
Mathematical Programming manuscript No.
(will be inserted by the editor)

A. Frangioni ·A. Lodi ·G. Rinaldi

New approaches for optimizing
over the semimetric polytope

the date of receipt and acceptance should be inserted later

Abstract The semimetric polytope is an important polyhedral structure lying at the heart
of several hard combinatorial problems. Therefore, linear optimization over the semimetric
polytope is crucial for a number of relevant applications. Building on some recent polyhedral
and algorithmic results about a related polyhedron, the rooted semimetric polytope, we de-
velop and test several approaches, based over Lagrangian relaxation and application of Non
Differentiable Optimization algorithms, for linear optimization over the semimetric polytope.
We show that some of these approaches can obtain very accurate primal and dual solutions
in a small fraction of the time required for the same task by state-of-the-art general purpose
linear programming technology. In some cases, good estimates of the dual optimal solution
(but not of the primal solution) can be obtained even quicker.

Key words. semimetric polytope, Lagrangian methods, max-cut, network design

1. Introduction

Let G = (V,E) be a simple loopless undirected graph, C be the set of all chordless
cycles of G, and Ē be the subset of the edges of G that do not belong to a 3-
edge cycle (a triangle) of G. For an edge function x ∈ RE and an edge subset
F ⊆ E, let x(F) =

∑
e∈F xe. The semimetric polytope M(G) associated with G

is defined by the following linear system:

x(C \ F)− x(F) ≤ |F | − 1 F ⊆ C with |F | odd and C ∈ C (1)

0 ≤ xe ≤ 1 e ∈ Ē. (2)

The inequalities (1) are called the cycle inequalities.
If G is complete, the only chordless cycles of G are its triangles, therefore

M(G) is defined by the triangle inequalities

xij + xik + xjk ≤ 2
xij − xik − xjk ≤ 0
−xij + xik − xjk ≤ 0
−xij − xik + xjk ≤ 0

 for all distinct i, j, k ∈ V . (3)

Antonio Frangioni: Dipartimento di Informatica, Università di Pisa, largo Bruno Pontecorvo
3, 56127 Pisa, Italy (frangio@di.unipi.it).

Andrea Lodi: Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna,
viale Risorgimento 2, 40136 Bologna, Italy (alodi@deis.unibo.it).

Giovanni Rinaldi: Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del CNR,
viale Manzoni 30, 00185 Roma, Italy (rinaldi@iasi.cnr.it).

Mathematics Subject Classification (1991): 20E28, 20G40, 20C20

2 A. Frangioni et al.

The paper deals with the problem of developing efficient algorithms to solve

max{ cx | x ∈M(G) } (4)

for any given c ∈ RE . We briefly mention two applications of (4) related to two
difficult combinatorial optimization problems:

– Max-cut : for a node set W ⊆ V , the set of all the edges in E having exactly
one endpoint in W is denoted by δ(W) and is called a cut of G; W and V \W
are called the shores of the cut. The max-cut problem is to find a cut δ(W ∗)
of G having maximum weight c(δ(W ∗)). The convex hull of the incidence
vectors of all cuts of G is the cut polytope CUT (G) associated with G (see,
e.g., [7]); then, max-cut can be formulated as the linear program

max{ cx | x ∈ CUT (G) } .

It is not difficult to see that CUT (G) ⊆ M(G), the inclusion being strict
for |V | > 4. Thus, (4) produces an upper bound on the optimal value of
max-cut, that can be exploited at each node of a branch and cut scheme.
Actually, in all the computational studies concerning instances of max-cut
for very large sparse graphs based on a branch and cut scheme (see, e.g., [3,
21]), the only relaxation exploited is, to a large extent,M(G). Consequently,
the computation of a maximum cut merely amounts to a (possibly long)
series of linear optimizations over M(G).

– Network design: if an edge capacity function q ∈ RE and an edge demand
function d ∈ RE are given, a feasible multiflow in the network defined by
G, q, and d exists if and only if the metric inequality µ · (q − d) ≥ 0 holds
for every metric µ on V , i.e., for every point of the cone defined by all
the homogeneous inequalities in (3) [22]. It is not hard to see that this is
equivalent to the condition min{(q − d) · x | x ∈ M(G)} ≥ 0. In network
design, such a feasibility problem has to be solved several times; this again
calls for an effective solution algorithm.

In the case of a complete graph, (4) is a linear program with a polynomial

number (4
(|V |

3

)
) of constraints; still, it turns out to be surprisingly difficult to

solve with standard LP tools, such as simplex or barrier algorithms, even if state-
of-the-art software is used (cf. Section 5). It is therefore of considerable interest
to develop alternative algorithmic techniques that are able to compute, possibly
with some degree of approximation, optimal primal and dual solutions to (4)
faster than it is currently doable with standard methods.

A possible technique is the Lagrangian approach where all the triangle (or
cycle) inequalities are “dualized” leaving, as explicit constraints, only the (pos-
sibly redundant) upper and lower bounds on the variables. This technique has
been successfully applied in [2], where the “Volume Algorithm” is used to solve
the Lagrangian dual. We propose a two-pronged modification of this approach.
First, we dualize only a subset of the cycle inequalities, leaving, as explicit con-
straints, the inequalities that define the rooted semimetric polytope, i.e., those
associated with a given node of G, the root. Then, to solve the Lagrangian dual,

New approaches for optimizing over the semimetric polytope 3

besides the Volume Algorithm we also use a bundle algorithm. Combining these
tools with a projection-type heuristic for quickly constructing feasible primal
solutions, we obtain very accurate primal and dual solutions to (4) in a small
fraction of the time required for the same task by general-purpose LP technol-
ogy. In some cases, good estimates of the dual optimal solution (but not of the
primal solution) can be obtained even quicker.

