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Abstract. We show that the convex envelope of the objective function of Mixed-Integer Pro-
gramming problems with a specific structure is the perspective function of the continuous part
of the objective function. Using a characterization of the subdifferential of the perspective func-
tion, we derive “perspective cuts”, a family of valid inequalities for the problem. Perspective
cuts can be shown to belong to the general family of disjunctive cuts, but they do not require
the solution of a potentially costly nonlinear programming problem to be separated. Using per-
spective cuts substantially improves the performance of Branch & Cut approaches for at least
two models that, either “naturally” or after a proper reformulation, have the required struc-
ture: the Unit Commitment problem in electrical power production and the Mean-Variance
problem in portfolio optimization.
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1. Introduction, motivation

In many real-world problems, both discrete and continuous decisions have to be
made about the same entity. A common case is when one (or more) continuous
variable(s) p is constrained to lie in the disconnected set {0} ∪ [pmin, pmax] for
some 0 < pmin ≤ pmax. This is the case when p represents the output of a pro-
duction process that can either be “inactive”, and therefore nothing is produced,
or “active”, and therefore the output of the process must lie between some min-
imum and maximum amount. This structure is so widespread that commercial
solver suites such as XPRESS-MP and CPLEX provide built-in special support for
these semi-continuous variables. Alternatively, pmin may be zero but a fixed
cost is incurred for producing any positive output; both these cases are covered
by our development. Examples of this structure can be found in several mod-
els, such as Distribution and Production Planning problems [3,11,18], Financial
Trading and Planning problems [1,10], and many others [5]. As shown later on,
this structure can also be “forced”, at least partially, upon problems that have
semi-continuous variables but a nonseparable objective function.
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As a mathematical program, this structure corresponds to a Mixed-Integer
Program (MIP) of the form

min
{

f(p) + cu : Ap ≤ bu , u ∈ {0, 1}
}

(1)

where p ∈ R
n, A ∈ R

m×n and b ∈ R
m are such that {p : Ap ≤ 0} = {0};

the example motivating our development is obtained with A = [−I, I]T and
b = [−pmin, pmax]

T , but in the following we will only assume that P = {p ∈
R

n : Ap ≤ b} is a compact set, and that f : Rn → R is a closed convex function
that is finite on P . The binary variable u models the decision of “activating
the process”, i.e., decides whether p = 0 or p ∈ P , at the fixed cost c; we can
assume that f(0) = 0, because any constant term in f can be embedded in the
constant c. Usually, (1) is only a small fragment of a larger problem where other
constraints are imposed on u and/or p. Often, many fragments of the form (1)
are simultaneously present in a given model, with different data A, b, f and c,
to represent different products and/or different productive processes and/or dif-
ferent time instants and/or different geographical locations; this is the case of
both applications described in Section 3 and Section 4.

When a (MIP) comprising blocks of the form (1) has to be solved with a
Branch & Cut (B&C) algorithm [13], the continuous relaxation of (1)

min
{

f(p) + cu : Ap ≤ bu , u ∈ [0, 1]
}

(2)

is usually a part of the problem that is solved in order to derive lower bounds
on the objective function value of the original (MIP). The lower bounds can be
improved by adding cuts that provide a better description of the convex hull of
the integer solutions; these cuts, however, depend on the structure of the other
constraints linking different blocks (1) together, as the feasible region in (2) has
only vertices with an integer value for u. Here we focus on a different way for
improving the lower bound that depends only on the structure of a single block.
Problem (1) can be equivalently restated as the minimization over all (p, u) of
the nonconvex function

f(p, u) =







0 if u = 0 and p = 0
f(p) + c if u = 1 and Ap ≤ b
+∞ otherwise

. (3)

The best possible convex relaxation of this problem is obtained by minimizing
over all (p, u) the convex envelope of f , i.e., the (closed) convex function cof with
the smallest (in set–inclusion sense) epigraph containing that of f . In general,
computing the convex envelope is a nontrivial task [15,17]; in this case it can
be readily done, showing that cof(p, u) is related to the well-known perspective
function of f(p) [9] §IV.2.2. Using a result of [4] we can exploit this relation to
derive valid inequalities for the problem, related to those of [2,16], which can be
used to improve the lower bound w.r.t. the one obtained by (2).

