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Tunneling of quasiparticles between two nearly aligned graphene sheets produces resonant current-voltage
characteristics because of the quasiexact conservation of in-plane momentum. We claim that, in this regime,
vertical transport in graphene/boron nitride/graphene heterostructures carries precious information on electron-
electron interactions and the quasiparticle spectral function of the two-dimensional electron system in graphene.
We present extensive microscopic calculations of the tunneling spectra with the inclusion of quasiparticle lifetime
effects and elucidate the range of parameters (interlayer bias, temperature, twist angle, and gate voltage) under

which electron-electron interaction physics emerges.
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I. INTRODUCTION

The quantum lifetime [1] of electrons roaming in semicon-
ductors and semimetals is the result of microscopic scattering
events between electrons and disorder, lattice vibrations, and
other electrons in the Fermi sea. At low temperatures, the
lifetime of electrons close to the Fermi surface is dominated
by elastic scattering off of the static disorder potential in
the material. With increasing temperature, however, inelastic
scattering mechanisms like electron-phonon and electron-
electron (e-e) scattering begin to play arole. Standard electrical
transport measurements are sensitive to elastic scattering and
electron-phonon processes. The e-e scattering time t.., which
in a normal Fermi liquid coincides with the quasiparticle
lifetime [2—4], is much harder to extract from dc transport since
such e-e scattering processes conserve the total momentum of
the electron system. At low temperatures, order-of-magnitude
estimates of 7., are often obtained from weak localization
measurements [5,6] of the dephasing time 7.

Direct measurements of t.. are, however, possible. Any
experiment that accesses the so-called quasiparticle spectral
function [2-4] A(k,e; ), is sensitive to ... (Here, k, ¢, and
w denote wave vector, energy, and chemical potential, respec-
tively.) It is well known that angle-resolved photoemission
spectroscopy (ARPES) [7] is one such experiment. In the
case of graphene, accurate ARPES measurements [8—12] of
A(k,e; ) require large flakes and have therefore been limited
to high-quality epitaxial samples grown on the silicon or
carbon face of SiC.

What is less known is that tunneling between two two-
dimensional (2D) electron systems [4,13] with simultaneous
conservation of energy and momentum also probes A(k,&; 1)
and therefore t... In these experiments, the tunnel current
flowing perpendicularly between two parallel 2D electron
systems separated by a barrier is measured. The conservation
of in-plane momentum k strongly constrains the phase space
for tunneling processes and grants unique access to the quasi-
particle spectral function A(k,e; w). Murphy et al. [13] carried
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out 2D-to-2D tunneling spectroscopy on double-quantum-
well heterostructures consisting of two GaAs quantum wells
separated by an undoped Al,Ga;_,As barrier with a width d
in the range 17.5 nm < d < 34 nm. Experimental results for
the width of the tunneling resonances were compared with
available theoretical results on the quasiparticle lifetime of
a 2D parabolic-band electron system [14—17] and stimulated
much more theoretical work [18-22].

Recently, a large number of 2D-to-2D tunneling spec-
troscopy experiments has been carried out in van der
Waals heterostructures [23] comprising two graphene sheets
separated by a hexagonal boron nitride (hBN) barrier
[24-27]. In particular, this work is motivated by the recently
gained ability to align the two graphene crystals [26-28],
which enables tunneling measurements in which the in-plane
momentum k is nearly exactly conserved. Here, we present a
theoretical analysis of the role of intralayer e-e interactions
in the tunneling characteristics of graphene/hBN/graphene
heterostructures as sketched in Fig. 1. To the best of our
knowledge, all available theoretical studies [27,29-33] of
tunneling in these heterostructures have not dealt with e-e
interaction effects.