The structure of the paper is as follows. In Section 2 we recall the relevant
polyhedral and algorithmic properties of the semimetric and rooted semimetric
polytopes. In Section 3 we propose a general scheme for exploiting the available
efficient algorithm for optimization over the rooted semimetric polytope in order
to solve (4). Then, in Section 4 the relevant aspects of the implementation of
the proposed approaches are discussed, in Section 5 the obtained computational
results are presented and, finally, in Section 6 some conclusions are drawn.

2. Semimetric polytopes

The triangle inequalities for a complete graph with n vertices are O(n3); there-
fore, already for graphs of a few hundred nodes, they are too many to be handled
explicitly, and the use of a row generation approach is mandatory. In this case,
the separation procedure, which provides triangle inequalities violated by a given
point, runs in polynomial time as it trivially amounts to a O(1) violation check
for each inequality in a set of polynomial size. For a general graph G, the cycle
inequalities are exponentially many; however, separation is still polynomial [4],
as it amounts to finding at most n shortest paths in a graph that has twice
the size of G. By the polynomial equivalence between separation and optimiza-
tion [14], it follows that (4) is solvable in polynomial time. As noticed, this
task may be very time consuming for standard LP codes combined with cutting
plane techniques. On the other hand, at present it seems very difficult to design
a purely combinatorial algorithm, which would be extremely desirable for more
effective computations. To the contrary, purely combinatorial algorithms have
been found for a relaxation of the semimetric polytope that we describe next.

Let r be a selected node of G that will be called the root node. Without loss
of generality, we assume that r is adjacent to every other node of G (otherwise
we add new edges to the graph with zero weight). Let Er be the edgeset of the
subgraph of G induced by V r = V \ {r}. The subset of triangle inequalities (3)
corresponding to all triples (r, i, j) for all (i, j) ∈ Er defines the rooted semimetric
polytopeMr(G). Despite having much less defining inequalities,Mr(G) still is an
integer linear programming formulation of max-cut; that is, every integral point
inMr(G) is the incidence vector of a cut of G. This formulation is minimal, i.e.,
the removal of any of its inequalities allows integral feasible solutions that are
not incidence vectors of cuts of G.

Therefore, denoting by Arx ≤ br the set of constraints that define Mr(G),
the linear program

max{ cx | Arx ≤ br } (5)

4 A. Frangioni et al.

yields an upper bound on the value of an optimal cut, as (4) does. However,
in most practical cases the latter bound is far weaker than the former. On the
other hand, it can be shown that (5) can be solved by means of either a single
min-cost flow computation [13] or a single max-flow computation [5] on different
auxiliary directed graphs which have roughly twice the size of G. Thus, (5) is
solvable by purely combinatorial algorithms, that turn out to be very efficient
in practice. However, we are rather interested in solving (4), that is

max{ cx | Arx ≤ br, r = 1, . . . , n− 1 } . (6)

Note that any two blocks of constraints Arx ≤ br and Aqx ≤ bq are not disjoint;
in fact, it is easy to verify that every n − 1 blocks (without loss of generality,
the first n − 1) contain all the constraints (3). In order not to overburden the
notation, we will assume that only one of each replica is actually considered;
accordingly, we will write

min
{ n−1∑

r=1

yrbr |
n−1∑
r=1

yrAr ≥ c
}

(7)

for the dual of (6), although in principle any two subvectors yr and yq of the
vector of dual variables y, corresponding to blocks r and q, share some variables.

Our goal is to solve the primal problem (6) which has n − 1 blocks of con-
straints, exploiting the fact that if the problem had only one of these blocks
it would be “very easy” to solve. Equivalently, we want to solve the dual prob-
lem (7), which has n−1 blocks of variables, exploiting the fact that if we knew the
optimal value of the dual variables for all but one of these blocks, we could “very
easily” compute the optimal value for the (few) remaining ones. The presence
of “easy” structures embedded into a “more complex” problem is a common
occurrence in optimization, and it is often exploited by means of Lagrangian
approaches such as those described next.

3. Solving the semimetric problem

We will use Lagrangian relaxation in order to exploit the algorithmic results
on (5) for solving (6); the reader is therefore assumed to be familiar with La-
grangian duality (see, e.g., [11,16,20]). When an optimization problem exhibits
a structure whereby its constraints can be partitioned into a number of “easy”
blocks, there are two basic routes for exploiting such a structure:

– Lagrangian relaxation: keep one block of the constraints, relax all the others;
– Lagrangian decomposition: introduce one copy of the variables for each “easy”

block plus constraints ensuring that all the copies attain the same value, then
relax these constraints.

