
Solving Nonlinear Single-Unit Commitment Problems

with Ramping Constraints

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, 56127 Pisa – Italy
frangio@di.unipi.it

Claudio Gentile

Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.
Viale Manzoni 30, 00185 Rome – Italy

gentile@iasi.cnr.it

Abstract

We present a dynamic programming algorithm for solving the Single-Unit Commit-
ment (1UC) problem with ramping constraints and arbitrary convex cost functions.
The algorithm is based on a new approach for efficiently solving the single-unit Eco-
nomic Dispatch (ED) problem with ramping constraints and arbitrary convex cost
functions, improving on previously known ones that were limited to piecewise-linear
functions. For simple convex functions, such as the quadratic ones typically used in
applications, the solution cost of all the involved (ED) problems, comprised that of
finding an optimal primal and dual solution, is O(n3). Coupled with a special visit
of the state-space graph in the dynamic programming algorithm, that enables one to
solve (1UC) with simple convex functions in O(n3) overall.

Keywords: Dynamic Programming, Unit Commitment problem, Ramping Constraints

1 Introduction

The Single-Unit Commitment problem (1UC) requires to optimally operate one generating
thermal unit within a certain discretized time horizon. The cost (or revenue) for generat-
ing power varies with each time instant. The generating unit is subject to some technical
restrictions, most notably minimum up- and down-time constraints, as well as upper and
lower bounds over the produced power when the unit is operational.

(1UC) is a mixed-integer nonlinear problem, hence in general nontrivial to solve. It
is particularly relevant because it appears as a sub-problem to be repeatedly solved within

1



Lagrangian schemes for (multi-)Unit Commitment (UC) problems, that require to coordinate
the operations of several generating units, within a certain discretized time horizon, to satisfy
a given power demand at minimum cost. These Lagrangian schemes are among the most
efficient solution techniques for this class of difficult, large-scale mixed-integer nonlinear
problems, see e.g. [1], [4], [5], [6], [10], [12] among others, not least because they are easily
extended to accommodate contributions from other types of generating units, such as hydro-
electric ones. Also, Lagrangian techniques can be relatively easily extended to consider
constraints arising from selling the generated power on a free market as in [7].

Within a Lagrangian approach, one (1UC) per each generating unit is repeatedly solved
with varying objective function, whence the need for efficient solution methods for this
problem. When no ramping constraints are imposed, (1UC) can be solved by means of a two-
stage process: first the optimal generated power, if the unit is committed, is independently
computed for each time period, and then the optimal set of time periods where the unit has
to be committed is computed, taking into account the results of the previous phase, by means
of a simple dynamic programming procedure. The resulting algorithm has a complexity of
O(n), n being the number of time instants in the discretized time horizon, if the start-up
cost of the unit is time invariant, and O(n2) if the start-up cost of the unit is time dependent,
i.e., the cost of committing the unit at a certain time instant depends on how long the unit
has been uncommitted.

Unfortunately, this approach fails when ramping constraints need to be considered.
Ramping constraints limit the maximum increase or decrease of generated power from one
time instant to the next, and reflect the thermal and mechanical inertia that has to be over-
taken in order for the unit to increase or decrease its output. These phenomena cannot be
disregarded for large units or if the time discretization interval is small (e.g., 15 minutes).
The reason of the failure is that the variables representing the power output are no longer
independent, once that commitment decisions have been taken; rather, they are linked by
the ramping constraints. Hence, it is no longer possible to determine the optimal generated
power, if the unit is committed, independently for each time period. Thus, the dynamic
programming procedure for the case without ramping constraints cannot be extended to
determine the optimal commitment. Discretizing the power variables space one may keep
using a standard dynamic programming procedure [3], but the computational burden in-
creases considerably, and the obtained solution is an approximated one.

In [8], an approach is presented for efficiently solving (1UC) with ramping constraints
when the cost function is piecewise-linear. The approach is based on the following idea:
re-define the state-space of the dynamic programming procedure so that computation of the
state costs reduces to a convex (although harder than in the standard case) problem, the
Economic Dispatch with Ramping Constraints (ED). The efficiency is obtained by using a
constructive dynamic programming procedure that solves (ED) with a piecewise-linear cost
function, similar to that of [2] and [11]. Thus, two nested dynamic programming procedures
are employed in order to obtain an overall efficient approach.

However, in most cases the cost function of the real unit is modeled, in (1UC), with a
quadratic function. Closely approximating the quadratic function with a piecewise-linear
one may require a large number of pieces, thereby increasing the cost of the overall solution
procedure. We propose an efficient algorithm for (ED) with general convex cost functions
that solves all the O(n2) (ED)s required to perform the dynamic programming procedure on

2



the commitment decisions in O(n3) in the case of quadratic cost functions. The algorithm
is simple to implement and works for a very general form of (1UC) with time-varying upper
and lower limits over the generated power, as well as time-varying and different limits for
ramp-up and ramp-down constraints. Coupled with a special visit of the state-space graph
in the dynamic programming algorithm, this enables one to solve (1UC) in O(n3) overall in
the case of quadratic cost functions.

The structure of the paper is as follows. In Section 2 a formulation of (1UC) is briefly
presented. In Section 3 the dynamic programming procedure, similar to that of [8], for solving
(1UC) is recalled, the corresponding (ED) problems are discussed, and the special visit is
described that allows one to solve the problem in O(n3) once that all the node costs have
been computed. Then, in Section 4 the algorithm for solving (ED) is presented and analyzed.
Finally, in Section 5 some computational results, obtained in the context of a Lagrangian
approach to (UC), are presented for showing the efficiency of the proposed approach, and in
Section 6 conclusions are drawn.