The structure of the paper is the following: in Section 2 cof is characterized,
some of its useful properties are discussed and the valid inequalities are described.
In sections 3 and 4 the use of the valid inequalities within a Branch & Cut
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approach is discussed for two Mixed-Integer Quadratic Problems (MIQP) with
the required structure. Finally, in Section 5 some conclusions are drawn.

We use the following standard notation. Given a set X , IX(x) = 0 if x ∈ X
(and +∞ otherwise) is its indicator function, int X is its interior, ext X the
set of its extreme points, co X is its convex hull and co X is the closure of
co X . Given a convex function f , epi f = {(v, x) : v ≥ f(x)} is its epigraph,
dom f = {x : f(x) < ∞} is its domain, ∂f(x) is its subdifferential at x, and
f ′(x; d) is its directional derivative at x along direction d. We will often use the
shorthand p/u for (1/u)p, where p is vector and u is a scalar.

2. Characterization of cof

To characterize cof we just need to compute the convex hull of points in the
epigraphical space pertaining to the two disconnected “sides” of domf , that is,
the set of points

(1− θ)[0, 0, 0] + θ[f(p̄) + c, p̄, 1] = [θ(f(p̄) + c), θp̄, θ] .

for all θ ∈ [0, 1] and p̄ ∈ P . Since for θ = 0 we obtain [0, 0, 0], we can assume
θ > 0 and make the identifications θ ≡ u, p ≡ up̄ to obtain [uf(p/u) + uc, p, u],
and therefore

h(p, u)=cof(p, u)=







0 if p = 0 and u = 0,
uf(p/u) + cu if Ap ≤ bu, u∈(0, 1],
+∞ otherwise.

(4)

Thus, h is strongly related with a well-known object in convex analysis, the

u

f

p

1

Fig. 1. The perspective function of f(p)

perspective function g(p, u) = u f(p/u) of f(p). The epigraph of g(p, u) (for
u > 0) defines a cone pointed in the origin and having as “lower shape” that
of f(p), as depicted in Figure 1; epi h is the section of the cone corresponding
to u ≤ 1. Hence, F = dom h = co domf is the pyramid having as base P × {1}



4 A. Frangioni, C. Gentile

and vertex [0, 0]. Note that the explicit definition of h(0, 0) in (4) is redundant,
as the result is obtained by continuity: for every sequence {pk, uk} ⊂ F that
converges to [0, 0] we have

0 ≤ uk(f(pk/uk) + c) ≤ uk

(

c+ sup
p∈P

f(p)

)

and therefore limk→∞ uk(f(pk/uk) + c) = 0 since f is convex and finite on the
compact set P .

It is easy to verify that h is linear on the segments of the form p = p̄u with
u ∈ [0, 1] for any fixed p̄ ∈ P : h(p̄u, u) = uf(p̄) + cu. This is confirmed by
first-order analysis: it can be shown [4] that

∂h(p, u) = {g(s) = [s, c+ f(p/u)− s(p/u)] : s ∈ ∂f(p/u)} , (5)

i.e., ∂h depends only on p/u, and therefore it is constant on all points of the
form [p̄u, u]. This is immediate from ordinary first-order calculus when f(p) is
differentiable in P , i.e., ∂f(p) = {∇f(p)}; then, h is differentiable in int F . For
the nondifferentiable case, linearity of h on the segments p = p̄u implies that h
is directionally derivable in any point [p, u] with u > 0 along the direction [p, u]:

h′([p, u]; [p, u]) = −h′([p, u];−[p, u]) = [s1, s2][p, u] ∀[s1, s2] ∈ ∂h(p, u) .