It should be remarked that in (6) the blocks are “many”, “small”, and they all
possess the same structure; for instance, in a graph with 100 nodes we have 99

New approaches for optimizing over the semimetric polytope 5

blocks of constraints, each containing roughly 1% of the constraints. This con-
trasts with most of the usual applications (e.g., [16]) where the blocks are “few”,
“large”, and typically have different structures. Thus, while the choice among
the different possibilities is usually dictated by considerations about the different
structures of the blocks (plus those on the quality of the obtained bounds, that
do not apply here because we are solving a convex program), in this case there is
no reason, a priori, to prefer one route over the other. Thus, we have experienced
with a family of relaxations which combine the two ideas. For this we select a set
R ⊆ V of root nodes—without loss of generality, the first k nodes—and consider
the following equivalent form of (6):

max c̄
∑

r∈R x
r

Arxr ≤ br r ∈ R
xr = xr+1 r = 1, . . . , k − 1

Aq
(
1
k

∑
r∈R x

r
)
≤ bq q /∈ R

(8)

where c̄ = c
k . The problem has k copies of the original variables x linked by

k − 1 blocks of equality constraints, plus all the constraints (3) not “covered”
by the blocks in R; in these, it is convenient to express the identical value of
all variables blocks xr in terms of the average of the duplicated variables. The
Lagrangian relaxation of (8) with respect to all the xr − xr+1 = 0 constraints
and the blocks out of R

z(π, y) =
∑
r∈R

max
xr

{
c̄rxr − 1

k

∑
q/∈R

yq(bq −Aqxr) | Arxr ≤ br
}

(9)

where c̄r =

 c̄+ π1 if r = 1
c̄− πk if r = k
c̄+ πi − πi−1 otherwise

can be solved by means of k optimizations over Mr(G), with k distinct roots.
The corresponding Lagrangian dual

min
{
z(π, y) | y ≥ 0

}
(10)

is a large-scale Non Differentiable Optimization problem, with O(kn2) uncon-
strained variables πr, corresponding to the xr = xr+1 constraints, plus O((n −
k)n2) constrained variables yq, corresponding to all the blocks q /∈ R. This ap-
proach offers an “handle”, namely |R|: for |R| = n−1 we obtain the Lagrangian
decomposition, for |R| = 1 we obtain the Lagrangian relaxation, and for any
value in between we obtain a hybrid approach. Furthermore, R = ∅ gives

z(y) = max
x

{
cx−

n−1∑
r=1

yr(br −Arx) | x ∈ {0, 1}E
}
, (11)

i.e., the relaxation of [2]. In the following, we will refer to problem (10) with
|R| = r as (Dr).

6 A. Frangioni et al.

Clearly, the availability of such a family of relaxations immediately rises some
questions: what is a good value for |R|? Furthermore, once the cardinality is cho-
sen, how should one select the elements of R? We remark that, especially for (D1)
(the “pure” Lagrangian relaxation), it would in principle be possible to change
the root r during the algorithm: in fact, one is seeking for a full optimal dual
vector [y1, . . . , yn−1] for (7), and dynamically changing r only influences which
of the blocks of dual variables is “controlled” by the solver of the Lagrangian
problem rather than by the NDO algorithm. However, for each r a different La-
grangian function zr is defined, and it is not entirely straightforward to adapt
the NDO algorithms to deal with such a family of related functions.

In general, the answers to the above questions may vary according to the way
in which the Lagrangian dual is solved. Thus, in the next section we will report
on the most important aspects of our implementation of the proposed approach.

4. The Lagrangian approach

The proposed approach requires to solve a Lagrangian dual, i.e., a (large-scale)
Non Differentiable Optimization problem; thus, the choice of the proper NDO
algorithm (and some implementation details) is crucial for its effectiveness.

4.1. Non Differentiable Optimization algorithms

Most NDO algorithms are based on a well-known principle in nonlinear optimiza-
tion: construct a (local) model of the function z(y) : Rm → R (for simplicity
of notation we do not distinguish the two types of dual variables) to be mini-
mized, then use the information provided by the model to determine a direction
of improvement and possibly a stepsize along it. The most popular model in
NDO is the cutting plane approximation of z, iteratively constructed by solv-
ing (9) at a sequence of points {ȳi}. The corresponding solutions {[x̄ri]r∈R} (for
R = ∅, the solution of (11)) provide the function values z(ȳi), and, via the vi-
olation of the relaxed constraints, the subgradients gi ∈ Rm, from which the
linear underestimators li(y) = z(ȳi) + gi(y − ȳi) of z can be constructed. Thus,
zi(y) = max{lh(y), h ≤ i} is a polyhedral lower approximation to z. Using
the minimum of zi as the next point ȳi+1 where to evaluate z gives the clas-
sical cutting-plane algorithm, perhaps better known for its specialized version
for structured linear programs: Dantzig-Wolfe’s decomposition method. Mini-
mizing zi corresponds to solving a linear program, the master problem, with i
columns and m rows; this may end up being very costly. Furthermore, due to
the relatively poor performances of the cutting-plane method in practice, a num-
ber of related approaches have been developed to improve upon it. The form of
the master problem is the most prominent aspect that differentiates these ap-
proaches: like the cutting-plane algorithm, some form of bundle methods use a
linear program [10], most bundle methods [17,20] use a convex quadratic pro-
gram, while other bundle methods [10] and algorithms based on “centers” [8,20]

New approaches for optimizing over the semimetric polytope 7

require a general nonlinear program, e.g., with logarithmic objective function.
Therefore, even for an identical set of subgradients, the cost of solving the master
problem can be very different according to the NDO algorithm employed.