2 Formulation

The Single-Unit Commitment problem (1UC) is as follows. A thermal generating unit,
burning some type of fuel (oil, gas, coal, . . . ) is given. The unit is characterized by a
maximum and minimum power output, lt and ut, respectively, for each time instant (e.g.,
hour or half-hour) in a set T = {1, . . . , n}, covering some time horizon (e.g., a day or a
week). If the unit is committed (actively generating power) at time instant t, it is subject to
a convex power generating cost function f t(pt), where pt is the amount of power produced. In
the following we will only assume that f t is closed convex and that f t(0) = 0 (any constant
term in f t can be associated with commitment variables, as discussed next). The operation
of the unit must satisfy a number of technical constraints, typically the minimum up- and
down-time ones: whenever the unit is turned on it must remain committed for at least τ+

consecutive time instants, and, analogously, whenever the unit is turned off it must remain
uncommitted for at least τ− consecutive time instants. It is therefore useful to introduce
binary variables xt indicating (if 1) the commitment of the unit at time instant t. We then
define X as the set of schedules respecting minimum up- and down-time constraints; also,
for any x ∈ X, we define c(x) as the cost of the schedule: this may comprise fixed generating
cost and time-dependent or time-invariant start-up cost. Note that, since costs are usually
modified by Lagrangian multipliers, the cost functions c(x) and f t(pt) may also take negative
values. Other combinatorial constraints and costs could be included as well, as discussed in
Section 6, as long as they are consistent with the dynamic programming procedure discussed
in the next section.

The last set of technical requirements are the ramping constraints. These require that the
maximum increase of generated power from time instant t to the next be limited to ∆t

+ > 0,
and, analogously, the maximum decrease of generated power from time instant t to the next
be limited to ∆t

−
> 0. Note that this definition can be applied only if the unit is committed

in both time periods t and t+1. We therefore consider a general form of ramping constraints
where an upper bound l̄t, lt ≤ l̄t ≤ ut, is known on the maximum amount of power that can
be generated if the unit is turned on in time period t (that is, it was uncommitted in t− 1)

3



and, analogously, an upper bound ūt, lt ≤ ūt ≤ ut, is known on the maximum amount of
power that can be generated if the unit is turned off at the end of time period t (that is, it
will be uncommitted in t + 1).

A formulation of (1UC) is:

min c(x) +
∑

t∈T

f t(pt) (1)

ltxt ≤ pt ≤ utxt t ∈ T (2)

pt+1 ≤ pt + xt∆
t
+ + (1 − xt)l̄

t+1 t = 0, . . . , n − 1 (3)

pt ≤ pt+1 + xt+1∆
t
−

+ (1 − xt+1)ū
t t = 0, . . . , n − 1 (4)

x ∈ X (5)

Constraints (3) are ramp-up constraints, i.e., they limit the maximum increase in power
attainable at time instant t (assuming that the unit is committed in t). Note that we assume
to know the state of the unit at the time instant prior to the beginning of the operation,
i.e., its commitment x0 and the generated power p0. Also, for the sake of minimum up- and
down-time constraints, we assume to know how long the unit has been on (if x0 = 1) or off (if
x0 = 0). Constraints (4) are ramp-down constraints, i.e., they limit the maximum decrease
in power attainable at time instant t. We remark that this formulation is more general
than those usually considered (cf. [2, 8, 11]) not only because the cost functions need not
be piecewise-linear, but also because we allow different limits ∆t

+ and ∆t
−

for ramp-up and
ramp-down constraints, and we allow them to depend on the time instant t.

It is well-known that, if constraints (3) and (4) are not present, (1UC) is easily solvable
by a two-stage procedure. First, the unconstrained optimum of each f t

p̃t = argmin {f t(p) : p ∈ R } (6)

(assumed unique for simplicity) is computed, and used to find the optimal power production
level if the unit is committed

p∗t = min { ut, max { p̃t, l
t } } = argmin { f t(p) : lt ≤ p ≤ ut } (7)

by simply projecting p̃t over the feasible set [lt, ut]. The value zt = f t(p∗t ) is the contribution
of variable pt to the objective function value if the unit is committed at time instant t

(xt = 1), while 0 is the contribution if the unit is uncommitted (xt = 0). Thus, zt is the cost
(or revenue) of committing the unit, to be considered together with fixed costs and start-up
costs, effectively eliminating the pt variables from the problem. The remaining combinatorial
problem in the xt variables alone can be easily solved by dynamic programming. In a dynamic
programming approach, the first step is the identification of the state space of all the possible
solutions and partial solutions. When this space is composed by a finite number of elements,
it is possible to represent it as a directed acyclic graph where the nodes are the states and
the arcs identifies the transitions among the states; it is then possible to find an optimal
solution by computing a shortest path on this graph.

