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In the last two decades, a number of algorithms for the linear single-commodity min-cost flow

(MCF) problem have been proposed, and several efficient codes are available that implement

different variants of the algorithms. The practical significance of the algorithms has been

tested by comparing the time required by their implementations for solving “from-scratch”

instances of MCF, of different classes, as the size of the problem (number of nodes and

arcs) increases. However, in many applications several closely related instances of MCF

have to be sequentially solved, so that reoptimization techniques can be used to speed up

computations, and the most attractive algorithm is the one that minimizes the total time

required to solve all the instances in the sequence. In this paper we compare the performances

of four different efficient implementations of algorithms for MCF under cost reoptimization

in the context of decomposition algorithms for the multicommodity min-cost flow (MMCF)

problem, showing that for some classes of instances the relative performances of the codes

doing “from-scratch” optimization do not accurately predict the relative performances when

reoptimization is used. Since the best solver depends both on the class and on the size of

the instance, this work also shows the usefulness of a standard interface for MCF problem

solvers that we have proposed and implemented.
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1. Introduction

The linear single-commodity min-cost flow (MCF) problem is a very interesting problem

sitting “on the edge” between linear and combinatorial optimization. Given a directed graph

G = (N,A), with n = |N | nodes and m = |A| arcs, an m-vector c of arc costs, an m-vector

u of arc upper capacities, and an n-vector b of node surpluses, the problem is defined as

min
∑

(i,j)∈A cijxij∑
j:(i,j)∈A xij −

∑
j:(j,i)∈A xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A
(1)

In other words, a flow x of minimal cost has to be found that satisfies both node-balancing

constraints (for each node, the flow leaving the node minus the flow entering must be equal

to the flow produced by the node) and arc-capacity constraints. This problem has a huge

set of applications, either in itself (Ahuja et. al. 1993) or — more often — as a submodel of

more complex and demanding problems, as in Bertsekas (1998), Frangioni and Gallo (1999),

Löbel (1999), Gendron et. al (2001) and, again, Ahuja et. al. (1993). This is testified

by the enormous amount of research that has been invested in developing efficient solution

algorithms for MCF problems (Ahuja et. al. 1993, Bertsekas 1991) either by specializing LP

algorithms — such as the simplex method (Ahuja et. al. 1993, Helgason and Kennington

1995, Löbel 1996) or the interior point method (Resende and Pardalos 1996) — to the

network case, or by developing ad-hoc approaches such as those of Bertsekas and Eckstein

(1988), Bertsekas and Tseng (1988a), and Goldberg and Tarjan (1990).

It is therefore extremely interesting, both for practitioners and for algorithm developers,

to evaluate which algorithm is the most efficient in practice to solve MCF. This is usually

done as follows: a large set of — usually randomly generated — instances of different classes

is collected, and the running time required by some implementation of different algorithms

for solving these instances is computed. The algorithm whose implementation is, on average,

faster for most classes of instances as the size of the problem (number of nodes and arcs)

increases is usually regarded as the most efficient, or at least the most promising.

However, in many applications several closely related instances of MCF have to be sequen-

tially solved, each instance differing from the previous one only for a possibly small fraction

of the data, so that reoptimization techniques can be used to speed up computations; we

will not discuss all these applications here, the interested reader being referred to Ahuja et.

al. (1993) and the discussion in Amini and Barr (1993). In this setting, the most attractive
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algorithm is the one that minimizes the total time required to solve all the instances, as

opposed to the one that just solves the first instance “from scratch” more efficiently. Also,

in most of these applications, the size of the instances to be solved is not extremely large,

either because each MCF problem captures only a part of a very large-scale problem (as e.g.

in Frangioni and Gallo 1999), or because the MCF computation is used within approaches

for difficult combinatorial problems (as e.g. in Gendron et al. 2001), which typically are not

of very large scale.

Thus, a guideline for choosing the correct MCF algorithm in this setting would be valuable

for practitioners and researchers. Some effort for analyzing this issue has been done by several

researchers, typically after having implemented some specific MCF solver, but the results

were limited and hardly conclusive, as clearly discussed in Amini and Barr (1993). A much

more focused effort, using sophisticated statistical analysis, was performed in Amini and Barr

(1993) for three FORTRAN implementations of MCF algorithms: a primal simplex algorithm,

a dual simplex algorithm, and an out-of-kilter approach. Although the results of that paper

were quite general and showed some trends that presumably still hold true, we believe that

part of the analysis has to be updated, for the following reasons:

• The field of practical implementations of MCF algorithms has significantly progressed

since the publication of Amini and Barr (1993); for instance, efficient implementations

of primal-dual algorithms have been shown to outperform simplex-based approaches

on several classes of instances.

• The size of the instances tested in Amini and Barr (1993), with no more than 1500

nodes and 8000 arcs, can no longer be considered relevant; furthermore, the instances

were all generated by the Netgen generator, which is known to produce “easy” MCF

instances with a “very random” graph structure, and experience has shown that the

relative performance of codes on these kind of instances may be very different from

that on instances produced by other generators.