In order to reduce the master problem cost, some bundle methods may
reduce the number of stored subgradients by performing “aggregations”: at
each iteration, any number of the previously obtained subgradients can be dis-
carded provided that the approximate subgradient g̃i to z corresponding to
[x̃ri =

∑
h≤i θ

r
hx̄

r
i]r∈R, where the convex multipliers θri are produced by (the

dual of) the master problem, is inserted in the master problem to replace them.
Always keeping g̃i only gives rise to methods where the next tentative direction
is a linear combination of the latest obtained subgradient and the direction used
at the previous iteration [1]; in this case, the master problem becomes solvable
by a closed formula. Algorithms of this type are known as subgradient methods,
and have a long history of theoretical analysis [18] and practical application, in
particular to combinatorial optimization (e.g., [2,6,15,16]). Subgradient meth-
ods and cutting-plane type approaches are technically different in many respects,
as several important algorithmic details—step-size selection rules, stopping con-
ditions, and the like—must be chosen in different ways for ensuring convergence.
However, for the purpose of the current analysis it is reasonable to treat subgra-
dient methods just as “poor-man” versions [20] of cutting-plane type algorithms.
Cutting-plane type methods will typically show a faster convergence rate than
subgradient methods at the expense of a higher cost per iteration [6,20]; since the
trade-off for our application was hard to evaluate a priori, we have implemented
the Lagrangian approach with two NDO solvers:

– a general-purpose generalized bundle solver (developed by the first author);
– a version of the Volume algorithm of Barahona and Anbil [2], derived by the

code made available by the authors.

4.2. Finding primal feasible solutions

An important characteristic of both approaches is that the sequence of solu-
tions {x∗i =

∑
r∈R x̃

r
i /|R|} that they produce is guaranteed (possibly taking

subsequences) to converge to a primal optimal solution to (6). Each x∗i is typi-
cally not feasible with respect to the relaxed constraints, although most often it
tends to become quickly at least “almost feasible”. Thus, the NDO algorithms
asymptotically provide optimal solutions to (6); however, when they are finitely
stopped the available primal solution x∗i is most often not even feasible. This is
especially true for subgradient approaches which, as shown in the next section,
often terminate relatively far from dual optimality. The situation for the bundle
algorithm is different, as its theoretical finite convergence properties often show
up in practice by providing an actually feasible x∗i ; however, this is not always
the case, and the algorithm may terminate with a x∗i that is not feasible within
the typical relative precision provided by linear programming solvers (say, 1e-8
for barrier and 1e-12 for simplex). The final accuracy depends on some of the

8 A. Frangioni et al.

algorithmic parameters: however, normally a very accurate dual solution is found
much earlier than an accurate primal solution, thus setting the parameters in
such a way as to require an accurate x∗i may result in a considerable increase in
the number of iterations.

To overcome these difficulties, we developed and tested a very simple pro-
jection approach for producing a feasible primal solution out of x∗i : the primal
solution is iteratively projected, using simple closed formulae, upon each vio-
lated (to within 1e-12) inequality (3) until no more violated inequalities are
found. Note that this process does not depend on which NDO approach has
been used, nor from which |R| has been chosen. Since when G is complete, as it
is the case in our computational study (see Section 5), each inequality has only
three nonzero coefficients, checking the violation and projecting one point over
an inequality requires O(1). This simple approach proved to be quite efficient:
in all our experiments it always found a feasible solution with objective function
value very close to that of the starting infeasible x∗i in a very small fraction of
the time required by the NDO algorithm.

4.3. Lagrangian variables generation

A relevant characteristic of the NDO problems to be solved in our application
is their extremely large size; for a complete graph with 150 nodes, for instance,
there can be more than two millions dual variables. However, at the optimum
the vast majority of these is expected to be zero; therefore, the solution of (10)
may greatly benefit from a dynamic generation of Lagrangian variables (already
used with success, e.g., in [12]). This simply amounts at choosing a (small) ac-
tive set A ⊂ {1, . . . ,m} and performing some iterations of the minimization of
z restricted to the subspace of the active variables, that is, zA(yA) = z([yA, 0]);
after that, a check is performed to find if new variables have to be added to A.
This corresponds to (approximately) solving a relaxation of (6) where all con-
straints but those in A (and, of course, those of the blocks associated with R)
are completely disregarded, and then find if some of these are violated; hence,
this is an ordinary row generation approach for the solution of (6).

Generating new Lagrangian variables corresponds to separating violated in-
equalities (3); for this, a primal solution is needed. The solution of the latest (9)
could be used, but there was no guarantee that it provides a “good” input for
separation routines [15]. Instead, we have found that x∗i provides a completely
satisfactory input for the separation routines.

Our preliminary results have shown that such a strategy has a considerable
impact on the overall efficiency of the algorithms. The improvement is more rele-
vant for the bundle approach, where the solution of the master problem is costly,
but also the subgradient approach greatly benefits from it. It has to be remarked
that the improvement for the bundle approach is in part due to the use of the
specialized code of [9], which employs a two-level active-set approach particu-
larly well-suited for efficiently dealing with the changes in the master problem
corresponding to Lagrangian variables creation/destruction. Bundle approaches

New approaches for optimizing over the semimetric polytope 9

using non-specialized codes for solving the master problem might have benefited
less from the dynamic generation of Lagrangian variables.

