
AGREE – Algebraic Graph Rewriting
with Controlled Embedding?

A. Corradini1 and D. Duval2 and R. Echahed3 and F. Prost3 and L. Ribeiro4

1 Dipartimento di Informatica, Università di Pisa
2 LJK - Université de Grenoble Alpes and CNRS
3 LIG - Université de Grenoble Alpes and CNRS

4 INF - Universidade Federal do Rio Grande do Sul

Abstract. The several algebraic approaches to graph transformation
proposed in the literature all ensure that if an item is preserved by a
rule, so are its connections with the context graph where it is embedded.
But there are applications in which it is desirable to specify di↵erent
embeddings. For example when cloning an item, there may be a need to
handle the original and the copy in di↵erent ways. We propose a conserva-
tive extension of classical algebraic approaches to graph transformation,
for the case of monic matches, where rules allow one to specify how the
embedding of preserved items should be carried out.

1 Introduction

Graphs are used to describe a wide range of situations in a precise yet intuitive
way. Di↵erent kinds of graphs are used in modelling techniques depending on
the investigated fields, which include computer science, chemistry, biology, quan-
tum computing, etc. When system states are represented by graphs, it is natural
to use rules that transform graphs to describe the system evolution. There are
two main streams in the research on graph transformations: (i) the algorithmic
approaches, which describe explicitly, with a concrete algorithm, the result of ap-
plying a rule to a graph (see e.g. [14, 11]), and (ii) the algebraic approaches which
define abstractly a graph transformation step using basic constructs borrowed
from category theory. In this paper we will consider the latter.

The basic idea of all approaches is the same: states are represented by graphs
and state changes are represented by rules that modify graphs. The di↵erences
are the kind of graphs that may be used, and the definitions of when and how
rules may be applied. One critical point when defining graph transformation is
that one cannot delete or copy part of a graph without considering the e↵ect
of the operation on the rest of the graph, because deleted/copied items may be
linked to others. For example, rule ⇢1 in Figure 1(a) specifies that a node shall
be deleted and rule ⇢2 that a node shall be duplicated (C indicates the copy).

? This work has been partly funded by projects CLIMT (ANR/(ANR-11-BS02-
016), TGV (CNRS-INRIA-FAPERGS/(156779 and 12/0997-7)), VeriTeS (CNPq
485048/2012-4 and 309981/2014-0), PEPS égalité (CNRS).

Andrea Corradini
This final publication is available at Springer via https://doi.org/10.1007/978-3-319-21145-9_3

What should be the result of applying these rules to the grey node of graph G
in Figure 1(b)? Di↵erent approaches give di↵erent answers to this question.

Fig. 1. (a) Delete/Copy Rules (b) Resulting Graphs

The most popular algebraic approaches are the double-pushout (DPO) and
the single-pushout (SPO), which can be illustrated as follows:

L

POm
✏✏

K

PO

loo

d
✏✏

r // R

m0
✏✏

G D
l0oo r0 // H

L

POm
✏✏

r // R

m0
✏✏

G
r0 // H

Double pushout rewrite step Single pushout rewrite step

In the DPO approach [13, 6], a rule is defined as a span ⇢ = L K ! R and a
match is a morphism m : L! G. A graph G rewrites into a graph H using rule
⇢ and match m if the diagram above to the left can be constructed, where both
squares are pushouts. Conditions for the existence and uniqueness of graph D
need to be studied explicitly, since it is not a universal construction. With DPO
rules it is easy to specify the addition, deletion, merging or cloning of items, but
their applicability is limited. For example, rule ⇢1 of Figure 1 is not applicable
to the grey node of G (as it would leave dangling edges), and a rule like ⇢2 is
usually forbidden as the pushout complement D would not be unique.

In the SPO approach [16, 12], a rule is a partial graph morphism : L! R
and a match is a total morphism m : L ! G. A graph G rewrites into a graph
H using rule and match m if a square like the one above to the right can be
constructed, which is a pushout in the category of graphs and partial morphisms.
Deleting, adding and merging items can easily be specified with SPO rules, and
the approach is appropriate for specifying deletion of nodes in unknown context,
thanks to partial morphisms. The deletion of a node causes the deletion of all
edges connected to it, and thus applying rule ⇢1 to G would result in graph
H1 in Figure 1(b). However, since a rule is defined as a single graph morphism,
copying of items (as in rule ⇢2) cannot be specified directly in SPO.

