. As in the nominal case, the
result follows from the stronger property that impos-
ing a static or a dynamic routing leads to the same
capacity solution, and this is true both for the split-
table and the unsplittable case. Although all results
are proved for the case of directed networks, they
easily generalize to the undirected case.

The paper is organized as follows. In Section 2
we recall some basic results and notions about RND.
Then we introduce the new definition of disjoint
dominant extreme demand polyhedron and prove
the main result. In Section 3 we study the appli-
cation of the obtained results to the single-source
Hose model.

2. The disjoint extreme demand polyhedron

Let y denote a vector of routing variables, i.e.,
yst

ij be the fraction of the demand of (s, t) ∈ K to be
routed along the arc (i, j) ∈ A. Then y : A×K →
[0, 1] is a routing template if it satisfies the usual flow
conservation constraints:

∑

(j,i)∈BS(i)

yst
ji−

∑

(i,j)∈FS(i)

yst
ij = φst

i =




−1 if i = s,

1 if i = t,
0 otherwise.

for all i ∈ V and (s, t) ∈ K, where, as customary,
FS(i) and BS(i) denote the set of arcs leaving node
i and entering it, respectively. This can be equiva-
lently restated in compact form as Eyst = φst for all
(s, t) ∈ K, where E denotes the node-arc incidence
matrix of G and φst = [φst

i ]i∈V . Hereafter we shall
denote the set of all routing templates by Y, and by
x = [xij ](i,j)∈A a vector of design variables.

Definition 1. Given a routing template y ∈ Y and
a capacity allocation x ∈ Rm

+ , the pair (y, x) sup-
ports D if

∑

(s,t)∈K
yst

ij dst ≤ xij (i, j) ∈ A , d ∈ D . (1)

In this case, y is said to be a feasible static routing
with respect to x and D.

When the routing can change dynamically with
d ∈ D, y is rather a routing function y : A×K×D →
[0, 1], where y(d)st

ij denotes the fraction of the de-
mand of (s, t) to be routed along (i, j) when the de-
mand vector is d. Of course, the notion of feasibility
has to be changed accordingly.

Definition 2. The capacity allocation x ∈ Rm
+ sup-

ports D if, for each d ∈ D, there exists a routing
template y(d) ∈ Y such that

∑

(s,t)∈K
y(d)st

ijdst ≤ xij (i, j) ∈ A. (2)

The family y(d), d ∈ D, is said to be a feasible dy-
namic routing with respect to x.

Of course, (1) implies (2), since one can use the
same y for all d ∈ D, while the converse, in general,
is not true. Hence, dynamic routing may allow to ac-
commodate cheaper capacity allocations than static
routing. In fact, let MPR and SPR denote, respec-
tively, splittable (multi path) and unsplittable (sin-
gle path) static routing scheme, while FR and IR
denote respectively splittable and unspittable dy-
namic routing scheme. Moreover, let P ∗ denote the
optimal value of a problem RND when the routing
scheme P is adopted. We can then extend a result
of [13] to the dynamic setting, by comparing the so-
lution value of instances with the same underlying
data (network G and demand polyhedron D).
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Theorem 1. Both in the directed and in the undi-
rected case,

FR∗ ≤ MPR∗ ≤ SPR∗

Proof. The first inequality has already been com-
mented upon: any static routing is a dynamic one.
The second inequality comes from the fact that MPR
is the relaxation of SPR obtained by removing the
requirement to use a single path for each origin-
destination pair.

By the same token, IR∗ ≤ SPR∗; however, noth-
ing is known in general about MPR∗ and IR∗.

An instrumental concept to our analysis is that
of domination among demand vectors [15]. A de-
mand vector d1 dominates d2 if any capacity allo-
cation x : A → Rm

+ supporting d1 also supports d2.
Moreover, d1 totally dominates d2 if any pair (y, x)
supporting d1 also supports d2. Clearly, total dom-
ination implies domination. A nice characterization
of total domination is the following:

Theorem 2. [15, Theorem 2.5] If d1
st ≥ d2

st for all
(s, t) ∈ K, then d1 totally dominates d2; the converse
implication holds true if G is a complete graph.