5. Computational results

We empirically evaluated the proposed approaches on 5 different types of graphs:
a) clique graphs, b) random planar graphs with density between 50% to 100%
of the maximum, c) simplex graphs [19], d) toroidal 2D and e) toroidal 3D-grid
graphs, i.e., 2- and 3-dimensional grid graphs where the first and the last node of
each “line” of the grid are made adjacent. For the first three types the edge costs
were drawn from a uniform random distribution with proper ranges. The last
two types of instances come from the Statistical Physics problem of analyzing
the properties of a spin glass [21]; as it is customary, we experimented both with
uniform random ±1 costs and with Gaussian costs. Thus, we had a total of seven
groups of instances. Within each group we produced instances with different
number of nodes (between 25 and 150) according to the characteristics of the
class. For each group and size we generated either 5 or 15 different instances,
for a grand total of 175 instances. All the instances have been produced by the
machine-independent rudy random generator [23]; the corresponding parameters
are available upon request from the authors.

In the instances, sparse graphs are “completed” by adding zero-cost edges,
thereby producing a new instance in which the shores of a maximum cut define
a maximum cut of the original (sparse) instance. This allowed us to use a trivial
separation procedure, avoiding any possible artifact in the results due to the
degree of sophistication of the algorithm used to separate the cycle inequalities.
Furthermore, this typically produces instances that are much more difficult to
solve than the original ones (they have much more variables, and most of them
have nonzero value at the optimal solution of the semimetric relaxation), hence
the instances in our test-bed are to be considered difficult.

5.1. Tuning of solution algorithms

Both NDO solvers have numerous algorithmic parameters that can be tuned
to maximize their performances. In order to avoid distortion of the results, we
refrained from instance- or even class-specific tuning; the only, unavoidable ex-
ception is a stopping parameter which depends on the scaling of the Lagrangian
function. After preliminary experiments, all the instances have been run with the
same set of parameters, mostly set to the “default” values advised for a generic
problem.

We remark that for the subgradient algorithm the “default” parameters nor-
mally produce an upper bound of medium-to-good quality reasonably fast, but
none of the parameter settings we tried was capable of substantially improving
on it; only very minor gains could be obtained, but at a very high computational
costs. The bundle algorithm, instead, was always able to produce solutions with

10 A. Frangioni et al.

relative precision in excess of 1e-8. For this to be true, however, a “large” max-
imum number of subgradients had to be allowed; although in principle that
parameter provides a “knob” to finely tune the balance between the cost of the
master problem solution and the overall convergence speed [6], in this case we
basically had to allow the algorithm keep all the subgradients it would keep.

Apart from comparing the two NDO approaches, we also tested their ef-
ficiency against the state-of-the-art general-purpose linear programming code
CPLEX 9.0. Although solving (6) with CPLEX may appear to be an easy exer-
cise, we had to cope with the following nontrivial choices: a) should one supply
a full formulation of (6) to the solver, or should a row generation approach akin
to the Lagrangian variables generation be used? and b) which to choose among
the three LP algorithms (primal or dual simplex, barrier)?

Preliminary tests showed that, somewhat surprisingly, solving the full for-
mulation of the problem with the barrier algorithm is always consistently faster
than all other alternatives. However, the maximum size of the solvable instances
for this approach, on our machines with 1Gb RAM, is roughly 150 nodes, while
the row generation methods can solve much larger instances. This is why in
Section 5.3 we report the results of both the “static” approach and of the best
of the row generation ones, that—again—uses the barrier algorithm (although
dual simplex was often competitive, while primal simplex never was).

5.2. Preliminary results

From a preliminary test performed on a selected set of instances, we gathered
the following understandings of the behavior of the approaches:

– The rate of convergence of the Lagrangian approaches suffers a very sharp
decrease passing from |R| = 1 to |R| > 1, and further slowly deteriorates
as |R| increases; thus, the only computationally viable choices for |R| are 0
and 1. This is probably explained by the fact that the optimal Lagrangian
multipliers for most of the inequalities (3) are zero (the initial value), and
possibly they never change. By contrast, the optimal Lagrangian multipliers
for the equality constraints in (8) are most likely to be nonzero, and therefore
they have to be (painfully) found by the NDO algorithm.

– Choosing the root node in (D1) with a simple heuristic—the node with largest
sum of the costs of the incident edges—appear to consistently provide results
comparable with the best possible choice of r, as determined by running the
algorithm n times with all possible roots and picking the best run. Therefore,
dynamically changing r during the course of the algorithm does not appear
to be promising, and it has not been tested.

Therefore, after the preliminary experiments we could discard the hybrid
approaches with |R| > 1, leaving only the approaches (D0) and (D1) for the last
phase of the experiments.

New approaches for optimizing over the semimetric polytope 11

5.3. Results of the large-scale experiments

All the codes have been written in C/C++ and compiled with gcc 3.3 using
-O2 optimization. CPLEX 9.0 was as usual only available as a library. The exper-
iments have been performed on a PC sporting an Athlon MP 2400+ processor
and 1Gb of RAM, running Linux.

In Table 1, each row is labeled by 〈type〉n, where n = |V | and 〈type〉 denotes
the instance class: “c” for clique graphs, “p” for planar graphs, “s” for simplex
graphs, “g2-pm” and “g2-g” for toroidal 2D-grid graphs with, respectively, ±1
and Gaussian costs, and, analogously, “g3-pm” and “g3-g” for toroidal 3D-grid
graphs. For all columns, the entries of each row correspond to the average among
all the instances of the corresponding class.