Our article is organized as following. In Sec. II we
present the tunneling Hamiltonian and an expression for the
tunneling current I = 1(V},) as a functional of the quasiparticle
spectral function A4, (k,e; ) for conduction-band (A = +)
and valence-band (A = —) states in each layer. In Sec. III
we present two crucial ingredients for the calculation of
the tunneling current: (i) electrostatic relations linking the
chemical potentials pr and pp in the two layers with
gate voltage Vi and interlayer bias V}, and (ii) the quasiparticle
spectral function A, (k,e; u) with the inclusion of quasiparticle
lifetime effects. In Sec. IV we present and discuss our main
numerical results. Finally, in Sec. V we summarize our main
findings.

II. TUNNELING HAMILTONIAN AND
CURRENT-VOLTAGE CHARACTERISTICS

We consider the setup depicted in Fig. 1, consisting of two
parallel graphene layers, separated by a tunneling barrier of
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FIG. 1. Pictorial representation of the tunneling heterostructure
considered in this article. From bottom to top, it includes a back gate
maintained at the electric potential Vi (purple region), an insulating
slab of thickness D, a bottom graphene layer, a hBN slab of thickness
d (green region), and a top graphene layer. The misalignment angle
between the two graphene layers is 6. Ohmic contacts (gold regions)
are deposited on the two graphene layers and an interlayer bias V; is
applied between the top and the bottom graphene layers.

thickness d. The misalignment angle between the lattices of
the two graphene layers is denoted by 6. The bottom layer is
separated from a back gate by an insulating layer of thickness
D. The back gate is maintained at the electric potential Vg,
while an electric potential bias V, is applied between the
top and the bottom graphene layers. Our aim is to calculate
the tunneling current density / between the two layers, as a
function of the applied bias V},. (The total tunneling current is
obtained by multiplying the current density by the area of the
region where the two graphene layers overlap.)

We model the tunneling heterostructure in Fig. 1 with the
following Hamiltonian in the layer-pseudospin basis:

~eff 'FfT 0 0 ’FfTB
_ ( A . I
i ( 0 HB> + (H%B 0 ) M

Here, ’FtT (7:(3) is the 2D massless Dirac fermion Hamilto-
nian [34] of the top (bottom) graphene layer and
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is the tunneling Hamiltonian between two graphene layers in
the lattice-pseudospin basis [35-39]. Equation (2) assumes
that (i) tunneling between the two graphene layers occurs
through highly misaligned hBN [27] (which is therefore
treated as a homogeneous dielectric); (ii) chirality of the
eigenstates of the 2D massless Dirac fermion Hamiltonians
7:lT and 7%3 is preserved [40] upon tunneling [27,41]; and
(iii) interlayer e-e interactions are negligible. While as-
sumption (i) is certainly reasonably justified, and (ii) is a
consequence of (i), assumption (iii) is a technical requisite of
the theory in the present article, which does not fully represent
the complexity of double-layer systems.

Indeed, tunneling experiments in graphene/hBN/ graphene
heterostructures [24-27] are always carried out in a regime
where electrons in the two layers are strongly coupled by the
Coulomb interaction [42,43], which is the case if the Fermi
wave vector kg, 7(p) in the top (bottom) graphene layer is much

PHYSICAL REVIEW B 93, 125417 (2016)

smaller than the inverse interlayer separation 1/d. This regime
is at odds with the aforementioned tunneling experiments in
double-quantum-well heterostructures consisting of two GaAs
quantum wells separated by undoped Al,Ga;_, As barriers and
with the related theory work. Relaxing assumption (iii) is cer-
tainly an interesting conceptual endeavor, which is well beyond
the scope of the present article and is left for future work.

In Eq. (2), yes is an effective interlayer coupling strength,
which strongly depends on the thickness d of the hBN barrier,
and AK; =607 x K;. Here, K; with j = 1,2,3 denotes the
three equivalent positions of the corners of the Brillouin
zone of the bottom layer, with & = 0 denoting the A-A
stacking configuration. Physically, the quantity AK ; (—AK ;)
represents the in-plane wave vector change of electrons upon
tunneling from the top to the bottom (the bottom to the
top) layer. The matrix elements of Hamiltonian (2) between
plane-wave states in the two layers read as

(2n)?