Therefore, for any [s1, s2] ∈ ∂h(p, u),

0 = h(0, 0) = h(p, u) + [s1, s2]([0, 0]− [p, u]) = h(p, u)− h′([p, u];−[p, u])

yielding [s1, s2][p, u] = h(p, u) = uf(p/u) + cu for all [s1, s2] ∈ ∂h(p, u), whence
s2u = uf(p/u)+ cu−s1p; recalling that u > 0, all the subgradients of h in (p, u)
must have the form g(s1), where s1 has to be a subgradient of hu(p) = h(p, u).
Using Theorem VI.4.2.1 in [9] it is not difficult to prove that ∂hu(p) = ∂f(p/u),
which directly gives the ⊆ of (5). Furthermore, every vector g(s) in (5) satisfies
the subgradient inequality

h(p, u) ≥ h(p̄, ū) + [s1, s2]([p, u]− [p̄, ū]) ∀[s1, s2] ∈ ∂h(p̄, ū) (6)

which gives the reverse inclusion, proving (5). Thus, all points [v, p, u] ∈ epi h
must satisfy (6) for all [p̄, ū] ∈ F ; since ∂h(p, u) is constant on the lines p = p̄u,
it is sufficient to consider only points of the form [p̄, 1]. All this proves:

Theorem 1. The n+2-dimensional set epi h is bounded by the following linear
inequalities:

Ap ≤ bu, u ≤ 1 ; (7)

v ≥ f(p̄) + c+ [s, c+ f(p̄)− sp̄]([p, u]− [p̄, 1]) s ∈ ∂f(p̄) , p̄ ∈ P . (8)

In particular, the inequalities (7) define maximal faces of epi h of dimension
n+1, while the—possibly infinitely many—inequalities (8) define maximal faces
of epi h of dimension at least one.
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We refer to each inequality (8) as a perspective cut (P/C). Note that, since f
is finite everywhere, ∂f(p) is compact for all p ∈ P ; hence, from (8) we have
that all the linear constraints in (6) for one [p̄, 1] corresponding to subgradients
s /∈ ext ∂f(p̄) can be obtained as a convex combination of (at most n + 1)
constraints corresponding to subgradients in ext ∂f(p̄). Hence, ∂f(p) in (8) can
be replaced with ext ∂f(p); of course, the two coincide if f is differentiable in p,
as s = ∇f(p) is the only possible choice in (8). For n = 1, ∂f(p) = [f ′

−(p), f
′
+(p)],

where f ′
− and f ′

+ are respectively the left and right derivative of f , and

∂h(p, u) = co{ g(f ′
−(p/u)) , g(f

′
+(p/u)) } . (9)

It is interesting to contrast h for two special cases of f , namely the linear
case f(p) = bp and the (convex) quadratic case f(p) = ap2 + bp (with a > 0,
and n = 1 for simplicity). In the linear case we get

h(p, u) = uf(p/u) + cu+ IF = bp+ cu+ IF = f(p) + cu+ IF ;

that is, h coincides with the objective function of (2), which is therefore the best
possible convex relaxation. In the quadratic case, instead, we get

h(p, u) = uf(p/u) + cu+ IF = (1/u)ap2 + bp+ cu+ IF ; (10)

since 0 < u ≤ 1, h(p, u) ≥ ap2 + bp + cu, that is, h is a better objective
function, for a continuous relaxation, than f(p) + cu. For P = [pmin, pmax],
elementary calculus shows that the maximum of h(p, u)− (ap2+ bp+ cu) over F
is ap2max/4, attained at [pmax/2, 1/2]; that is, h “penalizes” precisely the “most
nonintegral” points in F . However, using h(p, u) as the objective function has
a serious drawback: it is a much “more nonlinear” function than ap2 + bp+ cu,
and it is nondifferentiable at [0, 0]. The interior-point method of [4] could be
used, but efficient implementations of that approach are not widely available,
and have not yet been shown to be competitive with the sophisticated QP solvers
available. Furthermore, interior-point methods are usually less well-suited than
simplex-like methods in the context of enumerative approaches, since the latter
reoptimize more efficiently.