For each algorithm we report, in the column labelled “Time”, the total time
in seconds required to solve the problem, excluding the loading time. For the
Lagrangian approaches this includes the time required for finding the feasible
primal solution with the projection heuristic; this was always, however, a very
small fraction of the total. For the barrier algorithm, the reported time does
not include any “crossover” procedure; the solutions obtained by this approach
are of completely comparable quality with those obtained by the (best of the)
Lagrangian ones. For the latter approaches, the columns labelled “DGap” and
“PGap” report the obtained (relative) dual and primal gaps, respectively, against
the optimal objective function value of (6) computed “exactly” with the dual
simplex method. An empty entry corresponds to a gap not larger than 1e-10.

In Table 1 we report the comparison between solving (6) with CPLEX, either
providing it the full formulation (column “C0”) or by row generation (column
“C2”), and the most promising of the Lagrangian approaches: “V0” and “V1” are
the results of the subgradient approach for solving (D0) and (D1), respectively,
and similarly “B0” and “B1” for the bundle approach.

The following facts clearly emerge from the results:

– The Lagrangian approaches are competitive with the LP-based ones. In par-
ticular, for the largest instances of each class the “B1” variant finds primal
and dual solutions of very good quality at least four times faster, and up to
two orders of magnitude faster, than the “C0” approach. The results are even
more impressive against the row generation “C2” approach, that rapidly be-
comes the only available choice due to the memory requirements of the barrier
algorithm.

– Solving (D1) is in general convenient with respect to solving (D0), especially
when using the bundle method. This is due to the fact that approaches
for (D1) usually show a much faster rate of convergence, so that the extra cost
of solving (5) at each iteration is largely compensated by the reduction in the
number of iterations (for the bundle algorithm) and the increase in obtained
dual precision (for the subgradient method). The only exception to this rule
are the “completely unstructured” clique graphs, where the two approaches
obtain comparable precisions in a comparable number of iterations, so that
avoiding the extra cost for solving (5) turns out to be more convenient.