Recall that the anti-dominant of a set S ⊆ Rm

is the set A(S) = {x ∈ Rm : ∃ y ∈ S : x ≤ y},
where the inequality is intended to hold componen-
twise. The next lemma states that, given a routing
template for each of a discrete set of demand vectors,
it is possible to build up (in linear time) a feasible
routing template for each demand vector belonging
to the anti-dominant of the convex hull of the given
demand vectors.

Lemma 1. Any capacity allocation x ∈ Rm
+ that

supports a finite set D = { dh ∈ Rk }h∈H of de-
mand vectors also supports any demand d in the
anti-dominant of conv(D).

Proof. We will show that the capacity vector x sup-
ports any demand vector in conv(D). This is suffi-
cient, since Theorem 2 allows one to immediately ex-
tend the result to the anti-dominant of conv(D). In
fact, each demand in the anti-dominant of conv(D) is
totally dominated by at least one demand in conv(D).
By hypothesis, for each h ∈ H there exists a rout-
ing template y(dh) which is feasible w.r.t. x and dh.
Consider a vector of convex multipliers λ ∈ Λ|H|,
where Λp = { λ ≥ 0 :

∑
h λh = 1 } is the

unitary simplex in dimension p. Now consider the
corresponding demand vector dλ =

∑
h∈H λhdh ∈

conv(D). We claim that

z(dλ)st
ij =

∑
h∈H λh(y(dh)st

ijd
h
st/dλ

st) (3)

is a feasible routing template w.r.t. x and dλ.

Of course, (3) is well-defined only if dλ
st > 0.

However, if dλ
st = 0 then any routing template rela-

tive to the pair (s, t) supports it. Therefore, w.l.o.g.
we shall restrict our attention to the case dλ

st > 0.
Now, for all v ∈ V and (s, t) ∈ K

∑

(i,j)∈A
Ev

ijz(dλ)st
ij =

=
∑

(i,j)∈A
Ev

ij(
∑

h∈H

λhy(dh)st
ijd

h
st/dλ

st) =

= (1/dλ
st)

∑

h∈H

λhdh
st

∑

(i,j)∈A
Ev

ijy(dh)st
ij = (4)

= (1/dλ
st)

∑

h∈H

λhdh
stφ

st
v = φst

v , (5)

where (4) is due to algebraic manipulations and (5)
follows by the hypothesis that y(dh) are routing tem-
plates for all h ∈ H. Moreover, for each (i, j) ∈ A

∑

(s,t)∈K
dλ

stz(dλ)st
ij =

=
∑

(s,t)∈K
dλ

st

(∑

h∈H

λhy(dh)st
ijd

h
st/dλ

st

)
= (6)

=
∑

h∈H

λh

∑

(s,t)∈K
y(dh)st

ijd
h
st ≤

∑

h∈H

λhxij = xij (7)

where (6) follows from (3) and (7) follows by alge-
braic manipulations and the hypothesis that y(dh)
is feasible w.r.t. x and dh for each h ∈ H (as well as
by the definition of λ).

Now, letR be the set of the extreme points of the
anti-dominant of a bounded and non-empty polyhe-
dron D, and I(d) = {h : dh > 0} denote the support
of vector d. We define the following:

Definition 3. A demand polyhedron D is disjoint
dominant extreme demand if

I(r)
⋂

I(s) = ∅ (8)

for each pair (r, s) ∈ R × R with r 6= s. We will
denote this kind of polyhedron by DDde.

Note that the number of the dominant extreme points
of DDde is bounded from above by k, since it is not
possible to partition the set K in more than k sub-
sets which satisfy condition (8). We are now ready
to state the main result.