Alternatively, Theorem 1 suggests using a polyhedral approximation of h as
the objective function by iteratively collecting a finite subset of P/Cs; this is
analogous to what is done in most NonDifferentiable Optimization algorithms
[6,7]. Given a fractional solution [v∗, p∗, u∗], corresponding to an approximation
of h by a finite number of P/Cs, one can compute the value of h(p∗, u∗) via (4)
to check whether v∗ ≈ h(p∗, u∗); if not, P/Cs corresponding to [p∗/u∗, 1] are
(strongly) violated by [v∗, p∗, u∗], and therefore can be added to the current
set of inequalities, improving the approximation of h and, possibly, the lower
bound. This only requires the computation of one (preferably extreme) element
of ∂f(p̄), where p̄ = p∗/u∗.

This procedure is closely related to the lift-and-project (L&P) approach [2]. In
L&P, violated valid inequalities are obtained by considering two disjoint subsets
of the feasible region, such as those corresponding to fixing a fractional binary
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variable at 0 and at 1, respectively; a representation of the convex hull of these
two sets can be obtained by “lifting” the problem in a larger space where the
explicit convex multipliers are added, and a valid inequality can be obtained by
solving a linear program on this space. Given a subgradient s ∈ ∂f(p̄), one has
the polyhedral approximation epi f ⊆ { (v, p) : v ≥ f(p̄) + s[p− p̄] , p ∈ P } for
u = 1, while at the other side of the domain, i.e., for u = 0, one has { (v, 0) :
v ≥ 0}. Using results from [2], it is possible to show that the convex hull of the
two regions is { (v, p) : v ≥ sp + u(f(p̄) + c − sp̄) , p ∈ P , u ∈ [0, 1] }; this can
be seen as an alternative definition of (8). Thus, the proposed procedure can be
seen as a combination of an incremental linearization approach on f(p) plus the
application of L&P on the corresponding linearized problem. More generally,
P/Cs are a special case of the inequalities produced by the generalized L&P
approach of [16] for 0−1 Nonlinear (MIP)s. However, due to the structure of (1)
the P/C approach is much simpler than those of [2,16], in the following ways:

– the “convex combinator” u is a variable of the original formulation, rather
than being added for algorithmic purposes; hence, separation of perspective
cuts is very easy, with no need to set up and solve the separation problem—a
large-scale problem of roughly twice the size of the original integer problem,
with nonlinear constraints in the case of [16];

– we separate inequalities for each block (1) individually rather than only one
inequality for the entire problem: therefore, our inequalities are global by
nature and do not require lifting;

– our approach is simpler (even though not entirely straightforward) to imple-
ment using widely available and efficient optimization tools.

In the next sections we will show that P/Cs can significantly improve the per-
formance of enumerative approaches for the solution of (MIP)s containing frag-
ments of the form (1).

3. The Unit Commitment problem

The Unit Commitment (UC) problem in electrical power production is as fol-
lows. A set I of thermal generating units is given. Each unit i ∈ I is characterized
by a minimum and maximum power output, pimin and pimax, respectively, and
by a convex quadratic power (fuel) cost function f i(p) = aip2 + bip + ci. Over
a set T of discretized time instants, covering some time horizon (e.g., hours or
half-hours in a day or a week), an estimate dt for t ∈ T of the total power
demand is available. The problem is that of generating, for each time period,
enough power to meet the forecasted demand at minimal total cost. The oper-
ation of thermal units must satisfy a number of technical constraints, typically
minimum up- and down-time ones: whenever unit i is turned on it must remain
committed (actively generating power) for at least τ iu consecutive time instants,
and, analogously, whenever unit i is turned off it must remain decommitted for
at least τ id consecutive time instants.
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Introducing binary variables uit, indicating the commitment of unit i at
time instant t, and continuous variables pit indicating the corresponding power
output, a formulation of (UC) is

min







∑

i∈I

∑

t∈T

aip2it + bipit + ciuit

∣

∣

∣

∣

∣

∣

∑

i∈I pit = dt t ∈ T,
piminuit ≤ pit ≤ pimaxuit i ∈ I, t ∈ T
u ∈ U, uit ∈ {0, 1} i ∈ I, t ∈ T







(11)

where U is the set of schedules respecting minimum up- and down-time con-
straints. This basic formulation can be extended to take into account other
characteristics of the energy production environment, such as spinning reserve
constraints, network constraints, ramp rate constraints, time-dependent start-up
costs, other types of generating units (hydro units, nuclear units, . . . ); see e.g., [3]
and the references therein. In the following, we will stick to formulation (11),
which already contains |I| × |T | blocks of the form (1).