A more recent algebraic approach is the sesqui-pushout approach (SqPO) [5].
Rules are spans like in the DPO, but in the left square of a rewriting step D
is built as a final pullback complement. This characterises D with a universal
property, enabling to apply rule ⇢1, obtaining the same result as in the SPO
approach (H1), as well as rule ⇢2, obtaining H2 as result. Also ⇢2 has a side
e↵ect: when a node is copied all the edges of the original node are copied as
well. Rules do not specify explicitly which context edges are deleted/copied, this
is determined by the categorical constructions that define rule application. In
general, in all algebraic approaches, the items that are preserved by a rule will
retain the connections they have with items which are not in the image of the
match. This holds also for items that are copied in the SqPO approach.

2

However, there are situations in which the designer should be able to specify
which of the edges connecting the original node should be copied when a node
is copied, depending for example on the direction of the edges (incoming or
outgoing), or on their labels, if any. For example, if the graphs of Figure 1
represent web pages (nodes) and hyperlinks among them (edges) it would be
reasonable to expect that the result of copying the grey page of G with rule ⇢2
would be graph H3 rather than H2, so that new hyperlinks are created only
in the new page, and not in the pages pointing to the original one. As another
example, the fork and clone system commands in Linux both generate a clone
of a process, but with di↵erent semantics. Both commands precisely di↵er in the
way the environment of the cloned process is dealt with: see [18] for more details.

These examples motivate the rewriting approach that we introduce in this
paper. In order to give the designer the possibility of controlling how the nodes
that are preserved or cloned by a rule are embedded in the context graph, we
propose a new algebraic approach to graph transformation where rules are triples

of arrows with the same source r = (K
l! L,K

r! R,K
t⇢ TK). Arrows l

and r are the usual left- and right-hand sides, while t is a mono called the
embedding : it will play a role in controlling which edges from the context are
copied. The resulting rewriting approach, called AGREE (for Algebraic Graph
Rewriting with controllEd Embedding) is presented in Sect. 3. As usual for
the algebraic approaches, AGREE rewriting will be introduced abstractly for
a category satisfying suitable requirements, that will be introduced in Sect. 2.
For the knowledgeable reader we anticipate that we will require the existence
of partial map classifiers [3]. After discussing an example of social networks in
Sect. 4, in Sect. 5 we show that AGREE rewriting can simulate both SqPO
rewriting (restricted to mono matches) and rewriting with polarised cloning [8].
Finally some related and future works are briefly discussed in Sect. 6.

2 Preliminaries

We start recalling some definitions and a few properties concerning pullbacks,
partial maps and partial map classifiers: a survey on them can be found in [2,
3]. Let C be a category with all pullbacks. We recall the following properties:

– monos are stable under pullbacks, i.e. if B0 f 0

 A0 m0
! A is the pullback of

B0 m⇢ B
f A and m is mono, then m0 is mono as well.

– the composition property of pullbacks: in a commutative diagram as below
on the left, if squares (a) and (b) are pullbacks, so is the composed square;

•
PB (a)

✏✏

//
=

''•
PB (b)

✏✏

// •
✏✏

• //

=

77• // •

•
PB (c)

✏✏

=

''// •
✏✏

//

PB (d)

•
✏✏

• // • // •

– and the decomposition property: in a commutative diagram as the one made
of solid arrows above on the right, if square (d) and the outer square are

3

pullbacks, then there is a unique arrow (the dotted one) such that the top
triangle commutes and square (c) is a pullback.