In the simple case where start-up cost are time invariant, that is, the cost of starting up
the unit at a certain time instant does not depend on how long the unit has been uncommitted
(but it may depend on the specific time instant), the state space of the dynamic programming

4



is made of 2n nodes, say (t, 1) and (t, 0) for t ∈ T , representing respectively the unit being
committed (xt = 1) or not (xt = 0) at time instant t, plus a source s and a sink d. There
are arcs between nodes (t, 1) and (t + 1, 1) for all t < n, representing the fact that the
unit, that has already passed the τ+ periods of mandatory commitment, is kept on in time
instant t, labeled with the sum of the corresponding zt and fixed cost (if any). Analogously,
there are arcs between nodes (t, 0) and (t + 1, 0) for all t < n, representing the fact that
the unit, that has already passed the τ− periods of mandatory uncommitment, is kept off in
time instant t, labeled with zero cost. Then, there are arcs for state switches, i.e., arcs from
(t, 1) to (t + τ−, 0), with zero cost, indicating the shutdown of the unit at time instant t + 1
and its remaining uncommitted for the following τ− periods, and arcs (t, 0) to (t + τ+, 1),
indicating the start-up of the unit at time instant t + 1 and its remaining committed for the
following τ+ periods, with the proper start-up cost plus the generating and fixed costs for
all the interval. When t + τ+ (τ−) is larger than n, the arcs go to the sink d, and the cost is
properly modified. Then, there are arcs from the source s to the nodes compatible with the
initial state of the unit. That is, if the unit is initially uncommitted since τ 0 time periods,
there is an arc from s to (max{τ− − τ 0, 1}, 0); if τ− > τ 0 this indicates that the unit has to
remain uncommitted for the first τ− − τ 0 time periods. Analogously, if the unit is initially
committed since τ 0 time periods, there is an arc from s to (max{τ+ − τ 0, 1}, 1); if τ 0 < τ+

this indicates that the unit has to remain committed for the first τ+ − τ 0 time periods, with
appropriate cost. Finally, there are zero-cost arcs from (n, 1) and (n, 0) to the sink d.

Clearly, every s − d path on this graph represents a feasible solution to (1UC), and the
cost of the path is equal to the cost of the solution. Hence, (1UC) is reduced to a shortest
path problem on an acyclic graph, that can be solved in linear time on the number of arcs,
i.e., in O(n).

If time-dependent start-up costs have to be considered, the graph has to be expanded
somewhat, introducing nodes (t,−k) indicating that the unit has remained uncommitted
for the last k consecutive time instants, and properly modifying the arcs. The maximum
value of k that has to be considered is the number of time instants after which the unit
has completely “cooled off”, i.e., a restart has the same cost than a cold start; in general,
this value may be as large as n, although usually it is smaller. Thus, the size of the graph
grows from O(n) to O(n2) in the worst case, and the complexity of the procedure increases
accordingly.

This procedure, however, fails if constraints (3) and (4) are present. In fact, the pt

variables are no longer independent, once that the xt variables are fixed, since they are
linked together by the ramping constraints; hence, it is no longer possible to determine the
optimal generated power p∗t , and the corresponding contribution zt of variable pt to the
objective function value, independently for each time period.

3 The dynamic programming procedure

In order to solve (1UC) with constraints (3) and (4), a different dynamic programming
procedure can be used. The state space of the dynamic programming comprises, in principle,
all pairs (h, k) for h, k ∈ T and k ≥ h, plus a source s and a sink d. The meaning of each
state (h, k) is: the unit is turned on at time instant h (i.e., it was uncommitted at time

5



instant h− 1), and it will be turned off again at time instant k (i.e., it will be uncommitted
at time instant k + 1). Clearly, all states such that k < h + τ+ − 1 correspond to infeasible
operations and need not to be constructed.

In the state-space graph G, there is an arc between node (h, k) and node (r, q) if r ≥
k + τ− + 1, i.e., it is feasible to turn on the unit at time instant r given that it has been
turned off at time instant k. Each of these arcs are labeled with the start-up cost of the
unit at time instant r; note that time-dependent start-up costs are easily handled within
this framework. There are also arcs from the source s to all nodes (h, k) compatible with the
initial state of the unit. That is, if the unit is uncommitted since τ 0 time periods there is
an arc from s to each node (h, k) such that h + τ 0 − 1 ≥ τ−; these arcs are labeled with the
corresponding start-up cost. If instead the unit is committed since τ 0 time periods, there
is an arc from s to each node (1, k) such that k + τ 0 ≥ τ+, labeled with zero cost. Finally,
there is a zero-cost arc from each node to the sink d.

Clearly, every s−d path on this graph represents a feasible solution to (1UC). By now, the
cost of the path only represent the contribution of start-up costs to the objective function.
Obvioulsy, fixed generating costs (if any) can also be easily included: we can associate with
each node (h, k) the sum of all fixed costs of all periods from h to k (extremes included) as
cost of the node, since the unit will be committed in that interval.

Furthermore, for each node (h, k), the optimal contribution of the variable generating
costs, that depend on the pt variables, can be computed in polynomial time by solving the
following Economic Dispatch with Ramping Constraints problem for the interval [h, k]:

min

k
∑

t=h

f t(pt) (8)

lt ≤ pt ≤ ut h ≤ t ≤ k (9)

ph ≤ l̄h (10)

pt+1 ≤ pt + ∆t
+ t = h, . . . , k − 1 (11)

pt ≤ pt+1 + ∆t
−

t = h, . . . , k − 1 (12)

pk ≤ ūk . (13)

We will denote problem (8) – (13) as (EDhk). Since all the relevant binary variables are
fixed, this is an optimization problem with convex objective function and linear constraints.
Hence, its optimal objective function value z∗hk = z(EDhk) can be computed in polynomial
time. By summing z∗hk to the weight of each node (h, k), the cost of each s − d path on the
graph is that of the feasible solution it represents. Hence, once again (1UC) is reduced to
a shortest path problem on an acyclic graph with O(n2) nodes and O(n4) arcs. Thus, the
problem can be solved in O(n4) once that all the data has been computed.