3.1. Implementation details

Implementing a B&C approach using P/Cs is not entirely straightforward, as
some of the required operations are not supported by the API of available
(MIQP) solvers such as CPLEX 8.0. In particular, changing the quadratic part
of the objective function during the execution of the B&C is not allowed; fur-
thermore, when an integer solution is found its objective function value for the
“linearized” relaxation does not provide, in general, a valid upper bound, that
can be obtained by evaluating the original quadratic objective function. All this
prevented us from directly relying on the efficient and sophisticated B&C im-
plementation in CPLEX, and forced us to implement a standard B&C algorithm
from scratch, using CPLEX only to solve the relaxations at each node of the search
tree.

The cut separation phase is quite standard: for any pair (i, t) such that uit

is fractional in the optimal solution (p∗, u∗) of the relaxation, the (unique) P/C
associated with (p̄it = p∗it/u

∗
it, 1) is

vit ≥ (2aip̄it + bi)pit + (ci − aip̄2it)uit

this is added to the formulation if it is violated beyond a fixed threshold (10−4 in
our experiments). However, some nonstandard operations are also required. The
first time that a P/C is generated for a given pair (i, t), the corresponding
fragment of the quadratic function must be removed from the formulation, and
the extra variable vit must be added to the model to represent the maximum
between all the linear functions associated with the pair (i, t); in this case, we
also add to the formulation the P/Cs associated with the two points (pimin, 1)
and (pimax, 1).

We experimented with several different versions of the algorithm, varying the
following choices:
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– the separation procedure is applied only at the root node or throughout the
B&C tree;

– the original fragment of the quadratic function is restored when the vari-
able uit of a “linearized” pair (i, t) is fixed to 1 in a branching, or the
piecewise-linear approximation of h is kept;

– how many times the separation procedure is applied at each node of the B&C
tree;

– the relaxations are solved with the dual simplex or with the barrier algorithm.

The experiments are not reported here for space and clarity reasons; the inter-
ested reader is referred to [8]. The experience showed that performing separation
at each node but at most once for each node, avoiding “delinearization” (i.e.,
not returning to the original objective function ) when fixing to 1 and using
the dual simplex method is the best combination for the most difficult instances
(although some exceptions exist). The main lesson to be learnt from the exper-
iments is that reoptimization is crucial in a B&C framework: small losses in the
quality of the bound, such as those incurred by only performing separation once
and not delinearizing, may be worth paying as long as they allow the contin-
uous solver to reoptimize more efficiently. The use of dual simplex is basically
motivated by this choice, although the barrier solver is usually faster at the root
node.

Since we were mainly interested on the effect of P/Cs on the lower bound
computation, we did not include any heuristic in the B&C algorithm; instead,
we provided the algorithm with an initial upper bound associated with a good
feasible solution obtained by the Lagrangian heuristic in [3].

3.2. Computational results

We tested the B&C algorithm on a set of (UC) instances obtained as in [3];
the instances have 24 time periods and either 10 or 20 units (10 instances for
each dimension). The stopping criterion for all variants was a relative gap lower
than 0.1%. All variants were run on a PC with a 2.5 Ghz Pentium-4 processor and
1.5Gb RAM, running the Linux Debian 3.0 operating system (kernel 2.4.18). The
codes were compiled with gcc 3.0.4 using aggressive optimizations -O3. We also
solved the same instances with the sophisticated general-purpose B&C algorithm
of CPLEX 8.0, with a time limit of 10000 seconds, on the same machine.

The results are presented in Table 1: for both algorithms, “r.t”, “r.g%”,
“time” and “nodes” stand respectively for the time and relative gap at the root
node, the total time and the total number of nodes. For CPLEX we also report
(column “gap%”) the relative gap between the best integer solution and the best
bound available when the algorithm is terminated.