A stable system of monos of C is a family M of monos including all isomor-
phisms, closed under composition, and (stability) such that if (f 0,m0) is a pull-
back of (m, f) and m 2M, then m0 2M. An M-partial map over C, denoted
(m, f) : Z * Y , is a span made of a mono m : X ⇢ Z in M and an arrow
f : X ! Y in C, up to the equivalence relation (m0, f 0) ⇠ (m, f) whenever there
is an isomorphism h with m0 � h = m and f 0 � h = f .
Category C has an M-partial map classifier
(T, ⌘) if T is a functor T : C ! C and ⌘ is a
natural transformation ⌘ : IdC

.! T , such that
for each object Y of C, the following holds: for
each M-partial map (m, f) : Z * Y there is
a unique arrow '(m, f) : Z ! T (Y) such that
square (1) is a pullback.
In this case it can be shown (see [3]) that ⌘Y 2
M for each object Y 2 C, that T preserves pull-
backs, and that the natural transformation ⌘ is
cartesian, which means that for each f : X ! Y
the naturality square (2) is a pullback. For each
mono m : X ⇢ Z in M we will use the nota-
tion m = '(m, idX), thus m is defined by the
pullback square (3).

X

PB

✏✏

m

✏✏

f // Y
✏✏

⌘Y

✏✏

Z '(m,f) // T (Y)

(1)

X

PB

✏✏

⌘X

✏✏

f // Y
✏✏

⌘Y

✏✏

T (X) T (f) // T (Y)

(2)

X

PB

✏✏

m

✏✏

idX
// X
✏✏

⌘X

✏✏

Z m // T (X)

(3)

Before discussing some examples of categories that have M-partial map clas-
sifiers, let us recall the definition of some categories of graphs.

Definition 1 (graphs, typed graphs). The category of graphs Gr is defined
as follows. A graph X is made of a set of nodes NX , a set of edges EX and two
functions sX , tX : EX ! NX , called source and target, respectively. As usual,
we write n

e! p when e 2 EX , n = sX(e) and p = tX(e). A morphism of graphs
f : X ! Y is made of two functions f : NX ! NY and f : EX ! EY , such that

f(n)
f(e)! f(p) in Y for each edge n

e! p in X.

Given a fixed graph Type, called type graph, the category of graphs typed
over Type is the slice category Gr # Type.

Definition 2 (polarized graphs [9]). A polarized graph X = (X,N+

X , N�
X) is

a graph X with a pair (N+, N�) of subsets of the set of nodes NX such that for

each edge n
e! p one has n 2 N+

X and p 2 N�
X . A morphism of polarized graphs

f : X ! Y, where X = (X,N+

X , N�
X) and Y = (Y,N+

Y , N�
Y), is a morphism of

graphs f : X ! Y such that f(N+

X) ✓ N+

Y and f(N�
X) ✓ N�

Y . This defines the
category Gr± of polarized graphs.

A morphism of polarized graphs f : X! Y is strict, or strictly preserves the
polarization, if f(N+

X) = f(NX) \N+

Y and f(N�
X) = f(NX) \N�

Y .

4

2.1 Examples of Partial Map Classifiers

Informally, if (m, f) : Z * Y is a partial map, a total arrow '(m, f) : Z ! T (Y)
representing it should agree with (m, f) on the “items” of Z on which it is
defined, and should map any item of Z on which (m, f) is not defined in a
unique possible way to some item of T (Y) which does not belong to (the image
via ⌘Y of) Y . For example, in Set the partial map classifier (T, ⌘) is defined
as T (X) = X + {⇤} and T (f) = f + id{⇤} for functor T , while the natural
transformation ⌘ is made of the inclusions ⌘X : X ! X + {⇤}. For each partial
function (m, f) : Z * Y , function '(m, f) : Z ! Y +{⇤} extends f by mapping
x to f(x0) when x = m(x0) and x to ⇤ when x is not in the image of m.

Fig. 2. Partial Map Classifiers (a) in Gr (b) in Gr # Type

In Gr the partial map classifier (T, ⌘) is such that ⌘G : G! T (G) embeds G
into the graph T (G) made of the disjoint union of G with a node ⇤ and with an
edge ⇤n,p : n! p for each pair of vertices (n, p) in (NG+{⇤})⇥ (NG+{⇤}). The
total morphism '(m, f) is defined on the set of nodes exactly as in Set, and on
each edge similarly, but consistently with the way its source and target nodes
are mapped. Figure 2(a) shows an example of a partial map (m, f) : G1 ! G2
and the corresponding extension to the total morphism '(m, f) : G1 ! T(G2).
In the graphical notation we use edges with double tips to denote two edges,
one in each direction; arrows and node marked with ⇤ are added to G2 by the
T construction.