• In Amini and Barr (1993), random changes of the data were performed for the sake of

the statistical analysis, but the data changes in “real” applications are not necessarily

random.

Therefore, we decided to perform a new experimental analysis of the efficiency of re-

optimization procedures for “modern” MCF solvers. Due to the need to test much larger
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instances while keeping the computational times low, we decided to focus on cost reopti-

mization, i.e., the case where only (a subset of) the flow costs cij are allowed to change from

one instance to the following one. Cost reoptimization is required in many applications; see

e.g. Amini and Barr (1993), Ahuja et. al. (1993), Frangioni and Gallo (1999), and Gendron

et al. (2001), and the references therein; in other classes of applications, different kinds of

changes on the data of the problem are required, and we plan to investigate some of these

applications in the future.

In the paper, we compare the performance of four different efficient implementations of

algorithms for MCF under cost reoptimization in the context of a “real” application, i.e.,

the solution of multicommodity min-cost flow (MMCF) problems through a decomposition

approach. The results clearly show that, for some classes of instances, the relative perfor-

mances of the codes doing “from-scratch” optimization do not accurately predict the relative

performances when reoptimization is used, and therefore confirm the need for a more accu-

rate evaluation of the MCF algorithm to be used if performance is an issue. Incidentally,

the experiments also show that the good results obtained in Frangioni and Gallo (1999)

for solving MMCF by means of a bundle-based decomposition approach could probably be

substantially improved, since the specific solver used there seems to be the worst suited to

cost reoptimization among the four tested.

The structure of the paper is the following: in Section 2 we briefly describe the relevant

details four MCF solvers tested and of our testing environment; in Section 3 we present and

discuss the computational results and, finally, in Section 4 we draw some conclusions and

outline some possible future research issues.

2. The MCF Solvers

In the following, we give a brief description of the four MCF algorithms, focusing on the

details of the cost-reoptimization phase; for a deeper description of the algorithms see Ahuja

et al. (1993) and the original references for each one. We need to introduce some notation.

For a given m-vector x, the surplus gi(x) of node i ∈ N w.r.t. x is

gi(x) = bi −
∑

j:(i,j)∈A
xij +

∑
j:(j,i)∈A

xji ,

i.e., the violation of the flow-conservation constraints in (1). The surplus of a subset S of

nodes w.r.t. x is the sum of the surpluses of the nodes in S, and the total surplus of G (w.r.t.
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x) is the sum of the positive surpluses of the nodes in G; x satisfies the flow-conservation

constraints if and only if the corresponding total surplus of G is zero. Any vector x such that

0 ≤ xij ≤ uij for each (i, j) ∈ A is a pseudoflow ; a pseudoflow with zero total surplus is a flow.

The dual solution of the MCF problem is denoted by π, the vector of node potentials. Given

a scalar ξ ≥ 0, a primal-dual pair (x, π) satisfies the ξ-complementary slackness conditions

(ξ-CS for short) if x is a pseudoflow and the following hold:

xij < uij ⇒ −ξ ≤ cij − πi + πj ∀(i, j) ∈ A ,

0 < xij ⇒ cij − πi + πj ≤ ξ ∀(i, j) ∈ A .

The number cπij = cij−πi+πj is the reduced cost of the arc (i, j). It is well-known that 0-CS

are necessary and sufficient conditions for optimality of a primal-dual pair (x, π) where x is

feasible; analogously, a primal-dual pair satisfying ξ-CS is said ξ-optimal.

2.1 The RelaxIV Solver

The RelaxIV solver is based on the Relax version 4 FORTRAN code (Bertsekas and Tseng

1988b, Bertsekas and Tseng 1994). RelaxIV implements a primal-dual algorithm, which

can be succintly described as follows. At each iteration, a primal-dual pair (x, π), where

x is a pseudoflow, which satisfies 0-CS is available; if x is a flow then an optimal solution

has been found and the algorithm stops. Otherwise, the algorithm tries to convert x in a

feasible flow that still satisfies 0-CS with π by attempting to construct augmenting paths —

all made of arcs with zero reduced cost — from one node with positive surplus to one node

with negative surplus. This corresponds to running a max-flow algorithm, of the augmenting

path type, on the subgraph of G comprising only the arcs with zero reduced costs. If the

path is found, the total surplus of the solution is decreased; otherwise a set of nodes with

positive or negative surplus is found such that all arcs in the corresponding cutset are either

saturated or empty. Hence, the potentials of all the nodes in the set can be increased or

decreased without violating 0-CS with the current pseudoflow x, creating new arcs with zero

reduced costs (or finding that the problem has no feasible solution). RelaxIV implements

checks for early termination of the primal phase (the max-flow computation), in order to

avoid performing flow operations when it is clear that no feasible flow exists that satisfies

0-CS with the current vector of potentials π.

Cost reoptimization in this code is very easy: given the new cost vector c̄ and the optimal

primal-dual pair (x, π), x can be turned into a pseudoflow x′ satisfying 0-CS with π by just
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saturating (xij = uij) all arcs with negative reduced costs and emptying (xij = 0) all arcs

with positive reduced costs. Then, the algorithm can be restarted with (x′, π).