12 A. Frangioni et al.

C
0

C
2

V
0

V
1

B
0

B
1

T
im

e
T

im
e

D
G

a
p

P
g
a
p

T
im

e
D

G
a
p

P
g
a
p

T
im

e
D

G
a
p

P
g
a
p

T
im

e
D

G
a
p

P
g
a
p

T
im

e
c2

5
0
.2

8
0
.1

2
2
e-7

8
e-3

0
.0

4
1
e-7

6
e-3

0
.4

7
1
e-8

0
.3

9
0
.2

7
c5

0
5
.5

3
7
.4

1
8
e-4

7
e-3

0
.5

4
6
e-4

5
e-3

2
.2

1
7
e-9

1
e-5

4
.0

0
7
e-9

7
e-6

4
.8

0
c7

5
3
3
.7

7
7
6
.4

9
6
e-4

4
e-3

1
.8

7
4
e-4

3
e-3

6
.8

0
8
e-9

6
e-6

1
3
.3

3
4
e-9

5
e-6

1
9
.3

8
c1

0
0

1
4
4
.2

3
3
3
6
.2

8
5
e-4

5
e-3

4
.1

1
4
e-4

5
e-3

1
3
.8

8
8
e-9

9
e-6

3
4
.8

0
3
e-9

1
e-5

4
2
.7

9
c1

2
5

4
4
2
.2

6
1
7
5
7
.0

9
5
e-4

7
e-3

8
.5

4
3
e-4

3
e-3

2
6
.4

3
2
e-9

1
e-5

8
6
.4

5
1
e-9

1
e-5

1
2
2
.0

6
c1

5
0

1
1
9
2
.5

8
4
2
2
3
.4

8
5
e-4

5
e-3

1
4
.9

0
3
e-4

3
e-3

5
0
.3

5
4
e-9

1
e-5

1
3
8
.0

3
1
e-9

2
e-5

2
5
6
.4

1
p

5
0

6
.8

9
1
5
.7

3
5
e-8

8
e-3

0
.5

0
3
e-3

0
.9

9
7
e-9

4
.1

1
0
.6

7
p

1
0
0

2
1
2
.2

9
8
1
7
.3

6
4
e-6

3
e-2

5
.5

8
2
e-2

6
.2

0
1
e-7

1
5
5
7
.5

6
5
.0

4
p

1
5
0

1
9
0
7
.9

6
8
9
0
7
.3

0
1
e-4

5
e-2

2
4
.9

7
2
e-8

5
e-2

2
1
.5

3
2
e-9

5
e-6

5
4
4
8
.5

0
1
9
.7

8
s2

1
0
.1

3
0
.1

0
3
e-3

0
.0

3
5
e-4

0
.1

2
0
.0

5
0
.0

2
s5

6
1
2
.3

4
2
2
.9

6
1
e-2

0
.6

7
3
e-9

2
e-2

2
.1

4
4
.0

9
1
.4

6
s9

1
1
3
9
.6

4
3
9
5
.1

5
3
e-7

2
e-2

4
.0

7
2
e-2

6
.3

8
2
9
.0

5
5
.1

7
s1

3
6

1
1
1
4
.7

6
4
2
7
2
.7

7
3
e-5

3
e-2

1
5
.4

0
1
e-1

1
9
.7

5
2
e-9

3
5
7
7
.3

5
3
1
.3

4
g
2
-p

m
2
5

0
.2

9
0
.3

6
4
e-4

2
e-3

0
.0

6
2
e-7

2
e-3

0
.3

1
2
e-9

0
.4

2
0
.0

8
g
2
-p

m
4
9

6
.4

1
1
4
.0

9
2
e-4

8
e-3

0
.6

1
1
e-8

6
e-3

1
.7

1
7
e-9

4
e-7

7
.3

1
1
.2

1
g
2
-p

m
8
1

7
3
.9

6
2
2
4
.1

6
7
e-5

2
e-2

2
.9

2
7
e-8

1
e-2

5
.6

9
7
e-9

2
e-6

6
2
4
0
.7

1
9
.0

5
g
2
p

m
-1

0
0

2
3
9
.2

1
9
4
5
.0

5
1
e-3

5
e-2

1
3
.6

4
5
e-6

5
e-2

1
3
.0

6
6
e-9

2
e-5

8
9
6
0
.9

6
1
1
.7

1
g
2
p

m
-1

4
4

1
8
3
7
.0

5
8
6
2
4
.2

1
1
e-3

6
e-2

2
3
.0

3
1
e-4

9
e-2

5
0
.0

2
3
e-6

5
e-4

1
1
0
2
4
.2

0
6
e-9

1
e-7

1
4
1
.0

5
g
3
-p

m
2
7

0
.4

2
0
.6

5
6
e-4

2
e-3

0
.0

7
9
e-8

4
e-3

0
.5

7
1
e-9

3
e-8

4
.7

1
0
.9

7
g
3
-p

m
6
4

2
3
.2

0
5
9
.0

1
7
e-5

2
e-2

1
.6

6
4
e-2

5
.2

2
5
e-9

3
e-7

1
3
2
.7

3
2
.2

8
g
3
-p

m
1
2
5

8
6
7
.6

0
3
8
1
2
.5

8
1
e-3

5
e-2

1
6
.8

8
2
e-5

9
e-2

5
2
.0

3
5
e-8

4
e-6

6
7
3
4
.2

1
3
2
.9

9
g
2
-g

2
5

0
.3

1
0
.2

1
3
e-3

0
.0

5
1
e-3

0
.1

5
0
.1

0
0
.0

5
g
2
-g

4
9

7
.0

9
1
1
.3

3
7
e-3

0
.4

7
5
e-3

0
.9

8
1
.6

6
0
.4

5
g
2
-g

8
1

7
9
.5

4
2
9
0
.9

1
1
e-7

3
e-2

2
.7

7
2
e-2

4
.4

4
1
5
.1

1
2
.9

9
g
2
-g

1
0
0

2
4
3
.0

2
1
1
5
8
.7

8
6
e-6

5
e-2

6
.0

2
9
e-2

6
.9

3
9
0
.0

1
1
e-8

7
.3

7
g
2
-g

1
4
4

1
7
6
6
.6

4
9
7
8
8
.5

8
7
e-5

7
e-2

2
3
.8

1
2
e-9

1
e-1

2
9
.3

6
2
e-9

1
5
2
8
.1

0
3
e-8

6
0
.8

4
g
3
-g

2
7

0
.3

9
0
.4

2
4
e-3

0
.0

6
5
e-4

0
.2

6
0
.2

1
0
.0

7
g
3
-g

6
4

2
5
.5

4
6
2
.5

2
3
e-8

2
e-2

1
.3

9
2
e-2

3
.6

3
1
0
.2

4
1
.9

8
g
3
-g

1
2
5

9
3
1
.7

5
4
3
0
2
.7

2
4
e-5

6
e-2

1
6
.2

0
1
e-9

1
e-1

3
9
.0

2
2
8
8
.2

1
2
6
.8

5

T
a
b
le

1
.

M
a
in

ta
b

le
o
f

resu
lts

New approaches for optimizing over the semimetric polytope 13

– The best bundle variant (i.e., “B1” except for clique graphs) often obtains
much better dual precision in comparable or less time than the best subgradi-
ent variant (ditto). This is due partly to the faster convergence of the bundle
method, but most importantly to its much more effective stopping criterion.
The bundle code may reach convergence in as little as 10 iterations, and on
average requires less than 250 iterations to find a proper primal solution; by
contrast, the volume algorithm never takes less than 500 iterations, the last
500 ones producing no improvement in the dual solution.

– The subgradient approach never produces primal solutions of even moderate
quality, whereas the bundle approach always produces primal solutions of
acceptable, and most often of excellent, quality.

– The cost per iteration of the bundle code is significantly larger than that
of the subgradient algorithm, so that the latter ends up being significantly
faster on some of the largest instances: g2-g144, g2-pm144, and c150. Note
that in the latter two cases the obtained dual accuracy (not to mention the
primal accuracy) is much worse, whereas in the first case it is comparable.

Thus, on the selected instances Lagrangian approaches based on the rooted
semimetric relaxation appear to be quite promising, especially when the La-
grangian dual is solved by a bundle method. If a rough bound has to be obtained
quickly, and especially as the size of the instances grow, subgradient approaches
may still be of interest.