(kK'Y = Vet D0 {14 ae BrUTDAwdy

j=1,2,3
x{1 + )L/ei[2ﬂ(j*1)/3*</?k/]}’ 3)
where A,A’ = = are band indices and k (k') is the wave vector

of the electronic state in the bottom (top) layer, with polar

angle gy (¢x).
To second order in the interlayer coupling yegr, the tunneling
current density is given by [1,44]

e dk ,
(Vo) = 5—Nr / oyt P
v

d
X / iAx(k,S;MB)AA’(k,,e — Aéep; i)
x [nr(e; up) — np(e — Aep; ur)l, 4

where Ny = 4 is the number of fermion flavors in graphene
and the wave vector k' in the top layer is fixed by momentum
conservation to the value &’ = k — AK ;. (Any choice of j =
1,2,3 is possible due to the threefold rotational symmetry of

the system.) In Eq. (4)
£E— 1 -
1 5
— ] + } 5)

B

np(e; ) = { exp |:

is the Fermi-Dirac distribution function at temperature 7' and
chemical potential w, while
—2%) (kg3 1)
le — ek — T (ks W + [Z (k&5 )]
(6)

Ay (k,e; 1) =

is the spectral function of an interacting system of 2D
massless Dirac fermions [45], here expressed in terms of
the real X;(k,e; ) and imaginary XJ(k,e;u) parts of the
retarded quasiparticle self-energy X, (k,e; 1). The chemical
potentials in the bottom and top layers are denoted up and pur,
respectively, and are measured with respect to the energy of
the Dirac point in the corresponding layer. The Dirac points in
the top and bottom layers are offset by an energy Aep.
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III. ELECTROSTATICS AND THE QUASIPARTICLE
SPECTRAL FUNCTION

In this section we summarize the two crucial ingredients
that are required for the calculation of the tunneling current:
(i) electrostatic relations linking the chemical potentials pt and
up in the two layers with the gate voltage Vi and interlayer
bias V} and (ii) details on the quasiparticle spectral function
A, (k,e; 1) and quasiparticle lifetime effects.

A. Electrostatics

For the sake of completeness, we here report a closed system
of equations [27] relating the chemical potentials ug and pr
and the energy offset Aep to the gate voltage V; and interlayer
bias V,,. We remark that the chemical potential in each layer is
measured with respect to the Dirac point of that layer.

The energy offset between the top and the bottom graphene
layers is defined by

AED = —e(VT — VB), (7)

where Vg (V1) is the magnitude of the electric potential in the
bottom (top) layer. Here, we assume that all quantities do not
change in the -y plane, i.e., in the direction perpendicular to
the “growth” direction of the van der Waals stack.

The electrochemical potential fig t in each graphene layer
is given by the sum of the chemical potential and the electric
potential energy, i.e., figr = up,r — ¢Vp,1- The difference
between the electrochemical potentials of the top and bottom
layers is due to the applied bias voltage, i.e., —eV}, = jir —
fig. Combining the above equations, we find the following
electrostatic relation:

—eVy = ut + Aep — ug. (®)

A second electrostatic relation follows from the charge
neutrality condition:

nB+nT+nG=0, (9)

where ng, nt, and ng are the charge densities in the bottom
graphene layer, top graphene layer, and back gate, respectively.
We assume that both graphene layers have negligible residual
doping.

We now relate these carrier densities to Vi and V. Using
Gauss theorem, we find

Ey = —eng/(€o€r)
E, — E1 = —eng/(€o€,), (10)

where E| is the magnitude of the electric field in the Z direction
between the gate and the bottom graphene layer, while E; is
the magnitude of the electric field in the Z direction between
the bottom and the top graphene layers. In Eq. (10), €y is the
vacuum permittivity, while €, is an effective relative dielectric
constant describing screening due to the dielectric materials
surrounding the graphene layers. For the sake of simplicity, we
follow Ref. [27] and take €, = 4. One can easily improve on
this approximation by a more detailed electrostatic calculation
that takes into account the uniaxial nature of hBN and thin-film
effects (see, e.g., Ref. [46]).
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The electric fields are related to the electric potentials in
the graphene layers and in the gate by the relations

E, =—(Vg —Vs)/D,

(11)
Ey = —(Vr — Vg)/d.