Using P/Cs, even if within a “naive” B&C implementation, allows us to
clearly outperform the sophisticated (MIQP) solver in CPLEX 8.0. This is easily
justified by looking at the root node gaps and times: even one single pass of
P/C separation routine reduces the gap by a factor of 5 at a relatively low
computational cost; in most cases, this reduction is larger than the one obtained
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P/C CPLEX
instance r.t r.g% time nodes r.t r.g% time nodes gap%
P10 24 a 0.63 0.46 4.39 7 0.20 1.52 15 809 -
P10 24 b 0.89 0.32 18.55 21 0.31 1.22 22 1024 -
P10 24 c 1.47 0.31 1.53 2 0.43 1.44 912 73349 -
P10 24 d 0.73 0.38 1.52 2 0.22 1.24 204 25075 -
P10 24 e 0.72 0.13 1.66 3 0.24 0.95 559 85934 -
P10 24 f 0.66 0.41 9.65 21 0.17 1.80 8 221 -
P10 24 g 0.84 0.77 2.30 2 0.22 5.17 5055 536048 -
P10 24 h 0.90 0.19 2.40 3 0.25 1.03 32 2189 -
P10 24 i 0.75 0.47 1.55 2 0.22 1.74 408 43617 -
P10 24 j 0.78 0.56 10.77 23 0.23 2.81 946 78269 -
average 0.84 0.40 5.42 9 0.25 1.89 816 84654 -
P20 24 a 4.17 0.28 15.61 3 1.41 2.36 10000 264179 1.27
P20 24 b 4.29 0.13 4.53 1 1.80 0.49 62 1205 -
P20 24 c 2.07 0.69 178.12 136 0.85 1.24 216 4083 -
P20 24 d 8.64 0.28 37.14 4 1.61 2.40 10000 331732 1.43
P20 24 e 8.42 0.20 23.75 2 1.71 1.63 10000 245582 0.87
P20 24 f 6.71 0.24 12.59 2 1.58 1.37 10000 268516 0.73
P20 24 g 4.83 0.28 12.71 3 0.87 2.23 10000 475400 1.45
P20 24 h 5.97 0.18 19.35 3 1.74 1.06 6137 189898 -
P20 24 i 6.73 0.23 44.35 44 1.55 2.60 10000 337915 1.69
P20 24 j 7.96 0.26 141.69 73 1.64 2.28 10000 286651 1.02
average 5.98 0.28 48.98 57 1.48 1.77 7642 240516 0.85

Table 1. Results for the Unit Commitment problem

by CPLEX in 10000 seconds. These results clearly show that using P/Cs can
significantly improve the performance of a B&C approach for the solution of
(UC) problems.

4. Markowitz Mean-Variance model

The Mean-Variance (MV) model in portfolio optimization [12] is as follows. A set
of n risky assets are available; for each asset i = 1, . . . , n, the expected unitary
return µi for the considered time horizon is known. Also, the n × n variance-
covariance matrix Q defined for the assets is available. Denoting by pi ∈ [0, 1] the
fraction of the portfolio value invested in asset i, any vector p with ep = 1 (e being
the vector of all ones) is a feasible allocation of the available resources over the
assets, µp is the corresponding expected return and pTQp is a measure of the
associated risk (volatility). Thus, the problem faced by the “rational investor”
is that of trading returns versus risk. There are several ways to do this, up to
tracing all the risk-return efficient frontier. One simple approach is that of fixing
a desired level of return ρ and minimizing the associated risk, i.e., solving

min{ pTQp : ep = 1 , µp ≥ ρ , p ≥ 0 } .

The above problem is a convex (QP), and therefore easy. However, in many real
cases a number of further constraints over portfolio decisions exist. Typically,
minimum and maximum buy-in thresholds pimin and pimax are set on each asset i,
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turning the problem into the much harder (MIQP)

min

{

pTQp

∣

∣

∣

∣

ep = 1 , µp ≥ ρ ,
uip

i
min ≤ pi ≤ uip

i
max , ui ∈ {0, 1} i = 1, . . . , n

}

. (12)

Further constraints can be easily imposed, such as maximum and minimum
numbers of purchased assets, or fixed purchase costs can be considered. However,
in the following we will stick with the basic formulation (12).