Set and Gr are instances of the general result that all elementary toposes
have M-partial map classifier, for M the family of all monos. These include,
among others, all presheaf categories (i.e., functor categories like SetC

op

, where
C is a small category), and the slice categories like C # X where C is a topos
and X an object of C. In fact Gr is the presheaf category SetC

op

where Cop

has two objects E, N and two non-identity arrows s, t : E ! N .
As a consequence also the category of typed graphs Gr # Type has partial

maps classifiers for all monos. Figure 2(b) shows an example: the partial map
classifier of a graph G4 typed over Type is obtained by adding to G4 all the
nodes of Type and, for each pair of nodes of the resulting graph, one instance of
each edge that is compatible with the type graph.

The category of polarized graphs of Def. 2 (that will be used later in Sect. 5.2),
is an example of category which has M-partial map classifiers for a family M

5

which is a proper subset of all monos. It is easy to check that strict monos
form a stable system of monos (denoted S) for category Gr±, and that Gr±

has an S-partial map classifier (T, ⌘). Morphism ⌘K embeds a polarised graph
K into T(K), which is the disjoint union of K with a node ⇤ and with an edge
⇤n,p : n! p for each pair of nodes (n, p) 2 (N+

K + {⇤})⇥ (N�
K + {⇤}). The total

morphism '(m, f) is defined exactly as in the category of graphs.

3 Algebraic Graph Rewriting with Controlled Embedding

In this section we introduce the AGREE approach to rewriting, defining rules,
matches and rewrite steps. The main di↵erence with respect to the DPO and
SqPO approaches is that a rule has an additional component t : K ⇢ TK ,
called the embedding , that enriches the interface and can be used to control the
embedding of preserved items. We assume thatC is a category with all pullbacks,
with a stable system of monos M, with an M-partial map classifier (T, ⌘), and
with pushouts along monos in M.

Definition 3 (AGREE rules and matches).
– A rule is a triple of arrows with the same source ⇢ =

(K
l! L,K

r! R,K
t⇢ TK), with t in M. Arrows l and

r are the left- and right-hand side, respectively, and t is
called the embedding.

L K
loo r //

✏✏

t
✏✏

R

TK

– A match of a rule ⇢ with left-hand-side K
l! L is a mono L

m⇢ G in M.

L

PB (remark)

✏✏

m

✏✏

⌃⌃

⌘L =

⇠⇠

K

PO (b)

loo r //
✏✏

n

✏✏

⇠⇠

t=

⌃⌃

R

p

✏✏

G

PB (a)m

✏✏

D
g

oo h //

n0

✏✏

H

T (L) TK
l0='(t,l)

oo

(4)

Definition 4 (AGREE rewriting). Given a rule ⇢ = (K
l! L,K

r! R,K
t⇢

TK) and a match L
m⇢ G, an AGREE rewrite step G)⇢,m H is constructed

in two phases as follows (see diagram (4)):
(a) Let l0 = '(t, l) : TK ! T (L) and m = '(m, idL) : G ! T (L), then

G
g D

n0
! TK is the pullback of G

m! T (L)
l0 TK .

(remark) In diagram (4) (g, n0) is a pullback of (m, l0) and (l, t) is a pullback of
(⌘L, l0) because l0 = '(t, l), thus by the decomposition property there is a unique
n : K ! D such that n0 � n = t, g � n = m � l and (l, n) is a pullback of (m, g).
Therefore n is a mono in M by stability.

(b) Let n be as in the previous remark. Then R
p! H

h D is the pushout of

D
n K

r! R.