Finally, we can relate the chemical potential 1) to the carrier
density nr) by using

_ d[ne(n)]
K="

In Eq. (12), e(n) is the ground-state energy per particle
of the system of interacting fermions [47,48], calculated
independently in each layer. For example, to obtain wr one
needs to use Eq. (12) with n — ny and e(n) — e = er(ny).

At temperatures kg T < ep p(r) and neglecting many-body
exchange and correlation effects [47,48], we can use the
approximate relation

7'[2 kBT 2
Mt®) = er1®)| 1 — 3 , (13)

EF.T(B)

12)

where ep 1) = hvr./4mntm)/Ny is the Fermi energy in each
layer and vy ~ 10° m/s is the graphene Fermi velocity.

Without loss of generality, we assume that the bot-
tom layer is grounded, which implies Vg = 0. Equa-
tions (8), (9), (10), (11), and (13) can be solved for the eight
unknowns ng nr, ng, urt, us, E1, E», and Vr, as functions
of the experimentally relevant parameters V,, and V. Typical
results are shown in Fig. 2.

B. The quasiparticle spectral function

In this article we are interested in the impact of quasiparticle
lifetime effects on the tunneling spectra of nearly aligned
graphene sheets. For the sake of simplicity, we use a Lorentzian
approximation for the quasiparticle spectral function:

R/t (e — )]
(e — ex2)” + (W/[2t(exp — WI)*
In Eq. (14), &k, = Ahvp|k| is the Dirac band energy [34] and

b n
() Teeld) T

The quantity t..(£) is the lifetime of a quasiparticle of energy
& (measured from the chemical potential) and is related
to the imaginary part of the retarded self-energy by the
relation [t(ex — wl™ = —2%(k,ex ;3 )/h. In the spirit
of Matthiessen’s rule [49], in Eq. (15) we have included
a temperature-independent spectral width A/t to take into
account the effect of elastic scattering off of the static disorder
potential on the quasiparticle lifetime.

In the high-temperature |§| <« kzT limit, the expression for
the decay rate /i/te(£) due to e-e interactions near the Fermi
surface is independent of & and reads as [50,51]

el ()
Tee(8) 4 lerl ksT )’

A being a suitable cutoff [50]. On the contrary, in the
low-temperature kg T < || limit the lifetime depends on the

Ay kg3 1) =

(14)

s)

(16)

125417-3



GUERRERO-BECERRA, TOMADIN, AND POLINI

nB,T [1012 cm_z] @

—-0.4 —02 0.0
Vi [V]
(b) | T | | .
_ 010} J
=
= 0.05 -
m
>| 0.00 Dy -
g [
= —0.05 | [ i
P [
—0.10 | [ i
1 1 || | | |
—06 -04 —02 00 02 04 06
W [V]

FIG. 2. (a) Carrier densities nt in the top (black lines) and np
in the bottom (red lines) graphene layers are plotted as a function
of the interlayer bias V,, for different values of gate voltage: Vg = 0
(solid lines), V5 = 10V (dotted lines), and V; = 20 V (dashed lines).
(b) The energy offset Aep = —e(Vr — V) (solid line) between the
Dirac points of the top and bottom layers is plotted as a function of the
interlayer bias. Here, the misalignment angle is set at a small value,
6 = 0.05°, and the gate voltage is set at Vi = 10 V. Long-dashed
vertical lines mark the values of interlayer bias voltage at which the
collinearity condition, (18), is met.

quasiparticle energy and is given by [50,51]

I 1 &2 <A>
=——>—In{—). 17)
Tee(§) 47 |eF| €]

The simple Lorentzian approximation, (14), which has
been used, e.g., in Ref. [27] in the noninteracting 7., —
oo limit, can be transcended by employing the GW-RPA
approximation [45]. A study of these refinements of the
spectral function and a detailed investigation of the role of
graphene plasmons in the tunneling spectra [45,52] is well
beyond the scope of the present article and will be discussed
elsewhere.