2.2 The CS2 Solver

The CS2 solver is based on the cs2 version 3.7 C code, developed by Andrew Goldberg

and Boris Cherkassky. CS2 is based on a cost-scaling push-relabel method (Goldberg and

Tarjan 1990, Goldberg 1997), which is a primal-dual approach similar to that of RelaxIV,

except that a cost-scaling phase allows us to operate on arcs of nonzero reduced cost, and a

push-relabel algorithm is used for the max-flow computation instead of an augmenting path

one.

The algorithm starts with a “scaling” variable ξ > 0, a vector of potentials (e.g., π = 0)

and any pseudoflow. The main loop of the algorithm begins by converting x into a ξ-optimal

pseudoflow x′; this is simply done by saturating or emptying every arc that does not satisfy

ξ-CS. Then, x′ is converted into a ξ-optimal flow by applying a push-relabel algorithm for

maximum flow, i.e., a sequence of push and relabel operations, each of which preserves ξ-

optimality, that moves the flow from nodes with positive surplus to nodes with negative

surplus until the total surplus is zero. A push operation is applied to a residual arc (i, j)

(such that xij < uij) with negative reduced cost whose tail node i has positive surplus: it

consists of pushing δ = min(gi(x), uij − xij) units of flow from i to j, thereby decreasing

gi(x) by δ and increasing gj(x) and xij by δ (“reverse-push” operations are also performed

on nonempty arcs with positive reduced cost to decrease their flow: in the code, a “sister-

arc” implementation of the graph is used that makes the two operations indistinguishable).

A relabel operation is applied to a node i with positive surplus that has no exiting residual

arc with negative reduced cost. It consists of changing its potential πi to the largest possible

degree allowed by the ξ− optimality constraints, thereby making some other arc admissible

for the push operation (or detecting that the problem has no feasible solution).

When a ξ-optimal primal-dual pair has been obtained, the algorithm is stopped if ξ is

small enough; otherwise ξ is decreased (a new scaling phase is started) and the process is

repeated.

Cost reoptimization in this code is also very easy: given the new cost vector c̄, the

algorithm can simply be restarted with the previous primal-dual optimal pair, provided that
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ξ is chosen large enough:

ξ := −min{c̄πij : xij < uij , c̄
π
ij < 0, (i, j) ∈ A} .

Due to the “sister-arc” implementation of CS2, this also takes into account nonempty arcs

with positive reduced cost.

2.3 The MCFZIB Solver

The MCFZIB solver is based on the mcf version 1.1 C code, developed by Andreas Löbel

(Löbel 1996). MCFZIB is a network simplex algorithm, i.e., a specialized version of the

simplex algorithm that performs the fundamental simplex operations (computation of the

primal and dual basic solutions) directly on the network itself. Although MCFZIB implements

both the primal and dual network simplex algorithm, we found the primal network simplex

to be consistently more efficient than the dual; also, it is generally accepted (Amini and Barr

1993) that the primal simplex is more suited to cost reoptimization than is the dual simplex

because it can more easily exploit the previous optimal base.

At each iteration of the primal simplex algorithm, a primal feasible base (B,L, U) is

available; that is, the arc set A is partitioned into the set B, corresponding to the basic

variables, that describes a spanning tree for the graph, and the sets L and U , corresponding

to the non-basic variables whose values are set to the lower and upper bound, respectively.

The corresponding basic primal (feasible) solution x and dual solution π are computed; if

the 0-CS are not satisfied, then an arc belonging to either L or U is chosen that violates 0-CS

and it is put into B (pivoting phase). This amounts at sending flow along an augmenting

cycle with negative reduced cost. The strategy used to select the entering arc has a dramatic

influence on the solver efficiency, especially on large networks. In our experiment, the multiple

partial pricing strategy, where pricing is preferably restricted to a set of candidate arcs that

is revised only if necessary, has always been the most efficient one.

Cost reoptimization for a network simplex code depends on whether the primal or dual

simplex is to be used. For the primal case, given the previous optimal base (B,L, U) and

the new cost vector c̄, the dual optimal solution π has to be recomputed with a top-down

visit of the tree B; then, all arcs (i, j) /∈ B have to be scanned to recompute the reduced

costs (meanwhile, the nontrivial data structures for the pricing procedure are updated).

Reoptimization for the dual simplex case is more complex because the previous optimal base

may no longer be dual-feasible with the new cost vector c̄. This can be faced by inserting
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at most n − 1 artificial arcs with very large cost in the network, exactly as it is done in

“from-scratch” optimization when a (primal or dual) feasible initial base is not available.

2.4 The MCFCplex Solver

CPLEX (CPLEX Inc. 2002) is a commercial package specifically designed to facilitate the

development of applications to solve, modify, and interpret the results of linear, mixed

integer, and convex quadratic programming programs. Among the other algorithms, the

CPLEX callable libraries offer a primal and dual network simplex implementation for MCF,

called NETOPT; the MCFCplex solver is nothing but a “wrapper class” that implements the

MCFClass interface using calls to the CPLEX callable libraries API. The CPLEX NETOPT

code appears to be very efficient, and seems to offer full reoptimization capabilities; as with

MCFZIB, the primal network simplex with the default “multiple-partial-pricing- with-sorting”

rule appears to be the most efficient option available.