6. Conclusions and future research

We have proposed and tested several Lagrangian approaches for solving linear op-
timization problems over the semimetric polytopeM(G) associated with a given
graph G. Some of these approaches have been shown to be superior to state-of-
the-art general-purpose linear programming codes. In most cases (“structured”
instances), relaxations using efficient algorithms for linear optimization over the
rooted semimetric polytope Mr(G) are the most efficient. Careful use of state-
of-the-art Non Differentiable Optimization technology is required: a bundle ap-
proach is superior if accurate primal solutions are required, but it is also either
competitive or downright faster in obtaining accurate dual solutions in many
cases. On some large-scale instances, however, or if only a rough dual bound
has to be obtained quickly, a subgradient algorithm may provide an interesting
alternative.

Although we feel that the obtained results already clearly show the potential
of Lagrangian approaches in this field, there are still a number of issues that
need to be investigated for properly assessing the value of these techniques for
the solution of combinatorial optimization problems such as max-cut. In par-
ticular, implementing this approach for sparse graphs requires to substitute the
(trivial) separation routine for triangle inequalities with the (more complex)
separation routine for cycle inequalities, whose effect on the relative efficiency
of the approaches will have to be examined. Furthermore, a number of issues
arise when embedding a Lagrangian approach within an enumerative algorithm

14 A. Frangioni et al.: New approaches for optimizing over the semimetric polytope

(such as branch and cut) [11] that will need to be properly addressed if the La-
grangian approach is to replace standard LP technology. Finally, different NDO
approaches may prove to be even more efficient than the ones that we have been
using so far.

References

1. L. Bahiense, N. Maculan, and C. Sagastizábal, The volume algorithm revisited: rela-
tion with bundle methods, Mathematical Programming, 94 (2002), pp. 41–70.

2. F. Barahona and R. Anbil, The Volume Algorithm: Producing primal solutions with a
subgradient method, Mathematical Programming, 87 (2000), pp. 385–400.

3. F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, An application of combina-
torial optimization to statistical physics and circuit layout design, Operations Research,
36 (1988), p. 493.

4. F. Barahona and A. Mahjoub, On the cut polytope, Mathematical Programming, 36
(1986), pp. 157–173.

5. A. Boros and P. Hammer, Pseudo-boolean optimization, Discrete Applied Mathematics,
123 (2002), pp. 155–225.

6. T. Crainic, A. Frangioni, and B. Gendron, Bundle-based relaxation methods for mul-
ticommodity capacitated fixed charge network design problems, Discrete Applied Mathe-
matics, 112 (2001), pp. 73–99.

7. M. Deza and M. Laurent, Geometry of Cuts and Metrics, vol. 15 of Algorithms and
Combinatorics, Springer-Verlag, Berlin, 1997.

8. O. du Merle, J.-L. Goffin, and J.-P. Vial, On Improvements to the Analytic Center
Cutting Plane Method, Computational Optimization and Applications, 11 (1998), pp. 37–
52.

9. A. Frangioni, Solving semidefinite quadratic problems within nonsmooth optimization
algorithms, Computers & Operations Research, 21 (1996), pp. 1099–1118.

10. , Generalized Bundle Methods, SIAM Journal on Optimization, 13 (2002), pp. 117–
156.

11. , About lagrangian methods in integer optimization, Annals of Operations Research,
to appear (2005).

12. A. Frangioni and G. Gallo, A bundle type dual-ascent approach to linear multicom-
modity min cost flow problems, INFORMS Journal on Computing, 11 (1999), pp. 370–393.

13. A. Frangioni, A. Lodi, and G. Rinaldi, Optimizing over semimetric polytopes, in In-
teger Programming and Combinatorial Optimization - IPCO 2004, D. Bienstock and
G. Nemhauser, eds., vol. 3064 of Lecture Notes in Computer Science, Springer-Verlag,
2004, pp. 431–443.

14. M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer Verlag, 1988.

15. M. Guignard, Efficient cuts in Lagrangean ’Relax-and-Cut’ schemes, European Journal
of Operational Research, 105 (1998), pp. 216–223.

16. , Lagrangean relaxation, TOP, 11 (2003), pp. 151–228.
17. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algo-

rithms, vol. 306 of Grundlehren Math. Wiss., Springer-Verlag, New York, 1993.
18. K.C. Kiwiel, Convergence of Approximate and Incremental Subgradient Methods for Con-

vex Optimization, SIAM Journal on Optimization, 14 (2004), pp. 807–840.
19. D. E. Knuth, The Stanford GraphBase: a platform for combinatorial computing, ACM

Press, 1993.
20. C. Lemaréchal, Lagrangian relaxation, in Computational Combinatorial Optimization,

M. Jünger and D. Naddef, eds., Springer-Verlag, Heidelberg, 2001, pp. 115–160.
21. F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi, Computing exact ground-states of

hard Ising spin glass problems by branch-and-cut, in New Optimization Algorithms in
Physics, A. Hartmann and H. Rieger, eds., Wiley-VCH Verlag, Berlin, 2004, pp. 47–69.

22. M. Lomonosov, Combinatorial approaches to multiflow problems, Discrete Applied Math-
ematics, 11 (1985), pp. 1–93.

23. G. Rinaldi, Rudy. http://www-user.tu-chemnitz.de/~helmberg/sdp software.html.