IV. NUMERICAL RESULTS AND DISCUSSION

We calculate the tunneling current by numerically per-
forming the integrals in Eq. (4). For the integration over the
wave vector k, we use a square mesh centered around the
Dirac point, with maximum wave vector kya = 2 nm~! and
step Ak =4 x 1072 nm~'. We have verified that the results
do not change appreciably by using k. up to 6 nm~'. The
energy mesh is symmetric and extends up to e, = 2 eV with
step Ae <2 x 107* eV. In all numerical calculations we set
A =3¢V, D =320nm, and i/, = 2 meV [53]. Finally, we
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FIG. 3. Current density / as a function of the interlayer bias
voltage V, for different values of temperature: 7 = 10 K (solid
black line), T = 45 K (dotted blue line), and 7" = 100 K (dashed
red line). (a) Results for & = 0.05°. (b) Results for & = 0.5°. Insets:
Magnifications of the curves around V,, = 0. As in Fig. 2(b), long-
dashed vertical lines denote the values of V), where the collinearity
condition (18) is met. All results here were obtained by setting
Ve =0.

set the hBN barrier thickness at d = 1.4 nm (approximately
corresponding to four hBN layers) and the effective coupling
strength in Eq. (2) at yer = 3 neV. The latter choice is made
to match the order of magnitude of the tunneling current
measured experimentally [27].

Our main numerical results are summarized in Figs. 3-5.
We clearly see that the current density as a function of the bias
voltage displays two peaks, which occur when the following
condition is met [27]:

Aep = olvp|AK|, o ==+l (18)

To visualize the geometric meaning of this condition, it is
useful to represent the conical band structures of the two
graphene layers on the same wave vector-energy plane (k,¢),
with the Dirac points displaced horizontally by AK; and
vertically by Aep. Each point on the surface of a Dirac cone
corresponds to a single-particle state on one of the two layers.
Because of energy and momentum conservation, electron
tunneling is possible only between pairs of single-particle
states, on opposite layers, which correspond to the same point
on the plane (k,¢). In other words, states which can undergo
energy-conserving tunneling correspond to the intersection of
each layer’s Dirac cone with the other layer’s displaced Dirac
cone. The finite width of the spectral function relaxes energy
conservation and broadens the region of (k,&) space where the
tunneling process has a nonvanishing probability of occurring.
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Condition (18) with 0 =1 (0 = —1) corresponds to the
situation in which the top layer’s Dirac point falls on the
bottom layer’s upper (lower) Dirac cone. These two cases
correspond to tunneling between states close to the Dirac point
of the top layer and those in the conduction and valence band
of the bottom layer, respectively. In this configuration, the
intersection between the two cones—which is in general an
ellipse, a hyperbola, or a parabola—degenerates to a single
line, such that all the wave vectors of states participating in the
tunneling process are collinear to AK ;. For this reason, we
refer to (18) as the “collinearity” condition. It is well known
that, for 2D massless Dirac fermions, collinear scattering
yields a divergent spectral density of electron-hole pairs
(see, for example, Ref. [50] and references therein to earlier
work) and ultrafast nonequilibrium dynamics of photoexcited
carriers [54,55].