6

Example 1. Using the AGREE approach, the web page copy operation can be
modelled using the rule shown in Figure 3. This rule is typed over the type
graph Type. Nodes denote web pages, solid edges denote links and dashed edges
describe the subpage relation. The di↵erent node colours (gray and black) are
used just to define the match, whereas the c inside some nodes is used to indicate
that this is a copy. When this rule is applied to graph G1, only out-links are
copied because the pages that link the copied one remain the same, that is, they
only have a link to the original page, not to its copy. The subpage structure is
not copied. Note that all black nodes of G1 and D1 are mapped to ⇤-nodes of
T (L1) and TK1, respectively.

Fig. 3. Rule for copying a web page and example of application

In the general case just presented, the embedding t could have a non-local
e↵ect on the rewritten object. In the following example, based on category Set,
the rule simply preserves a single element and t : K ! TK is the identity.
If applied to set G, its e↵ect is to delete all the elements not matched by m,
as shown. We say that this rewrite step is non-local, because it modifies the
complement of the image of L in G.

In the rest of this section we present a condition on rules that ensures the
locality of the rewrite steps. In order to formulate this condition in the general
setting of a category with M-partial map classifiers, we need to consider a gen-
eralisation of the notion of complement of a subset in a set, that we call strict
complement. For instance, in category Gr, the strict complement of a subgraph
L in a graph G is the largest subgraph G \ L of G disjoint from L; thus, the
union of L and G \ L is in general smaller than G. Intuitively, we will say that
an AGREE rewrite step as in diagram (4) is local if the strict complement of L
in G is preserved, i.e., if g restricts to an isomorphism between D \K and G\L.

7

For the definitions and results that follow, we assume that categoryC, besides
satisfying the conditions listed at the beginning of this section, has a final object 1
and a strict initial object 0 (i.e., each arrow with target 0 must have 0 as source);
furthermore, the unique arrow from 0 to 1, that we denote ! : 0! 1, belongs to
M. For each object X of C we will denote by 1X : X ! 1 the unique arrow to
the final object, and by 0X : 0! X the unique arrow from the initial object.

For each mono m : L ⇢ G in M the characteristic arrow of m is defined as
�m = '(m, 1L) : G ! T (1), (see pullback (a) in diagram (5)). Object T (1) is
called the M-subobject classifier.

K

PB (c)

✏✏

n

✏✏

l // L

PB (a)

✏✏

m

✏✏

1L // 1
✏✏

⌘
1true
✏✏

D

PB (d)

g
// G

PB (b)

�m='(m,1L)

// T (1)

D \K
OO

D\n

OO

g\l // G \ L
OO

G\m

OO

1G\L
// 1
OO

false T (!)� !

OO

(5)

By exploiting the assumption that ! 2M and that 0 is strict initial, it can
be shown that T (0) is isomorphic to 1, with ! = 1�1

T (0)

, and this yields an arrow

T (!)� ! : 1! T (1). In category Set (with M the family of all injective functions)
arrows ⌘

1

and T (!) � ! : 1! T (1) are the coproduct injections of the subobject
classifier (which is a two element set), and are also known as true and false,
respectively. In Set the complement of an injective function m : L ⇢ G can be
defined as the pullback of �m : G! T (1) along false. We generalise this to the
present setting as follows.

Definition 5 (strict complements). Let C be a category that satisfies the
conditions listed at the beginning of Section 3, has final object 1, strict initial
object 0, and such that ! 2M. Let m : L ⇢ G be a mono in M, and �m : G!
T (1) be its characteristic arrow defined by pullback (a) of diagram (5). Then the
strict complement of L in G (with respect to m) is the arrow G \m : G \L ⇢ G
obtained as the pullback of �m and false = T (!) � ! : 1! T (1), as in square (b)
of diagram (5).

Furthermore, for each pair of monos n : K ⇢ D and m : L ⇢ G in M
and for each pair of arrows l : K ! L and g : D ! G such that square (c) of
diagram (5) is a pullback, arrow g \ l : D \K ! G \ L as in square (d) is called
the strict complement of l in g (with respect to n and m).

It is easy to check that arrow g \ l exists and is uniquely determined by the
fact that square (b) is a pullback; furthermore square (d) is a pullback as well, by
decomposition. We will now exploit the notion of strict complement to formalize
locality of AGREE rewriting.