However, the complexity of the visit can be reduced by exploiting some structural prop-
erties of the state-space graph G. Consider the set of nodes (h, k) in G partitioned into levels
Vk = {(h, k) : 1 ≤ h ≤ k} for k ≥ 1 (level V0 contains only the starting node s). From the
definition of G, it immediately follows that:

• all nodes in Vk have the same set of adjacent nodes;

6



• the cost of the arc between (h, k) and (r, q) only depends on k and r.

Therefore, it is possible to visit G in ascending order of level k, avoiding to explicitly explore
the forward star of all but one node for each level.

More in detail, the procedure works as follows. For each k = 1, . . . , n we keep a list
Sk ⊆ Vk of the reached nodes (h, k) ∈ Vk with the label dhk corresponding to the length of
the shortest path found so far. S0 contains s with label 0. For k = 0, 1, . . . , n we repeat the
following steps:

• evaluate z∗hk = (EDhk) for all nodes in Sk (for k = 0 the result is zero, if Sk = ∅ skip
to next value of k);

• find the node (h, k) in Sk with smallest value of z∗hk + dhk;

• visit all the adjacent nodes (r, q) of (h, k) computing the new value as the sum of
z∗hk + dhk and the cost of the arc between (h, k) and (r, q); if the node (r, q) is visited
for the first time it is inserted in Sq, otherwise its label is updated if the new value is
smaller than its old value.

Clearly, the chosen order is a valid one, and the visit terminates having determined a shortest
s− d path. In principle, all the O(n2) nodes of G are visited, and therefore the computation
of all the corresponding z∗hk values is required. However, for each k we only consider the
node (h, k) associated with the shortest path from s, so that we need only check its O((n−k)2)
outgoing arcs. Therefore, the complexity of the visit is reduced to O(n3) plus the cost of
solving the O(n2) convex problems (EDhk), with up to n variables.

Despite the relatively low size of the problem, this may turn out to be a heavy task,
especially considering that several (1UC) problems are typically solved at each one of the
many iterations of Lagrangian approaches to more complex (UC) problems (cf., e.g., [1,
4, 5, 6, 7, 10, 12]). Hence, solving (EDhk) efficiently—or, more to the point, solving all
the O(n2) of them efficiently—is crucial. In the next section we will develop an efficient
dynamic programming algorithm for the solution of (sequences of) (EDhk).

The approach is inspired by that of [8], where a similar state-space graph is defined.
However, that paper was limited to (1UC) problems with piecewise-linear cost functions, and
strongly used the (piecewise) linearity of the objective function in order to solve the Economic
Dispatch problems; the idea was, using linear duality, to trace how the breakpoints and the
slopes of the cost function change when moving from (EDhk) to (EDh(k+1)). Moreover, in
that approach ramp-up and ramp-down constraints were not allowed to depend on the time
instant, and initial and final upper bounds l̄t and ūt are not handled.

4 Solving the economic dispatch problem

We will devise an algorithm for efficiently solving sequences of (EDhk) problems for k =
h, . . . , n. In order to solve (EDh(k+1)) by exploiting the solution of (EDhk), it is necessary to
introduce the parametric problem (EDhk(p̄)), i.e., the restriction to (EDhk) corresponding
to fixing the last variable pk to the fixed value p̄ (equivalently, imposing the extra constraint
pk = p̄). We then study the properties of the optimal objective function value of (EDhk(p̄))

7



as a function of the parameter p̄. To simplify matters somewhat, however, it is convenient
to give a slightly different definition of the function under examination:

zhk(p̄) =

{

min{ fh(ph) : (9) , (10) , ph = p̄ } if h = k,

min{
∑k

t=h
f t(pt) : (9) , (10) , (11) , (12) , pk = p̄ } otherwise.

That is, we allow p̄ to assume any value in the interval [lk, uk], even those values such that
fixing pk = p̄ in formulation (8) – (13) would result in an infeasible problem due to the
stricter upper bound imposed by constraint (13). This is done since we will use zhk to
compute zh(k+1); in the latter problem, constraint (13) corresponds to variable pk+1, and
therefore it is no longer binding for pk.

We first state some general properties of the function:

Proposition 1 The function zhk is convex. Moreover, it has a piecewise nature, that is,
it is finite-valued only in v + 1 intervals [m0, m1], [m1, m2] . . . [mv, mv+1], with lk ≤ m0,
mv+1 ≤ uk and v ≤ 2(k − h), in which

zhk(p̄) = zi(p̄) if p̄ ∈ [mi, mi+1] for i = 0, 1, . . . , v

where each function zi is the sum of at most k − h + 1 functions f t for t ∈ {h, h + 1, . . . , k}
(and therefore it is convex).

Convexity of zhk is a consequence of well-known general properties that need not be
discussed here beyond noting that zhk is the value function ([9]) of the convex program
(EDhk(p̄k)) with respect to the right-hand side p̄k of its constraint pk = p̄k. Its piecewise
nature, and the more specific properties will be demonstrated next by outlining the steps for
efficiently constructing the piecewise representation of zhk.

We will proceed by induction to prove that the claimed properties are true; equivalently,
we will (efficiently) construct piecewise representations of the functions zhh, zh(h+1), . . . zhk, in
this order. At each step we will exploit the previously computed representation to construct
that of the next problem. During the process, for each step k we will also (efficiently)
compute and exploit

p∗hk = argmin{ zhk(p) : p ∈ [lk, uk] } ,

that is, the k-th (last) component of the optimal solution of (EDhk) where constraint (13)
is relaxed.