The (MV) problem has semi-continuous variables pi, but its cost function
is nonseparable. A diagonal objective function can be obtained if asset returns
are estimated using factor models [10]. Even for a standard variance-covariance
matrix Q, a reformulation of (12) with separable objective function can be ob-
tained [10] by computing the Cholesky factorization Q = LLT , introducing aux-
iliary variables y = LT p and replacing the objective function with

∑

i y
2
i . This

is still not enough to enable direct application of our technique, since the pi
variables have zero costs. We therefore propose a—to the best of our knowledge,
original—variant of this technique: select a positive diagonal n × n matrix D
such that Q − D is positive semidefinite, compute the Cholesky factorization
Q −D = L̄L̄T , introduce auxiliary variables y = L̄T p and replace the objective
function with

∑

i y
2
i + pTDp. The resulting model is amenable to application of

P/Cs, although only “a fraction” of the overall objective function is “reflected”
on the separable costs. Different ways exist for selecting a proper matrix D;
we have found that computing the minimum eigenvalue λmin of Q and setting
D = λminI already gives good results, although more sophisticated techniques
may be used to “reflect more” of the original nonseparable cost matrix Q in
its separable part D. Clearly, this reformulation technique can be used for any
(MIQP) with semi-continuous variables and nonseparable cost matrix Q.

4.1. Implementation details

As discussed in Section 3.1, implementing a B&C approach with P/Cs using the
callable libraries of CPLEX 8.0 is not possible. Therefore, as for (UC) we have
implemented a standard B&C algorithm for (12), using CPLEX to solve the con-
tinuous relaxations. However, as shown in the next section, (MV) instances are
much more difficult to solve than (UC) instances of comparable size: instances
with n = 200 cannot be solved within reasonable times if P/Cs are used (and
even more so if they are not). We have therefore implemented a simple and inter-
esting different approach. We first solve the continuous relaxation of the problem
exactly as in the root node of the B&C approach, performing separation of the
P/Cs and “linearizing” the corresponding variables. Then, we fix the resulting
(MIQP) and solve it with CPLEX, with a time limit of 10000 seconds. Clearly, the
obtained global lower bound (the optimal solution value if the B&C terminates)
is valid for (12), while the optimal solution of the linearized formulation is not
necessarily optimal for the original problem. Yet the solution is feasible, so by
computing its true objective function value we obtain an estimate of the gap; as
shown next, this gap is often pretty small, and always much smaller than that
obtained by the B&C of CPLEX within the same time limit.
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4.2. Computational results

To test the above approach, we have generated 10 (MV) instances with n = 200
and 10 instances with n = 300. The variance-covariance matrices Q have been
generated using the well-known random generator of [14]. The desired level of
return ρ has been randomly chosen in the interval [0.002, 0.01], and the mini-
mum and maximum buy-in thresholds pimin and pimax have been generated in
the intervals [0.075, 0.125] and [0.375, 0.425], respectively. The experiments were
performed in the environment described in Section 3.2.