Definition 6 (local rules and local rewriting in AGREE). An AGREE
rule ⇢ = (l, r, t) is local if t : TK ! T (K) is such that t \ idK : TK \ K !

8

T (K)\K is an iso. An AGREE rewrite step as in diagram (4) is local if arrow
g \ l : D \K ! G \ L is an iso.

The definition of local rewrite steps is as expected, but that of local rules
deserves some comments. Essentially, in the first phase of AGREE rewriting,
when building the pullback (a) of diagram (4), the shape of TK \K determines
the e↵ect of the rule on the strict complement of L in G, which is mapped by m
to T (L) \L. It can be proved that T (L) \L is isomorphic to T (K) \K, therefore
if the rule is local we have that TK \ K is isomorphic to T (L) \ L, and this
guarantees that the strict complement of L in G is preserved in the rewrite step.
These considerations provide an outline of the proof of the main result of this
section, which can be found in [4].

Proposition 1 (locality of AGREE rewrite steps). Let ⇢ = (l, r, t) be a

local rule. Then, with the notations as in diagram (4), for each match L
m⇢ G

the resulting rewrite step G)⇢,m H is local.

4 Example: Social Network Anonymization

Huge network data sets, like social networks (describing personal relationships
and cultural preferences) or communication networks (the graph of phone calls
or email correspondents) become more and more common. These data sets are
analyzed in many ways varying from the study of disease transmission to tar-
geted advertising. Selling network data set to third-parties is a significant part
of the business model of major internet companies. Usually, in order to preserve
the confidentiality of the sold data set, only “anonymized” data is released. The
structure of the network is preserved, but personal identification informations
are erased and replaced by random numbers. This anonymized network may then
be subject to further processing to make sure that it is not possible to identify
the nodes of the network (see [15] for a discussion about re-identification issues).
We are going to show how AGREE rewriting can be used for such anonymization
procedure. Of course, due to space limitations we cannot deal with a complete
example and will focus in the first task of the anonymization process: the cre-
ation of a clone of the social network in which only non-sensitive links are copied.
We model the following idealized scenario: the administrator of a social network
sells anonymized data sets to third-parties so that they can be analyzed with-
out compromising confidentiality. Our graphs are made of four kinds of nodes:
customer (grey nodes), administrator of the social network (white node), user
of the social network (black nodes) and square nodes that model the fact that
data will su↵er post-processing. Links of the social network can be either public
(black solid) or private (dashed – this latter denotes sensitive information that
should not be disclosed), moreover we use another type of edges (grey), denoting
the fact that a node “knows”, or has access to another node. The corresponding
type graph Type is shown in Figure 4.

The rule depicted in Figure 5 shows an example that anonymizes a portion of
a social network with 4 nodes (typically portions of a fixed size are sold). Graph

9

Fig. 4. Type Graph Type, Graphs G and H

TK consists of a clique of all copies of matched black nodes (denoted by c) with
public links, and a graph representing the T construction applied to the rest of
K. To enhance readability, we just indicated that the graph inside the dotted
square should be completed according to T : a copy of the nodes of the type graph
should be added, together with all possible edges that are compatible with the
type graph. This allows the cloning of the subgraph defined by the match limited
to public edges. In the right hand side R a new square node is added marking
the cloned nodes for post-processing. The application of this rule to graph G in
Figure 4 with a match not including the top black nodes produces graph H.

Fig. 5. 4-Anonymize rule

5 AGREE Subsumes SqPO and Polarized Node Cloning

As recalled in the Introduction, in the SqPO approach [5] a rule is a span L
l

K
r! R and a rewriting step for a match L

m! G is made of a first phase where
the final pullback complement D is constructed, and next a pushout with the
right-hand side is performed.

Definition 7 (final pullback complement). In diagram (6), K
n! D

a! G

is a final pullback complement of K
l! L

m! G if

1. the resulting square is a pullback, and

2. for each pullback G
m L

d K 0 e! D0 f! G

and arrow K 0 h! K such that l�h = d, there

is a unique arrow D0 g! D such that a�g = f
and g � e = n � h.