At the basis of the induction process, the case k = h is straightforward, since

zhh(p̄) = fh(p̄)

for all p̄ ∈ [lh, l̄h]. Hence, there are v + 1 = 1 intervals and v + 1 = 1 functions with the
required properties (i.e., 0 = v ≤ 2(h − h) = 0). In this case, p∗hk is just p∗h as computed
with formulae (6) and (7), but with upperbound equal to l̄h. When h = 1 and the unit was
already committed, the set in which z11(p̄) is defined is slightly different: constraint (10)
is not present, while p0 and the ramping constraints must be considered, therefore p̄ ∈
[max{l1, p0 − ∆1

−
}, min{u1, p0 + ∆1

+}].

8



Now, we assume the claim proved for some value of k—and the corresponding set of
intervals and functions to have already been explicitly computed—and proceed in proving
that Proposition 1 holds for k + 1, too. We will denote m̄i the extremes of the intervals
for zh(k+1), z̄i the corresponding functions and v̄ + 1 their number.

Consider any fixed value p̄ ∈ [lk+1, uk+1]. Constraints (11) and (12), written for pk+1 = p̄

and pk, result in
p̄ − ∆k

+ ≤ pk ≤ p̄ + ∆k
−

.

Since zhk is infinite-valued for pk outside [m0, mv+1], one has to set m̄0 = max{lk+1, m0−∆k
−
}

and m̄v̄+1 = min{uk+1, mv+1 + ∆k
+}; in fact, zh(k+1) is clearly infinite-valued outside this

interval, and finite-valued inside it. Note that if m̄0 > m̄v̄+1 infeasibility of the (1UC)
problem has been detected.

Now, consider how the optimal solution to (EDh(k+1)(p̄)) can be computed, exploiting the
(already computed) piecewise representation of zhk. The problem can clearly be rewritten as

zh(k+1)(p̄) = fk+1(p̄) + min{ zhk(pk) : m0 ≤ pk ≤ mv+1 , p̄ − ∆k
+ ≤ pk ≤ p̄ + ∆k

−
}.

In other words, the optimal solution to (EDh(k+1)(p̄))—at least, its k-th component—is just
the constrained minimum of zhk in the intersection of the intervals [p̄ − ∆k

+, p̄ + ∆k
−
] and

[m0, mv+1]; we will denote that minimum as p∗k(p̄). In order to trace the function zh(k+1)(p̄),
it is only necessary to understand how p∗k(p̄) behaves as p̄ changes. This is, however, very
simple to picture.

Consider the constrained minimum p∗hk of zhk over [m0, mv+1] (or, equivalently, [lk, uk]),
that we assume to have already computed: since zhk is convex, p∗k(p̄) is just its projection
over the feasible interval

[p̄ − ∆k
+, p̄ + ∆k

−
] (14)

(cf. (7)), that is,
p∗k(p̄) = min { p̄ + ∆k

−
, max { p∗hk, p̄ − ∆k

+} } . (15)

Note that we are assuming p∗hk to be unique; however, the following arguments can be easily
extended to cases where zhk has a (known) non-pointed interval as set of optimal solutions.

We can pictorially describe the process as follows, with the help of Figure 1. Basically,
as p̄ varies from m̄0 to m̄v̄+1, three different cases can arise:

(a) When p̄ is on the leftmost part of the interval [m̄0, m̄v̄+1] where zh(k+1) is finite-valued,
e.g., p̄ = m̄0, p∗hk is “on the right” of the feasible interval (14) (i.e., p∗hk > p̄ + ∆k

−
),

p∗k(p̄) = p̄ + ∆k
−
, that is, p∗k(p̄) is a linear function of p̄.

(b) As p̄ increases, eventually p∗hk falls inside the feasible interval (14): then, p∗k(p̄) is equal
to p∗hk, remaining fixed until p̄ becomes too large.

(c) Finally, p̄ becomes larger than p∗hk + ∆k
+, that is, p∗hk does not fall anymore inside of

the feasible interval (14), this time remaining “on the left”; then p∗k(p̄) = p̄ − ∆k
+, so,

again, p∗k(p̄) increases linearly as p̄ does.

Of course, not all three cases (a), (b) and (c) need necessarily happen. For instance, p∗hk

may already belong to (14) for p̄ = m̄0, or it may never leave it even if p̄ = m̄v̄+1, and so on.
However, the above three cases cover all that can possibly happen.

9



(b)
mv+1mvm2m1

...

=

pk

m0

phk
*pk(p)*

_

p
_ ∆k-∆k

+

pk+1

m0

_
mv+1

_
-

(a)
mv+1mvm2m1

...

pk

m0

phk
*pk(p)*

_

p
_ ∆k-∆k

+

pk+1

m0

_
mv+1

_
-

(c)
mv+1mvm2m1

...

pk

m0

phk
* pk(p)*

_

p
_ ∆k-∆k

+

pk+1

m0

_
mv+1

_
-

Figure 1: Evolution of p∗k(p̄) as p̄ varies

It is now easy to see how, given the explicit description of zhk in terms of the v + 1
sub-intervals of [m0, mv+1] and the associated functions zi, we can efficiently construct a
piecewise representation of zh(k+1) with v̄ + 1 intervals where v̄ ≤ v + 2.

0) Set p̄ = m̄0, v̄ = 0, and let 0 ≤ q ≤ v be the index of the interval to which p∗k(p̄) =
p̄ + ∆k

−
belongs (if it is a breakpoint, choose the interval on the right). Set ū =

min{uk+1, mv+1 + ∆k
+}.