Peaks in the current density at collinearity are symmetric
with respect to V;, =0 for Vg =0, as in Fig. 3, while the
current profile is asymmetric for finite values of Vg, as in
Fig. 5. The asymmetry between the two graphene layers is a
consequence of the position of the gate layer. The value of
the interlayer bias potential at which the collinearity condition
is met is found as explained in Fig. 2(b). Here, the dotted
horizontal lines, displaying £hvr|AK |, are intersected by
the solid line, displaying Aep. For large regions of parameter
space, the peak corresponding to ¢ = 1 (0 = —1) appears at
negative (positive) bias voltages. However, at very small angles
and sufficiently large Vi, the collinearity condition with both
o = £ may be metat V, > 0.

The tunneling current density at finite temperature and for
vanishing gate voltage is shown in Fig. 3. Data in this figure
have been obtained by using Eq. (16) for the quasiparticle
lifetime. Peaks at collinearity are evident and located at
bias voltages close to those predicted on the basis of the
simple expression (18). With increasing temperature, the peaks
become broader and drift to slightly larger absolute values
of the bias potential. Moreover, the linear dependence of the
current on the bias voltage around V}, = 0 becomes steeper as
the temperature increases. Comparing the current profiles for
two values of the misalignment angle 0 in Figs. 3(a) and 3(b),
we see that these effects are much more evident for small
misalignment angles. This behavior is due to the fact that, for
large values of 6, broadening of the current peak is dominated
by lattice misalignment effects, while e-e interactions play
the most important role in the condition of near-alignment.
Indeed, temperature affects the tunneling current through the
suppression of the quasiparticle lifetime t.., i.e., broadening
of the spectral function. A broader spectral function entails a
more relaxed energy conservation in the tunneling processes,
and thus the collinear peak widens around its zero-temperature,
geometrically deduced position. Varying the temperature has
no effect on the current profile, if the quasiparticle lifetime is
not affected by e-e interactions. Our results thus show that the
tunneling currents at sufficiently small misalignment angles
bear clear signatures of e-e interactions. This is the central
result of this article.

To quantify the role of e-e interactions, in Fig. 4 we
plot the broadening of the current peak as a function of the
misalignment angle 6 for various temperatures. Since the
current profile around the peak is not symmetric and extends
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FIG. 4. Broadening AV, of the current density peak as a function
of the misalignment angle 6. Different sets of data refer to different
values of temperature: 7 = 10 K (black triangles), T = 45 K (blue
squares), and 7 = 100 K (red circles). Dashed lines are guides for the
eye. Data in this plot were obtained by setting Vs = 0. Quasiparticle
lifetime effects emerge for small values of the misalignment angle.
Numerical results show larger noise for low temperatures, where the
current peak is more skewed, and the data set for 7 = 10 K partially
overlaps with that for 7 = 45 K.

to large values of the bias voltage V), the definition of “peak
broadening” is not obvious. Therefore, we adopt an ad hoc
definition to estimate how the temperature affects the peak
broadening. We define the broadening as the standard deviation
AV, = ([Vy — (V3)]?)V/2, where the average

o2 dVy X (V)1 (V)
(X) = (19)
f dVyI(Vy)

is defined with respect to the current profile. The extremes of
integration V,, 1, V} 2 are symmetric around the peak position
Vi, peak With a total extent Vj 5 — Vj, | = 100 meV. Figure 4
shows the broadening of the current density peak as a function
of the misalignment angle between graphene layers. We
see that the broadening of the current peak depends on the
temperature—a clear signature of e-e interactions. However,
the temperature dependence is weak at misalignment angles
6 = 0.5° (where the tunneling current away from collinearity
is suppressed by lattice misalignment) and stronger at < 0.5°
(where the effect of e-e interactions becomes more important).

At low temperatures, a further signature of the electron
spectral properties is found by studying the profile of the
tunneling current as a function of the gate voltage. This is
shown in Fig. 5. Data in this figure were obtained by using
Eq. (17) for the quasiparticle lifetime. We have decided not to
calculate the value of the current for ranges of V,, such that
bottom- or top-layer carrier densities are lower than 10!° cm™=2.
This is because the normal Fermi liquid expression, (17), for
the quasiparticle decay rate is not justified near the charge
neutrality point. In these regions, the derivative of the carrier
density of either layer with respect to V,, vanishes (see Fig. 2).
As a consequence, the differential conductance dI/dV, is
nearly 0, as observed experimentally [26,27].