L

m
✏✏

Kloo

n
✏✏

K 0
hoo

e
✏✏

d
ww

G Daoo D0
g

oo

f

gg

(6)

10

The next result shows that in a category with a stable system of monos M and
with M-partial map classifiers, the final pullback complement of m � l, with
m 2 M, can be obtained by taking the pullback of T (l) along m. This means
that if the embedding morphism of an AGREE rule is the partial map classifier

of K, i.e., K
⌘K⇢ T (K), then the first phase of the AGREE rewriting algorithm

of Definition 4 actually builds the final pullback complement of the left-hand side
of the rule and of the match. This will allow us to relate the AGREE approach
with others based on the construction of final pullback complements.

Theorem 1 (building final pullback complements). Let C be a category
with pullbacks, with a stable system of monos M and with an M-partial map

classifier (T, ⌘). Let K
l! L be an arrow in C and L

m⇢ G be a mono in M.

Consider the naturality square built over K
l! L on the left of Figure 6, which

is a pullback because ⌘ is cartesian, and let G
a D

n0
! T (K) be the pullback

of G
m! T (L)

T (l) T (K). Then K
n! D

a! G is a final pullback complement of

K
l! L

m! G, where n : K ⇢ D is the only arrow making everything commute.

L
��

m

��

✏✏

⌘L

✏✏

Kloo
✏✏

⌘K

✏✏

��

n

��

G

m

⇥⇥

D

n0

��

aoo

T (L) T (K)T (l)oo

K0

d

uu
e

⇡⇡

h
yy

L
⇢⇢

m

⇢⇢

✏✏

⌘L

✏✏

Kloo
✏✏

⌘K

✏✏

⌧⌧

n

⌧⌧

D0

g
{{

f

uu

'(e,h)

rr

G

m

⇥⇥

(1)

D

n0

��

aoo

T (L) T (K)T (l)oo

Fig. 6. Constructing the final pullback complement of m � l with a pullback.

Proof. By the decomposition property we have that K
n⇢ D

a! G is a pullback

complement of K
l! L

m⇢ G, and n 2M by stability. We have to show that the

pullback complement is final, i.e. that given a pullback G
m L

d K 0 e! D0 f! G

and an arrow K 0 h! K such that l � h = d, as shown on the right of Figure 6,
there is a unique arrow D0 g! D such that n�h = g �e and a�g = f . We present
here the existence part, while the proof of uniqueness is reported in [4].

Note that K 0 e⇢ D0 is in M by stability. By the properties of the M-partial

map classifier T , there is a unique arrow D0 '(e,h)! T (K) such that ⌘K � h =
'(e, h) � e and the square is a pullback. We will show below that m � f =
T (l) � '(e, h), hence by the universal property of the pullback (1) there is a

unique arrow D0 g! D such that n0 � g = '(e, h) and a � g = f . It remains to
show that n � h = g � e: by exploiting again pullback (1), it is su�cient to show

11

that (i) a � n � h = a � g � e and (ii) n0 � n � h = n0 � g � e. In fact we have, by
simple diagram chasing:

(i) a � n � h = m � l � h = m � d = f � e = a � g � e
(ii) n0 � n � h = ⌘K � h = '(e, h) � e = n0 � g � e

We still have to show thatm�f = T (l)�'(e, h). This follows by comparing the
following two diagrams, where all squares are pullbacks, either by the statements
of Section 2 or (the last to the right) by assumption. Clearly, also the composite
squares are pullbacks, but then the bottom arrows must both be equal to '(e, d),
as in Equation (1). Therefore we conclude that m � f = '(e, d) = T (l) � '(e, h).

L

⌘L

✏✏

PB (2)

Kloo

⌘K

✏✏

PB (1)

K 0
hoo

✏✏

e

✏✏

d

vv

T (L) T (K)T (l)oo D0
'(e,h)oo

L

⌘L

✏✏

PB (3)

LidL
oo

m

✏✏

K 0
l�hoo

✏✏

e

✏✏

d

ww

T (L) Gmoo D0
foo

5.1 AGREE subsumes SqPO rewriting with injective matches

Using Theorem 1 it is easy to show that the AGREE approach is a conservative
extension of the SqPO approach, because the two coincide if the embedding of
the AGREE rule is the arrow injecting K into its partial map classifier.