2.5 The MCFClass Interface

All the above four solvers have been implemented as derived classes of the MCFClass class.

MCFClass is an abstract (pure virtual) C++ base class that defines the interface between a

generic MCF problem solver and the application programs. The interface tackles basically all

needs that an application might have, and provides an abstract layer that makes applications

independent from the details of the particular solver that is used. The public methods of

MCFClass, properly redefined in the derived classes, are used for loading the instance, reading

the parameters, solving the problems, collecting the results, changing cost/deficits/upper-

bound values, and modifying the network structure by adding or deleting arcs or nodes. A

set of virtualized data types is used to the largest flexibility in choosing the type (integer

or floating-point) and the precision of the numbers (costs, flows, indexes, etc.), making it

possible to tailor the code to the specific machine and application. A set of compile-time

switches is also provided to allow control on some important features without having to

bother about their actual implementation.

We ported the four solvers under the MCFClass interface in order to facilitate our own

research projects, and in the hope of providing to practitioners a standard and complete

interface for developing applications that require the solution of MCF problems without

having to bother with the details of the different solvers. Many researchers from all over the

world have obtained copies of at least one of the solvers, freely available for research purposes.
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While the porting of RelaxIV required an almost full rewriting of the original FORTRAN code,

CS2 and MCFZIB required significantly less effort; however, since the MCFClass interface

is general with respect to data types, stopping conditions, and types of reoptimizations

allowed, a nontrivial porting and validating effort was needed. For instance, for all codes,

full reoptimization capabilities were implemented for changes in all the data of the problem

(costs, capacities, deficits, and graph topology), which were not present in the original codes.

In all our tests, the C and C++ versions have behaved almost identically, with only a few

percent maximum performance difference; the C++ implementations were even slightly faster

than the C implementations in many cases, despite sometimes requiring some extra effort to

conform to the MCFClass interface. For CS2, for instance, a data structure is kept updated

that allows us to recover the optimal flow solution in the same order as the original arc set,

which is not done in the original cs2 C code. Also, for all codes, both integer and floating-

point data are independently supported for both flows (capacities, deficits) and potentials

(costs), which was not the case for all the original solvers.

The codes are currently available at

http://www.di.unipi.it/di/groups/optimize/Software/MCF.html

together with a fifth solver, SPTree, that implements the MCFClass interface for the special

case of MCF problems that can be solved using only one shortest-path tree computation.

3. Computational Experiments

In order to compare the performances of the four solvers under cost reoptimization in a

realistic application, we used the bundle-based cost-decomposition algorithm of Frangioni

and Gallo (1999) to solve four different families of large-scale MMCF problems. The (linear)

multicommodity min-cost flow problem is the following linear program:

min
∑
h∈K

∑
(i,j)∈A c

h
ijx

h
ij∑

j:(i,j)∈A x
h
ij −

∑
j:(j,i)∈A x

h
ji = bhi ∀i ∈ N,∀h ∈ K

0 ≤ xhij ≤ uhij ∀(i, j) ∈ A, ∀h ∈ K∑
h∈K x

h
ij ≤ uij ∀(i, j) ∈ A

(2)

That is, on the same directed network G = (N,A), a set K of different “kinds” of flow

(commodities) co-exist. The commodities don’t “mix,” but they compete for the shared

resource of arc mutual capacities uij. It is beyond the scope of this paper to provide a
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description of the algorithm, for which we direct the interested reader to the original paper;

suffice it here to say that, like many other cost-decomposition approaches, the algorithm in

Frangioni and Gallo (1999) relaxes the mutual capacity constraints and solves, at each iter-

ation, k = |K| independent MCF problems, one for each commodity of the original MMCF

problem. The optimal solutions of the MCF problems are then used to modify the cost

vectors of the subsequent iteration. The optimization process can require several hundreds

of iterations, depending on the problem size and difficulty, and, qualitatively speaking, the

costs in the final iterations “change less” than in the initial iterations, so that reoptimization

has a different impact in different stages of the algorithm. It may be worth remarking that,

in our implementation, k separate MCF solver objects are built, one for each commodity of

the MMCF instance. Since each solver has its own independent internal status variables, it

is possible (indeed, automatic) to exploit the optimal solution of the previous call for any

commodity h when solving the MCF again corresponding to that commodity, even though

other k − 1 flow problems have been solved in between. This would have not been possible

if the original C or FORTRAN codes had been used, since they all used global variables. Note

that it could even be possible to use different MCF solvers for different commodities in the

same MMCF instance; this is in fact allowed in our code, although up to now only in a

limited way (see Frangioni and Gallo 1999 for more details).

In the rest of this section we will describe the instances used, discuss some important

details of the test setup, and finally report and discuss the results of our experiments.