1) If case (a) is not verified goto step 2), otherwise set z̄v̄(p) = fk+1(p) + zq(p + ∆k
−
).

Compute the maximum value of p̄ such that p∗k(p̄) remains in the q-th interval, p∗hk

remains outside the feasible interval and p̄ remains feasible, that is, p̄ = min{mq+1 −
∆k

−
, p∗hk − ∆k

−
, ū}. Set v̄ = v̄ + 1, m̄v̄ = p̄, if p̄ 6= p∗hk − ∆k

−
then q = q + 1, and repeat

step 1).

2) If case (b) is not verified goto step 3), otherwise set z̄v̄(p) = fk+1(p)+zq(p∗hk). Compute
the maximum value of p̄ such that p∗hk remains inside the feasible interval and p̄ remains
feasible, that is, p̄ = min{p∗hk + ∆k

+, ū}. Set v̄ = v̄ + 1, m̄v̄ = p̄ and goto step 3).

3) If p̄ = ū then terminate, otherwise set z̄v̄(p) = fk+1(p) + zq(p − ∆k
+). Compute the

10



maximum value of p̄ such that p∗k(p̄) = p̄ − ∆k
+ remains in the q-th interval and p̄

remains feasible, that is, p̄ = min{mq+1 + ∆k
+, ū}. Set v̄ = v̄ + 1, m̄v̄ = p̄, q = q + 1

and repeat step 3).

Clearly, the total number of intervals for zh(k+1) is at most equal to that for zhk plus the
two ones corresponding to p∗hk “entering” and “leaving” the feasible set, that is, the former
interval q in step 2) is replaced by at most 3 new intervals. Note that the intervals with
right extreme less than or equal to p∗hk − ∆k

−
, if any, correspond to intervals for zhk “shifted

left” by ∆k
−
, while the intervals with left extreme greater than or equal to p∗hk + ∆k

+, if any,
correspond to intervals for zhk “shifted right” by ∆k

+. The final number of intervals may well
be strictly less than v + 3. Also, since each zi is composed of the sum of at most k − h + 1
original functions f t, each z̄j is composed of the sum of at most k − h + 2 = (k + 1)− h + 1
original functions f t. This completes the proof of Proposition 1.

During the above process, it is very easy to compute not only p∗
h(k+1), but also the optimal

solution of
min{ zh(k+1)(p) : p ∈ [lk+1, ūk+1] } ,

that is, the last component of the optimal solution of (EDh(k+1)), where constraint (13) is
imposed. Thus, the above procedure can be used to solve (EDhk) problems.

The complexity of the procedure depends on the actual form of the functions f t; if
the functions are quadratic, as common in practical applications, each step of the proce-
dure is O(1). Therefore, assuming that (EDh(k−1)) has already been solved (with the same
method), the complexity to solve (EDhk) is O(k − h), and, consequently, the complexity to
solve all the problems (EDhh), (EDh(h+1)), . . ., (EDhk) is O((k − h)2). Hence, solving all
the O(n2) (ED) problems in the dynamic programming procedure of the previous paragraph
has O(n3) complexity. All in all, combining the special visit of the state-space graph G with
the above efficient procedure for solving (EDhk), we can solve (1UC), for the quadratic case,
in O(n3). The same complexity bound holds for any other class of convex functions closed
under the sum operation and such that an O(1) closed-form formula exists for computing
the unconstrained minima, such as, among others, polynomial functions of degree at most
five. The approach is however likely to prove efficient even for other classes of functions,
since univariate unconstrained optimization approaches can be used to compute the required
unconstrained minima. This is likely to be much more efficient than the corresponding mul-
tivariate constrained optimization approaches required to solve (EDhk) as a whole.

Although the optimal objective function value of each (EDhk) problem is all that is needed
for solving (1UC), the optimal solutions are then required to reconstruct a full optimal
solution—both in the commitment variables and in the power variables—of the problem.
More specifically, the optimal solutions of all the (EDhk) problems corresponding to all nodes
in the optimal path are needed. However, those solutions are easily found with a “backward
pass”, using the available information constructed in the “forward pass”. In fact, consider a
given problem (EDhk). As discussed above, the optimal value of the last variable pk, say p̄k,
is available when the problem is solved. Then, it is immediate to compute the optimal
value p̄k−1 of the previous variable pk−1 (if k > h) by just computing the projection of the
available constrained minimum p∗

h(k−1) (of zh(k−1), over [lk−1, uk−1]) onto [p̄k−∆k−1
+ , p̄k+∆k−1

−
].

Iterating this procedure, the whole solution of (EDhk) can clearly be found in O(k−h). Since

11



only the optimal solution of the relevant (EDhk) problems—those corresponding to nodes
in the optimal path—is required, and the total number of time instants in which the unit
is committed, in those nodes, is at most n, the optimal solution to (1UC), in terms of the
power variables, can be found in O(n).

It is easy to see that the dual optimal solution to each (EDhk) can also be constructed,
during the “backward pass”, together with the optimal primal solution. In fact, each p̄t for
h ≤ t ≤ k is the constrained minimum of zht subject to (9) – (13), that ultimately define
a nonempty interval in the real line. Thus, if p̄t lies in the strict interior of the interval,
i.e., none of the constraints is active, then all the corresponding optimal dual variables are
zero. Assume instead that exactly one constraint, say (11), is active in p̄t and that zht

is differentiable in p̄t (the argument can be easily extended to the case of multiple active
constraints). The Karush-Kuhn-Tucker conditions require that

z′ht(p̄t) = π

where π is the optimal dual variable of (11). Similar formulae can be easily derived for all
other constraints. Hence optimal dual information is readily available at the only cost of
computing the derivative of zht. In the quadratic case, where this is O(1), the total cost of
retrieving the dual optimal solution to (EDhk) is O(k−h). Clearly, the above technique can
be extended to a nondifferentiable zht; only, left and right derivatives are to be computed.