Heuristic with P/C CPLEX
instance r.t r.g% time nodes gap% r.g% nodes gap%
P200 a 1.52 16.43 964.54 27193 0.04 854.27 568093 126.96
P200 b 7.02 21.34 1111.32 9632 0.35 390.22 331854 18.70
P200 c 6.98 17.86 380.23 3776 0.01 392.68 142879 33.55
P200 d 5.76 11.60 1147.92 8025 0.01 425.71 279220 53.44
P200 e 1.13 11.43 1508.13 63789 0.28 893.62 1184880 94.08
P200 f 1.22 20.96 2788.23 58782 1.22 947.81 308271 163.60
P200 g 6.16 15.76 1483.17 19905 0.08 533.17 279081 101.76
P200 h 1.16 13.46 2023.67 43955 0.01 899.53 545995 118.64
P200 i 1.27 20.01 2222.45 27526 0.63 933.68 178916 87.60
P200 j 1.33 17.54 4165.96 208826 0.02 924.87 879640 133.42
average 3.35 16.64 1779.56 47141 0.27 719.56 469883 93.18
P300 a 4.14 9.90 1392.19 4175 0.20 1346.07 74658 276.16
P300 b 3.05 11.83 1913.31 3668 0.04 1357.27 62359 364.24
P300 c 8.74 11.88 3392.73 17173 0.02 1063.99 62130 246.63
P300 d 4.13 15.64 3510.94 21028 0.04 1362.35 59563 244.23
P300 e 4.16 13.69 10000.09 44980 0.60 1339.13 86591 286.03
P300 f 3.32 10.73 3784.57 17649 0.04 1316.18 175763 282.83
P300 g 17.49 18.07 9889.00 23590 0.17 796.61 41470 178.04
P300 h 3.28 17.23 10000.10 30469 5.48 1413.33 83525 326.15
P300 i 3.42 14.61 10000.18 44818 3.43 1270.11 95069 296.61
P300 j 3.22 17.31 10000.19 24571 5.40 1399.15 48369 324.42
average 5.50 14.09 6388.33 23212 1.54 1266.42 78940 282.53

Table 2. Results for the Mean-Variance problem

The results are shown in Table 2; the meaning of the data is the same as for
the (UC) problem. For instances with n = 200, the heuristic always terminates
in less than 10000 seconds (less than 2000 seconds on average), obtaining fairly
small to extremely small gaps. For instances with n = 300, instead, the “lin-
earized” problem is solved to optimality only in 6 cases out of 10; however, in
each of these cases the solution obtained has a fairly small gap. In all the other
cases the gap is somewhat larger, but still under 6%, and below 1% in one case.
For both classes, CPLEX obtains, in 10000 seconds, a gap that is two orders of
magnitude larger on average, and up to three orders of magnitude larger in sev-
eral cases. This is clearly explained by comparing the root node gaps obtained
by the two approaches: the standard formulation has huge gaps, indicating the
extreme difficulty of these instances, but using P/Cs allow one in a few seconds
to obtain a much better gap than that obtained by a standard B&C approach
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in 10000 seconds. Note that it might be possible to find “larger” matrices D,
thereby probably improving the effectiveness of the corresponding P/Cs.

These results clearly show that the information provided by perspective cuts
can be exploited to improve the performance of exact and approximate ap-
proaches to (MIQP)s that, either “naturally” or after a proper reformulation,
have the structure (1).

5. Conclusion

We have shown that the convex envelope of a family of nonconvex functions that
appear as a fragment of the objective function of many (MIP)s is closely related
to the perspective function. This leads to the definition of perspective cuts, a
family of valid inequalities for the original (MIP)s. These cuts turn out to be a
special case of the disjunctive cuts of [2,16], but their separation does not require
the solution of a large-scale (non)linear program (with nonlinear constraints).
With some effort, P/Cs can be integrated in a B&C approach with a partial
linearization of the objective function, using widely available optimization tools
such as CPLEX. We have also shown how to reformulate some (MIQP) with semi-
continuous variables and nonseparable cost matrix in such a way that perspective
cuts can still be used.

Despite the low dimensionality of the faces that they represent, P/Cs can be
used, at least in two relevant cases, to significanlty improve the efficiency of—
exact or approximate—enumerative approaches to the corresponding (MIQP).
The results suggest that this technique may be valuable for a large class of
optimization problems; should this be confirmed by further experiments, some
better support for this type of approach could be expected in general tools in the
future. Even at the current state of technology, however, the improvements in the
lower bounds provided by P/Cs may largely outweigh the extra computational
burden required for handling them.

One interesting issue that still has to be explored is whether other widespread
structures in Mixed Integer Programs are amenable to analogous treatments, i.e.,
whether closed-form convexification formulae can be used for other interesting
fragments as well, avoiding the general but potentially costly approach of [2,16];
we plan to investigate this issue in the future. A different, interesting direction
of research concerns whether optimization algorithms using higher-order infor-
mation about the convex envelope, such as that of [4] or others, may be more
efficient than the cutting-plane algorithm employed for our experiments.
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