3.1 The Test Instances

We generated four classes of test instances. The first three classes were generated using the

dimacs2pprn “meta” generator, first introduced in Castro and Nabona (1996) and afterwards

used in other papers such as Frangioni and Gallo (1999). dimacs2pprn is dubbed a “meta”

generator because the basic characteristics of the MMCF instances it produces (topology

of the network, distribution of costs/capacities/deficits) are not hard-wired in the generator

code, but rather are taken as input. More specifically, the generator inputs the description

of a single-commodity MCF in DIMACS standard format, and three parameters k, r, and

f . The generator produces an MMCF instance with k commodities on the same topological

graph. The deficits and capacities of each individual commodity are obtained by scaling

those of the original MCF by a pseudo-random number drawn uniformly in the interval

[1, r], while each arc costs chij for commodity h is independently and uniformly drawn at
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random in [0, cij]. Finally, the mutual capacity for each arc is initially fixed to fuij, and

subsequently adjusted to ensure that a feasible multicommodity flow exists. Note that, due

to the scaling, all data of the MMCF instance are in general not integer even if the data of the

original MCF instance are. The dimacs2pprn generator allows us to produce instances with

integral capacities/surpluses or costs; however, the costs would rapidly become fractional

anyway as the cost-decomposition approach proceeds. It may be worth remarking again

that the original cs2 and Relax solvers work only with integral data, while our versions

have worked perfectly with non-integral data. Of course, working with non-integral data

types requires setting some tolerances on both optimality and feasibility conditions; we have

set them both to very high values (at least 1e-8 relative) in order to match the level of

accuracy natively provided by the MCFCplex solver.

We used three different, well-known random generators for producing the initial MCF

instances: GOTO, NETGEN and GRIDGEN. For each generator “GEN,” we produced one instance

“GEN q p” for some values of q ∈ {8, 9, 10, 12, 14} and p ∈ {8, 16, 32, 64}, such that the

instance has 2q nodes and density p, i.e., (roughly) p2q arcs. For each generator we selected

only a subset of the possible p and q values, both because of the structure of the generator

and to keep the overall running time at an acceptable level. Note that the largest MMCF

instances that we tested correspond to linear programs with over 2 million variables and

200000 constraints.

For each of the original MCF instances we generated one MMCF instance with k =

10, r = 1, and f = 4. Since each MMCF instance contains ten different MCF instances

that are independently solved, dividing the total running time required by all the MCF

computations for one MMCF instance by ten, we obtain the average computational cost

among ten different MCF instances. Finally, we also used a set of well-known MMCF

instances, the PDS (patient distribution system) problems; these instances originate by

transportation problem of patients from a place of military conflict. The PDS instances all

have k = 11 (and therefore each one provides average results for 11 different MCFs), and

differ for one parameter t indicating the number of days covered by the model: each instance

PDSt has roughly 126t nodes and a density between three and four (growing slowly as t

grows).

All the above generators, both MCF and MMCF, and instances are available at

http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.
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3.2 Test Setup

We tested our instances on a PC with an Intel Pentium 4 CPU at 1.70 GHz, running RedHat

Linux version 7.2. The code was compiled using the GNU g++ compiler version 2.96, using

aggressive optimization option “-O3.” We used CPLEX version 7.5. As discussed in Sections

2.3 and 2.4, all the results for both simplex-based codes were obtained using the primal

simplex algorithm with a multiple partial pricing rule.

While setting up the tests we were confronted with two problems: how to test all the

solvers on exactly the same instances, and how to measure the running time exactly.

The first problem arises because, in the dual-ascent approach of Frangioni and Gallo

(1999), the flow solutions of each MCF at a given iteration are part of the data of an opti-

mization problem whose solution gives the flow costs at the subsequent iteration. Different

MCF solvers may provide different (ξ-)optimal solutions of the same instance, and this is

very likely to happen during the course of the dual-ascent algorithm. Hence, the sequences

of the flow costs generated during two runs of the algorithm on the same MMCF instance,

but with two different MCF solvers are very likely to be different. Furthermore, dual-ascent

methods are known to be very “unstable” in that the trajectory followed by the methods can

vary significantly with only tiny variations in the results; hence, the sequences of arc costs

corresponding to two different MCF solvers cannot be expected to be even “close.” Thus,

ensuring that each solver was required to solve exactly the same sequence of MCF problem

was not straightforward.

The second problem arises because the MCF solvers are used within a complex appli-

cation, which uses several different methods of the MCFClass interface to load and modify

the MCF problems, solve them, and collect the results. Some of these methods are likely to

terminate too quickly to be reliably timed with the standard timing procedures, especially on

small MCF instances, while possibly having a non-negligible impact on the overall running

time. Thus, it was not straightforward to ensure that the total running time spent by each

MCF solver was correctly measured.

Fortunately, the object-oriented design of MCFClass provided us with an easy and effective

way to solve both problems at once, in the form of a “tester class.” That is, we could easily

implement an MCFTest class, derived from MCFClass, that just holds two pointers to two

different MCF solvers, the “master solver” and the “slave solver.” For each call to any

method of MCFClass, the MCFTest class calls the corresponding method of both solvers,
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but, for methods that output results, the output of the “slave” solver is discarded (usually,

a tester class would perform cross checks to ensure that the output of the two solvers is

correct, but this was not our aim here).