Somewhat surprisingly, it does not appear that the procedure can be significantly stream-
lined or simplified if further assumptions are made on the data. For instance, in many prac-
tical applications one has lt = l, ut = u, ∆t

−
= ∆t

+ = ∆ < u − l (for if ∆ ≥ u − l then
ramping constraints are redundant), l̄t = ūt = l+∆ for all t ∈ T , and f t(p) = ap2 +btp (that
is, only the linear part of the quadratic objective function depends on the time instant).
Yet, it does not appear that the worst-case complexity results can be improved even if all
the above assumptions are made.

However, it is possible to improve the performances of the method in practice by avoiding
to (forming and) visiting all the state-space graph G of the dynamic programming procedure.
This can be done by observing that every arc and node in G represents a certain number of
(consecutive) time instants in T , and each s − d path in G ultimately represents exactly n

time instants. Thus, adding to the cost of each arc and node a quantity proportional to the
number of time instants it covers, say M times the number of time instants where M is the
same for all arcs and nodes, the cost of every s− d path increases by Mn, and therefore the
optimal solution does not change. Actually, one may even define a different value Mt for each
t ∈ T and add it to each node/arc that contains t. This allows us to make the cost of every arc
and node in G nonnegative by simply choosing M large enough. In typical applications we
do not even need to compute the actual cost of every arc and node for being able to compute
a suitable value for M ; in fact, only the costs of the nodes can be negative, hence, computing
z∗t = min{f t(p) : p ∈ [lt, ut]} (cf. (7)) and setting M = −min{min{ z∗t : t ∈ T }, 0} one
ensures that all the resulting node (and arc) costs are nonnegative.

Then, knowing the objective function value of one—hopefully, good—solution, that is,
the cost of one s− d path, it may be possible to early terminate the visit of some part of the
graph, avoiding to generate some of its nodes and the corresponding arcs. In fact, having all
arc and node costs made nonnegative, the cost of any partial s − d path cannot be smaller

12



than the cost of any s − d path containing it. Thus, if a partial path is found whose cost
is larger than that of the best known solution, the visit of the graph from its last node can
be interrupted. In a Lagrangian setting, a reasonable choice for the initial incumbent s − d

path could be the optimal solution of the (1UC) problem corresponding to the same unit at
the previous Lagrangian iteration. Of course, as soon as a better s− d path is found during
the visit, the value of the incumbent can be updated.

5 Computational results

In order to test the actual efficiency of the proposed approach, we implemented it and
compared it with the CPLEX 8.0 general-purpose Mixed-Integer Quadratic Programming
solver. We remark that our code could surely be improved, for instance by the preprocessing
techniques described at the end of the previous paragraph; however, even this somewhat
preliminary implementation already obtained satisfactory results.

In order to test the approach, we considered three (UC) problems, each with the same 100
thermal units but with different values of n: 24, 96, and 168. We solved the problems with
the Lagrangian approach of [6], that, in all three cases, performed 23 iterations to reach the
optimal solution of the Lagrangian dual with respect to demand constraints and spinning-
reserve constraints. We recorded the dual prices of these constraints at four particular
iterations, that can be considered a representative sample: 1, 12, 16 and 23, that is, the first
one, the last one and two intermediate iterations. This gave us a set of 100 × 3 × 4 = 1200
(1UC) problems, each one corresponding to a specific unit, a given time horizon and one
of the iterations of the Lagrangian approach; we solved all these instances both with our
implementation of the proposed approach and with CPLEX 8.0 on a Pentium IV 2.5 GHz
processor with 1.5Gb of RAM under Debian Linux 3.0. Our code was compiled with g++
version 3.0.4 and optimization option -O3; CPLEX was given a maximum time limit of 300
seconds to solve each instance.

The results of this computational experience are summarized in Table 1. Each row is
associated with the 100 instances of a particular Lagrangian iteration and time horizon. In
the first two columns we report the average solution time and the relative standard deviation
obtained with the dynamic programming approach. In the following two columns we report
the same information for the CPLEX 8.0 MIQP solver; since the latter was not always able
to solve the instance within its time limit, in the last two columns we also report the average
gap at termination (zero when not shown) and the number of instances that could not be
solved by CPLEX at optimality.

The dynamic programming algorithm solves all instances, on average, much faster than
CPLEX (almost three orders of magnitude faster on the largest instances), with a negligible
standard deviation. For the largest instances, CPLEX was not able to solve a significant
fraction of the instances to optimality within the time limit; the average gap of 1% on
these instances means that for some unsolved instance the gap was greater than 8%. Also,
CPLEX shows a very high standard deviation, meaning that while some instances were solved
relatively fast (mainly due to a good preprocessing phase), others took very long. All in all,
these results show that while implementing a Lagrangian approach to ramp-constrained (UC)
by solving the (1UC) subproblems with CPLEX is hardly feasible, the proposed dynamic

13



instance DP CPLEX
n iter. time st.dev. time st.dev. gap% fail
24 1 .001 3e-3 0.05 0.05 0

12 .002 4e-3 0.08 0.05 0
16 .002 4e-3 0.08 0.05 0
23 .002 4e-3 0.08 0.05 0

96 1 0.04 2e-3 10.74 41.99 1
12 0.04 3e-3 17.57 50.93 0.06 2
16 0.04 2e-3 32.64 76.87 0.02 6
23 0.04 3e-3 32.21 76.12 0.03 6

168 1 0.20 6e-3 47.73 103.68 1.09 13
12 0.20 6e-3 117.94 142.61 1.20 35
16 0.20 5e-3 117.49 142.11 0.50 35
23 0.20 6e-3 117.46 141.87 1.23 35

Table 1: Computational results of the DP algorithm versus the CPLEX MIQP solver

programming algorithm can solve the subproblems efficiently enough.