Theorem 3. The following statements

x supports DDde (9)

∃ z ∈ [0, 1]m×k : (x, z) supports DDde (10)

are equivalent.
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Proof. (10) ⇒ (9) is trivial: as already remarked, a
static routing is also dynamic. To prove (9) ⇒ (10)
observe that, if x supports DDde, then it supports
each dominant extreme point of DDde, say r ∈ R.
That is to say, a routing template y(r) exists which
is feasible w.r.t. x and the associated demand vector
dr for each r ∈ R. Thus, from Lemma 1, the routing
template z(d) determined according to (3) supports
each dλ in the anti-dominant of DDde:

z(dλ)st
ij =

∑
r∈R λr

(
y(dr)st

ijd
r
st/

∑
r∈R λrd

r
st

)
.

Let r(st) denote the—unique, by condition (8)—
extreme demand point such that d

r(st)
st > 0, by ob-

serving that, if dr
st = 0 for each r ∈ R, then the

origin-destination pair (s, t) can be disregarded, since
its demand is always null. We get

z(dλ)st
ij = λr(st)

(
y(dr(st))st

ijd
r(st)
st /λr(st)d

r(st)
st

)
.

That is, for all (s, t) ∈ K
z(dλ)st

ij = y(dr(st))st
ij . (11)

Therefore, actually z(dλ) is independent on dλ. If
we denote it by z, we get that z is a static routing
template which, by the construction within the proof
of Lemma 1, is indeed feasible w.r.t. x for all d ∈
DDde. Hence, (x, z) supports DDde.

Corollary 1. If the routing templates correspond-
ing to the dominant extreme points of DDde are in-
teger valued, i.e., y(dr) ∈ {0, 1}m×k for each r ∈ R,
then the static routing template z in Theorem 3 is
unspittable too, that is, z ∈ {0, 1}m×k.

Proof. Just consider formula (11): if y(dr) are in-
teger valued for all r ∈ R, then z is integer, too.

Theorem 3 and Corollary 1 thus allow to strengthen
the results of Theorem 1 under special circumstances.
In fact, when the hypothesis of Theorem 3 holds true
one has:

FR∗ = MPR∗ ≤ IR∗ = SPR∗.

Observe that the obtained result is stronger than the
one implied by the fact that DDde has a polynomial
number of dominant extreme points. In fact, such a
property just assures that, in the case of dynamic
routing, RND on DDde is solvable in polynomial
time, since a compact linear programming formula-
tion can be devised, while Theorem 3 and Corollary
1 show a stronger connection (i.e. same optimal so-
lution) between static and dynamic routing, both in
the splittable and in the unsplittable case. It is an
open question as to whether some classes of polyhe-
dra do exist which do not have a polynomial number

of dominant demand vectors, but such that dynamic
and static routing lead to the same optimal solution.
The obtained results will be applied to some relevant
Hose cases in the following section.

3. The single-source Hose model

Consider the so-called asymmetric Hose polyhe-
dron [6, 7], DAsym =

{
d ∈ Rk

+ :
∑

t : (v,t)∈K dvt ≤
bout
v ,

∑
s : (s,v)∈K dsv ≤ bin

v , v ∈ V }
, where each ter-

minal v ∈ V has an upper bound bout
v on the cumu-

lative amount of traffic that can be sent by v, as well
as an upper bound bin

v on the cumulative amount of
traffic that can be received by v. If the traffic can
be sent by a single source node, say r, whereas only
destination nodes t ∈ T ⊆ V \{r} can receive traffic,
one obtains the single-source Hose polyhedron DSs ={

d ∈ R|T |+ :
∑

t∈T drt ≤ bout
r , drt ≤ bin

t t ∈ T }
.

In this special case the source r belongs to all pairs,
thus the number of the commodities is equal to the
number of destination nodes (i.e., k = |T |).

3.1. Case of unit bounds
Let us first consider the specialization of the single-

source Hose model where all bounds are unitary, i.e.,
the unitary single-source Hose polyhedron DUss ={

d ∈ Rk
+ :

∑
t∈T drt ≤ 1

}
. Clearly, the inequali-

ties drt ≤ 1 relative to the destination nodes t ∈ T
are redundant and can be dropped. DUss is there-
fore a very simple polyhedron, i.e. the k-dimensional
tetrahedron ∆k. It is well-known that its extreme
points are 0 and the unitary vectors et, t ∈ T , of
the orthogonal basis of the demand space; in other
words, ∆k = conv( 0 , Λk ). Since these domi-
nant extreme points have a disjoint support, then
∆k is a disjoint dominant extreme demand polyhe-
dron and Theorem 3 thus applies. It follows that
RND with (splittable) dynamic routing is polyno-
mially solvable under the DUss model. In addition,
static and dynamic routing lead to the same optimal
solution, both for the splittable and the unspittable
case.