Our experiments were therefore performed as follows: for each class of instances we chose

a solver among the four available ones, and then solved each instance in the class five times.

The first time we just used that particular solver as the MCF solver. For the other four runs

we used as MCF solver the four possible MCFTest objects obtained by chosing as “master

solver” the selected one, and as “slave solver” one of the four MCF solvers, comprising the

one that was being used as “master.” Finally, for each instance we subtracted the recorded

running time for the run with just one solver from all the recorded running times for all

the other runs corresponding to the same instance; note that we never counted the time

for creating the object and loading the instance. In this way, we could be sure that the

sequence of MCF problems solved by each different MCF solver was exactly the same, and

we obtained a very precise estimate of the time that was spent in the “slave solver” alone

(the overhead caused by the MCFTest layer being negligible in this case).

3.3 Computational Results

Preliminary results clearly showed that reoptimization usually gave, for the same solver,

better results than “from-scratch” optimization. Thus, we avoided testing the solvers without

reoptimization. Also, we found that the time required to solve the first MCF was often close

to the average time required to solve any other MCF — of the same commodity — in the

sequence if cost reoptimization was not used, i.e., that the costs generated at all steps of the

dual-ascent approach did not substantially change the “difficulty” of solving the MCF with

respect to the initial ones. Therefore, for each class of instances, we decided to report the

following three data:

• T1, the (average) time required to solve the first MCF;

• Ttot, the (average) time required to solve all the MCFs;

• The reoptimization index

RI =
Ttot − T1

T1( number of iterations −1 )
,
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Table 1: Results for PDS Instances
MCFCplex MCFZIB RelaxIV CS2

network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI
pds10 0.12 24.93 0.41 0.34 23.67 0.14 0.07 60.01 1.70 0.66 116.16 0.35
pds11 0.16 27.09 0.34 0.27 33.85 0.25 0.14 104.93 1.50 0.79 190.01 0.48
pds12 0.19 28.86 0.30 0.54 50.63 0.20 0.11 60.28 1.10 0.81 220.89 0.54
pds13 0.24 45.03 0.37 0.43 53.54 0.25 0.14 167.65 2.40 1.09 273.58 0.50
pds14 0.24 38.59 0.27 0.79 69.57 0.17 0.18 180.86 2.00 1.18 297.24 0.50
pds15 0.37 49.98 0.27 0.61 56.65 0.18 0.21 251.37 2.40 1.43 342.24 0.47
pds18 0.57 81.64 0.28 1.41 114.70 0.16 0.32 491.95 3.07 1.84 786.63 0.85
pds30 1.93 214.18 0.22 3.40 323.61 0.18 1.92 2082.43 2.10 4.28 2060.86 0.96
pds40 5.82 1973.25 0.67 7.18 2449.66 0.68 5.75 4063.55 1.40 9.34 6690.75 1.43

i.e., the ratio between the average running time for all iterations after the first one

(where reoptimization is used), and the running time for the first iteration (where

“from-scratch” optimization is used).

The reoptimization index can be taken as an indication of how efficiently each MCF solver

reoptimizes, i.e., of the relative importance of using reoptimization — as opposed as not using

it — for that code. Of course, the most interesting datum from a practitioner’s viewpoint is

Ttot, in that it directly measures the impact of using each solver in the application.

Table 1 reports results obtained for PDS instances. For these instances, RelaxIV is the

fastest code “from-scratch,” closely followed by MCFCplex; however, the latter reoptimizes

much more efficiently, as testified by its much smaller Ttot times. MCFZIB obtains even better

RI values than does MCFCplex, but it is considerably slower “from scratch”, so that it ends

up being outperformed, albeit not too substantially, by MCFCplex. The same happens for

CS2 and RelaxIV: while the former obtains better RI values than the latter, it is slower

in “from-scratch” optimization and it ends up being outperformed. Remarkably, the RI

values obtained for pds40 are much worse than those obtained on all the other instances for

MCFCplex, MCFZIB and CS2, but not so for RelaxIV. Also, note that RelaxIV often obtains

RI values (significantly) larger than one. This probably depends on the special structure of

the underlying network in PDS problems. This is a time-space network (with ten to 40 time

periods) that contains very “long” paths, that are well-known to affect the performances of

RelaxIV adversely. These paths contain “return” arcs that are initially “inactive” (do not

carry flow), but may become “active” later in the optimization process. Thus, the MCF

problems solved at the first iteration of the cost-decomposition method are much easier for

RelaxIV than some of those solved at later stages, and the difference is large enough to offset

any advantage due to reoptimization.