6 Conclusions

We have proposed an efficient dynamic programming algorithm for solving (1UC) with ramp-
ing constraints and general convex cost functions. The algorithm requires to solve O(n2)
convex programs, with up to n variables each, in order to compute the data for the dynamic
programming procedure; the main contribution of the paper is precisely the proposal of a
new efficient algorithm for solving these problems. The resulting algorithm is simple to
implement and works for a very general form of (1UC) with time-varying upper and lower
limits over the generated power, as well as time-varying and different limits for ramp-up and
ramp-down constraints. Coupled with a special visit of the state-space graph in the dynamic
programming algorithm, this enables one to solve (1UC) in O(n3) overall for suitable cost
functions, such as quadratic ones. Computational results showed that even a preliminary
implementation of the proposed approach is indeed efficient and it clearly outperforms the
MIQP solver of CPLEX 8.0 for solving (1UC).

It is worth noting that the proposed approach can be extended to more general versions
of (1UC) as well:

• Data dependent on the history of the unit. It is easy to see that the approach
immediately extends, with almost no change, to problems where the data of (EDhk)—
(coefficient of the) cost functions, coefficients of the ramping constraints, maximum
and minimum production levels—depend not only on t, but on h as well, that is, on
how long the unit has been committed. This may be useful, e.g., to exploit better
data fitting for the coefficients of the cost functions, in order to more accurately reflect
the true operational cost of the unit. Note that a “monolithic” Integer NonLinear
Programming model implementing this feature would be significantly larger than (1)

14



– (5), and therefore significantly more difficult to solve by standard means, while our
approach handles this generalization almost for free.

• Different discretization intervals for commitment and power variables. In
some cases, one may want to use different—typically, finer—discretization intervals for
power variables than for commitment decisions. This may be due either to specific
regulations of the operating context, or to the need to better reflect the operating
characteristics of the unit. It is easy to see that our approach can be easily extended
to handle this case as well; the total complexity becomes O(m2n), where m(≥ n) is
the number of power variables.

Acknowledgements

We are grateful to Fabrizio Lacalandra for useful discussions on these topics.

References

[1] L. Bacaud, C. Lemaréchal, A. Renaud, and C. Sagastizábal. Bundle Methods in Stochas-
tic Optimal Power Management: A Disaggregated Approach Using Preconditioners.
Computational Optimization and Applications, 20:227–244, 2001.

[2] C.H. Bannister and R.J. Kaye. A rapid method for optimization of linear systems with
storage. Operations Research, 39(2):220–232, 1991.

[3] T.E. Bechert and H.G. Kwatny. On the optimal dynamic dispatch of real power. IEEE
Transactions on Power Apparatus and Systems, PAS-91(1):889–898, 1972.

[4] A. Belloni, A. Diniz, M.E. Maceira, and C. Sagastizábal. Bundle relaxation and pri-
mal recovery in unit commitment problems. The brazilian case. Annals of Operations
Research, 120:21–44, 2003.

[5] A. Borghetti, A. Frangioni, F. Lacalandra, A. Lodi, S. Martello, C.A. Nucci, and
A. Trebbi. Lagrangian Relaxation and Tabu Search Approaches for the Unit Com-
mitment Problem. In Saraiva, J.T. and Matos, M.A., editors, Proceedings IEEE 2001
Power Tech Porto Conference, 2001. Paper n. PSO5-397.

[6] A. Borghetti, A. Frangioni, F. Lacalandra, and C.A. Nucci. Lagrangian Heuristics
Based on Disaggregated Bundle Methods for Hydrothermal Unit Commitment. IEEE
Transactions on Power Systems, 18:313–323, 2003.

[7] A. Borghetti, A. Frangioni, F. Lacalandra, C.A. Nucci, and P. Pelacchi. Using of a cost-
based Unit Commitment algorithm to assist bidding strategy decisions. In Borghetti,
A., Nucci, C.A., and Paolone, M., editors, Proceedings IEEE 2003 Power Tech Bologna
Conference, 2003. Paper n. 547.

[8] W. Fan, X. Guan, and Q. Zhai. A new method for unit commitment with ramping
constraints. Electric Power Systems Research, 62:215–224, 2002.

15



[9] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
II—Advanced Theory and Bundle Methods, volume 306 of Grundlehren Math. Wiss.
Springer-Verlag, New York, 1993.

[10] M. Madrigal and V.H. Quintana. An Interior-Point/Cutting-Plane Method to Solve
Unit Commitment Problems. In Proceedings IEEE-PES Power Industry Computer Ap-
plications Conference, pages 179–185, 1999.

[11] D.L. Travers and R.J. Kaye. Dynamic dispatch by constructive dynamic programming.
IEEE Transactions on Power Systems, 13:72–78, 1998.

[12] F. Zhuang and F.D. Galiana. Towards a more rigorous and practical unit commitment
by Lagrangian relaxation. IEEE Transactions on Power Systems, 3:763–773, 1988.

16