We observe that for small misalignment angles and high
gate voltages the peak corresponding to the collinearity
condition with ¢ = 1 [indicated by arrows in Fig. 5(a)] is
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FIG. 5. Current density / as a function of the interlayer bias
voltage V), for T = 2 K and different values of gate voltage: V5 =0
(solid black line), V5 = 10 V (dotted blue line), and Vg =20 V
(dashed red line). (a) Results for & = 0.05°. (b) Results for 6 = 0.5°.
Tunneling curves are not shown for values of V,, such that |nt|,|ng| <
10" cm~2. In (a), arrows mark the values of V,, at which a peak due
to the collinearity condition, (18), with o = 1 is expected. Note that,
for 6 = 0.05°, peaks at Vi = 10 and 20 V appear at V,, > 0. In this
regime, states satisfying the resonant tunneling condition lie along
the common directrix of the two Dirac cones and are close to both pur
and wg; see inset in (a).

located at V, > 0. In this regime, the height of the peak
is very sensitive to disorder and increases as the residual
spectral width h/t; decreases. This is because the most
important contribution to the energy integral in Eq. (4)—due to
collinearity—arises from a region in the (k,&) plane where & is
small [see inset in Fig. 5(a)]. That is, the dominant contribution
to the tunneling current comes from particles tunneling from
the neighborhood of the chemical potential in one cone to
the neighborhood of the chemical potential in the other cone.
In this case, the e-e contribution to the quasiparticle lifetime
tends to 0, as in all Fermi liquids, so that both the initial and
the final states involved in the tunneling process are long-lived
and the tunneling probability is enhanced. The finite height
of the current peak is determined by the the residual spectral
width due to disorder. Similarly to the effect of e-e interactions
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at finite temperature, the effect of the residual spectral width
is suppressed at larger misalignment angles [see Fig. 5(b)],
where the width and height of the current peaks are rather
insensitive to the value of the gate voltage.

V. SUMMARY

In this article we have presented a theory of the tunneling
characteristics between misaligned graphene layers which
takes into account the spectral properties of the tunneling
electrons. We have taken into account quasiparticle lifetime
effects on the quasiparticle spectral function by treating on
an equal footing electron-electron interactions and elastic
scattering off of the static disorder potential. Effects of
electron-electron interactions on the quasiparticle lifetime are
considered separately at finite (Figs. 3 and 4) and very low
(Fig. 5) temperatures. In both cases, we study the interplay
between the misalignment angle and the quasiparticle lifetime.

The profile of the tunneling current as a function of
the bias voltage is characterized by peaks which originate
from the enhanced tunneling probability between electronic
states with collinear wave vectors in the two layers. Due
to electron-electron interactions, the broadening of these
peaks depends on the temperature at small misalignment
angles. In this regime, comparing experimental data with our
theoretical results enables measurements of the quasiparticle
lifetime .. in a vertical transport experiment. At very low
temperatures, instead, by tuning the gate voltage, it is possible
to reach a regime in which the height of one current peak is
entirely determined by the quasiparticle lifetime due to elastic
scattering. Both effects disappear when the misalignment
angle 6 is larger than 0.5°-1°, because, in this case, the width
of the current peaks is dominated by the nonconservation of
in-plane wave vector during the tunneling process. We expect
that our findings could motivate the experimental endeavors to
improve the control over crystallographic alignment between
graphene layers well below 1°. Measurements of 7., can
be compared with many-body theory calculations [50,51,56]
and are important to assess the region of parameter space
(carrier density and temperature) where transport in massless
Dirac fermion fluids can be described by hydrodynamic
theory [57,58].
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