Table 2 reports results obtained for GOTO instances. The two simplex-based codes reop-
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Table 2: Results using GOTO Instances
MCFCplex MCFZIB RelaxIV CS2

network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI
GOTO8 8 0.33 5.69 0.03 0.52 12.04 0.04 42.42 54.93 0.02 0.45 122.86 0.54
GOTO8 16 0.63 13.22 0.04 0.85 28.26 0.06 28.21 211.60 0.01 0.75 122.86 0.33
GOTO8 32 1.40 22.11 0.03 1.35 42.85 0.04 62.87 1576.20 0.05 0.45 122.86 0.55
GOTO9 16 2.45 61.97 0.04 3.73 113.69 0.05 263.50 2007.53 0.01 2.41 713.94 0.59
GOTO9 32 5.44 117.61 0.04 9.59 217.24 0.04 2002.56 2546.20 0.0005 9.50 686.61 0.14
GOTO9 64 10.10 241.11 0.04 14.22 438.90 0.05 2078.13 3883.01 0.001 6.08 863.70 0.28
GOTO10 8 5.13 67.33 0.02 8.22 122.00 0.02 58.75 788.37 0.02 3.60 734.35 0.40
GOTO10 16 15.48 124.01 0.01 18.64 1193.31 0.13 656.40 2249.69 0.004 11.35 209.66 0.04
GOTO10 32 17.81 696.38 0.07 22.50 900.31 0.08 1700.00 4923.19 0.002 19.29 1994.66 0.21
GOTO12 8 99.54 3462.90 0.06 142.33 4544.30 0.06 — — — 28.81 8814.16 0.60
GOTO12 16 321.50 3305.70 0.02 842.50 4995.90 0.01 — — — 45.79 14276.00 0.60

Table 3: Results using NETGEN Instances
MCFCplex MCFZIB RelaxIV CS2

network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI
NET8 8 0.06 4.14 0.13 0.05 4.78 0.19 0.08 13.46 0.33 0.12 33.29 0.55
NET8 16 0.11 7.58 0.13 0.13 12.11 0.18 0.17 28.76 0.33 0.26 43.41 0.33
NET8 32 0.28 22.66 0.16 0.38 34.05 0.17 0.37 98.36 0.53 0.47 275.88 1.17
NET8 64 0.24 20.57 0.16 0.35 49.71 0.28 0.50 126.42 0.50 0.79 251.09 0.63
NET10 8 0.49 4.12 0.01 0.46 4.79 0.02 0.64 13.47 0.04 0.93 68.87 0.14
NET10 16 2.09 210.95 0.2 1.86 308.4 0.33 2.05 656.96 0.64 2.03 945.84 0.93
NET10 32 1.70 80.10 0.09 1.76 155.37 0.17 4.46 421.43 0.19 2.88 656.69 0.45
NET10 64 7.33 418.53 0.11 10.15 484.22 0.16 11.64 3133.25 0.53 6.36 3297.25 1.03
NET12 8 14.30 308.71 0.04 7.78 402.76 0.10 11.30 1158.64 0.20 6.89 2260.97 0.65
NET12 16 22.16 560.29 0.24 18.59 622.61 0.32 21.15 1308.41 0.60 16.80 1514.81 0.89
NET14 8 627.23 6217.36 0.09 231.08 5737.99 0.24 232.90 8472.30 0.35 167.28 8435.76 0.49
NET14 16 897.22 10128.60 0.10 359.77 9547.49 0.26 307.85 14223.40 0.45 243.15 15080.50 0.61

timize very efficiently for these instances, obtaining RI values always smaller than 0.08 and

as small as 0.01 in one case. Once again, MCFCplex is faster in “from-scratch” optimiza-

tion, and, as the RI values are comparable, is also faster when the total running time is

considered. CS2 is often faster than MCFCplex in “from-scratch” optimization, up to almost

an order of magnitude in the largest instances, but it reoptimizes far less efficiently and the

total running time is consistently larger than that of MCFCplex. Finally, the results obtained

by RelaxIV appear to be very erratic — the largest instances could not even be solved in

reasonable time — and no clear conclusion can be reached.

Table 3 reports results obtained for NETGEN instances. The results are similar to those of

the GOTO instances, with the simplex-based codes being faster when the total running time

is considered due to more efficient reoptimization, although being clearly outperformed by

the primal-dual codes in “from-scratch” optimization when the sizes of the MCF instances

grow. For these instances MCFCplex is most often faster than MCFZIB on small instances,

while the opposite is true for large instances due to much better “from-scratch” optimization

times. RelaxIV is usually slightly faster than CS2, but not than the simplex-based codes,

when the total running time is considered, although CS2 is the fastest code among the four

in “from-scratch” optimization for the largest instances.