3.2. Case of unlimited source bound
When the source node has an unlimited bound

bout
r (equivalently, r can push an amount of traffic

greater than or equal to the overall requirement of
the destination nodes), then there exists a unique
dominant demand vector in DSs, which is deter-
mined by the destination node bounds. This is the
vector, say db, such that db

rt = bin
t , t ∈ T . The

following property holds true:

Theorem 4. If
∑

t∈T bin
t ≤ bout

r , then RND under
DSs is equivalent to RND under D = { db }, i.e.,
the nominal case in which all destinations require
the maximum amount they can.
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Proof. Since drt ≤ bt
in for all t ∈ T , one has

∑

t∈T
drt ≤

∑

t∈T
bt
in ⇒

∑

t∈T
drt ≤ bout

r ∀ d ∈ DSs .

Therefore, the Hose constraint related to the source
r is redundant. From Theorem 2 each demand in
DSs is thus totally dominated by the single demand
db, which belongs to DSs. The thesis follows.

As a consequence, the single-source Hose model
with unlimited source bound can be solved by solv-
ing a nominal network design problem w.r.t. the sin-
gle demand vector db. Therefore, also in this case
FR∗ = MPR∗, and this is true also in the unsplit-
table scenario.

3.3. Source bound limited by each receiver bound
Consider now the special case ofDSs where bout

r ≤
bin
t , t ∈ T . This case can be reduced to the single-

source Hose model with unitary bounds. Therefore,
the same results proved for DUss apply. To show
this, we need a technical result from [13], where the
triplet (G, b, c) denotes an instance of RND, under
the Hose model, for a network G, an upper bound
vector b and a cost vector c.

Theorem 5. [13, Lemma 3.4] For each β ∈ R+,
the instance (G, βb, c) has a feasible solution of value
βC if and only if the instance (G, b, c) has a feasible
solution of value C.

Theorem 6. If bout
r ≤ bin

t for all t ∈ T , then RND
under DSs is equivalent to RND under DUss.

Proof. Consider an instance of RND with upper
bound vector b = (bout

r , bin
1 , . . . , bin

k ). From Theorem
5 we can scale b by a factor bout

r , thereby obtaining an
equivalent RND problem (up to the chosen scale fac-
tor) with upper bound vector (1, b̄in

1 , . . . , b̄in
k ), where

b̄in
i = bin

i /bout
r ≥ 1. Clearly, each inequality drt ≤

b̄in
i can be removed since it is redundant (

∑
t∈T drt ≤

1 ⇒ drt ≤ 1). Therefore, this case reduces to the
one discussed in Section 3.1.

Acknowledgement

We are grateful to the anonymous referee and to
the Area Editor, whose precious suggestions helped
us to considerably improve the quality of the paper.
[1] D. Applegate and E. Cohen. Making intra-domain rout-

ing robust to changing and uncertain traffic demands:
understanding fundamental tradeoffs. In Proc. of SIG-
COMM ’03, pages 313–324, NY, USA, 2003. ACM.

[2] W. Ben-Ameur and H. Kerivin. Networks new econom-
ical virtual private. ACM Commun., 46(6):69–73, 2003.

[3] W. Ben-Ameur and H. Kerivin. Routing of uncer-
tain traffic demands. Optimization and Engineering,
6(3):283–313, 2005.

[4] C. Chekuri. Routing and network design with robust-
ness to changing or uncertain traffic demands. SIGACT
News, 38(3):106–129, 2007.

[5] C. Chekuri, F. B. Shepherd, G. Oriolo, and M. G.
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