Finally, Table 4 reports results obtained for GRIDGEN instances. For these instances

MCFZIB is always faster than MCFCplex in “from-scratch” optimization, but the latter reop-
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Table 4: Results using GRIDGEN Instances
MCFCplex MCFZIB RelaxIV CS2

network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI
GRID8 8 0.07 5.37 0.15 0.06 11.45 0.38 0.08 16.31 0.40 0.11 45.38 0.82
GRID8 16 0.11 8.23 0.15 0.11 11.45 0.21 0.15 31.20 0.41 0.26 111.27 0.63
GRID8 32 0.38 25.76 0.13 0.38 36.16 0.19 0.54 11.97 0.43 0.57 224.49 0.78
GRID8 64 1.35 58.19 0.10 1.35 142.16 0.20 1.87 517.72 0.55 1.20 554.46 0.92
GRID10 8 0.55 21.06 0.07 0.38 26.90 0.14 0.65 104.54 0.32 0.97 223.26 0.46
GRID10 16 2.77 196.36 0.14 2.36 266.20 0.22 2.79 790.69 0.56 2.50 1004.79 0.80
GRID10 32 3.79 134.80 0.07 2.96 303.16 0.20 7.94 1743.85 0.44 3.87 1349.83 0.70
GRID10 64 10.57 538.24 0.10 8.45 991.11 0.23 7.50 3660.42 0.97 18.96 5292.58 0.55
GRID12 8 16.29 5236.34 0.05 9.58 346.50 0.35 18.22 4771.50 0.52 14.50 6477.5 0.90
GRID12 16 70.91 1587.48 0.20 32.29 1672.21 0.50 43.54 2678.49 0.60 20.48 2375.70 1.15
GRID12 32 111.22 6254.10 0.55 55.79 8211.50 1.40 96.01 6689.50 0.68 33.90 3570.50 1.04
GRID12 64 275.90 8043.00 0.28 119.88 11683.00 0.96 144.36 13850.00 0.94 57.42 4943.00 0.85

timizes more efficiently, and it is always faster when the total running time is considered.

RelaxIV is most often worse, sometimes considerably, than the simplex-based codes, and

so is CS2, both “from scratch” and in reoptimization, for the smaller instances; however,

for the largest instances CS2 is much faster “from-scratch” than all the other codes, and,

despite having somewhat large RI values, it manages to keep the lead even when the total

running time is considered, solving the largest instances about a factor of two faster than the

fastest among the other codes. It is particularly interesting to contrast MCFCplex and CS2

on the GRID12 64 instances: while the former reoptimizes much more efficiently (but still

not nearly as efficiently as, for instance, in the GOTO instances), the latter is more than five

times faster in “from scratch” optimization, thus overbalancing the factor of roughly three

between the respective RI values.

4. Conclusions

We have experimented to compare the relative efficiency of four MCF codes under cost

reoptimization in the context of a “realistic” application, that is, the solution of MMCF

problems with a cost-decomposition algorithm. We were able to test different classes of MCF

instances of varying size, showing how the running time for “from scratch” optimization of

an instance may not always be a good guide for selecting the algorithm to be used in a

cost-reoptimization setting. As a general guideline, our findings confirm those of Amini and

Barr (1993), i.e., codes implementing the primal simplex algorithm tend to be more efficient

at reoptimizing after a change of costs than those based on a primal-dual approach, and this

often overbalances any advantage in “from-scratch” optimization that primal-dual codes

may have, especially if the size of the instance is not very large. However, for some large

instances, primal-dual codes may become competitive even when cost reoptimization is taken

into account. It should also be remarked, as correctly pointed out by one referee, that there
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may be scope for improving the rules for reoptimizing in RelaxIV and CS2, which may result

in better reoptimization performance especially if only relatively few arc costs change or most

arc costs change of only a relatively small amount. In our opinion, one interesting finding

of the experiments is that, although some general indications can be drawn, no algorithm is

always the most efficient: the best choice for the MCF solver depends on both the class and on

the size of the instance. Hence, our experience shows that being able to test several different

MCF solvers easily and efficiently within a complex optimization code for the solution of a

network-structured problem may be very important if an overall efficient approach has to be

obtained. This was precisely the rationale under our proposal of the MCFClass project for a

standard interface for MCF problem solvers. As previously discussed, having the four MCF

solvers ported under the MCFClass interface was instrumental for being able to perform the

comparisons quickly and fairly. Therefore, we believe that more effort should be undertaken

to provide standard optimization components that can be easily exchanged and used for

construction of sophisticated approaches. This is also confirmed by the existence of the

similar — but with a much broader-range — OSI project for a standard interface for mixed-

integer linear and quadratic problems solvers, that is gaining momentum in the community.

The OSI project is available at

http://oss.software.ibm.com/developerworks/opensource/coin.

Although with a much more limited scope, we hope that the MCFClass project can provide

a valuable tool for researchers and practitioners alike.

We plan to run similar comparisons in other kinds of reoptimization settings, e.g., ca-

pacity reoptimization or deficit reoptimization. With the better understanding of the re-

optimization phenomenon thus acquired, it could become possible to design and implement

MCF algorithms particularly well-suited for one of the possible different types of reoptimiza-

tion. Finally, we plan to bring forward the MCFClass project, developing or porting other

MCF codes, and to design standard interfaces for other common network problems, like the

shortest-path problem. We believe that a growing set of standard optimization components

that can be easily exchanged and used for constructing sophisticated approaches for difficult

optimization problems would be useful for researchers and practitioners.
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Löbel, A. 1996. Solving large-scale real-world minimum-cost flow problems by a network sim-

plex method. Technical Report SC 96-7, Konrad-Zuse-Zentrum für Informationstechnik

Berlin, Germany.
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