Theorem 2 (AGREE subsumes SqPO with monic matches). Let C be
a category with all pullbacks, with M-partial map classifiers ⌘ : IdC

.! T for a

stable system of monos M, and with pushouts along arrows in M. Let ⇢ = L
l

K
r! R be a rule and m : L ⇢ G be a match in M. Then

G)SqPO
⇢,m H if and only if G)AGREE

(l,r,⌘K),m H

In words, the application of rule ⇢ to match m using the SqPO approach has ex-
actly the same e↵ect of applying to m the same rule enriched with the embedding

K
⌘K⇢ T (K) using the AGREE approach.

Proof. Since the embedding of the rule is arrow ⌘K : K ⇢ T (K), phase (a) of
AGREE rewriting (Definition 4) is exactly the construction that is shown, in

Theorem 1, to build K
n! D

a! G as a final pullback complement of K
l! L

m!
G, therefore it coincides with the construction of the left square of the SqPO
approach. The second phase, i.e. the construction of the pushout of K

n! D and
K

r! R is identical for both approaches by definition.

12

5.2 AGREE subsumes polarized node cloning on graphs

We now show that AGREE rewriting allows to simulate rewriting with polar-
ized cloning on graphs, which is defined in [9] by using the polarized graphs of
Definition 2. Polarization is used in rewriting to control the copies of edges not
matched but incident to the matched nodes.

Fact 1 The underlying graph of a polarized graph X = (X,N+

X , N�
X) is X. This

defines a functor Depol : Gr± ! Gr which has both a right- and a left-adjoint
functor denoted Pol and Pol± : Gr! Gr±, resp., i.e. Pol± a Depol a Pol.

Functor Pol maps each graph X to the polarized graph induced by X, defined
as X = (X,NX , NX), and each graph morphism f : X ! Y to itself; it is easy to
check that Pol(f) : Pol(X)! Pol(Y) is a strict polarized graph morphism. Fur-
thermore we have that Depol�Pol = IdGr, and we denote the unit of adjunction
Depol a Pol as u : IdGr±

.! Pol �Depol, thus uX : X! Pol(Depol(X)).
Functor Pol± maps each graph X to the polarized graph X = (X,N+

X , N�
X),

where a node is in N+

X (resp. in N�
X) if and only if it has at least one outgoing

(resp. incoming) edge in X. Since Depol has a left adjoint, we have that Depol
preserves limits and in particular pullbacks.

The category Gr± has final pullback complements along strict monos: their
construction is given in [8, Appendix].

Definition 8 (PSqPO rewriting). A PSqPO rewrite rule ⇢ is made of a span

of graphs L
l K

r! R and a polarized graph K = (K,N+

K , N�
K) with underlying

graph K. A PSqPO match of the PSqPO rewrite rule ⇢ is a mono m : L ⇢ G
in Gr. A PSqPO rewriting step G)PSqPO

⇢,m H is constructed as follows:

(a) The left-hand-side l of the rule ⇢ gives rise to a morphism bl = Pol(l) � uK :
K ! Pol(L) in Gr±. The match m gives rise to a strict mono Pol(m) :

Pol(L) ⇢ Pol(G) in Gr±. Then K n! D g! Pol(G) is constructed as the

final pullback complement of K
bl! Pol(L)

Pol(m)! Pol(G) in category Gr±.

(b) Since Depol(K) = K, we get Depol(n) : K ! Depol(D) in Gr. Then R
p!

H
h D is built as the pushout of R

r K
Depol(n)! Depol(D) in category Gr.

Recall that, as observed in Sect. 2.1, category Gr± has an S-partial map
classifier (T, ⌘). This will be exploited in the next result.

Theorem 3 (AGREE subsumes polarized node cloning on graphs). Let

⇢ be a PSqPO rule made of span L
l K

r! R and polarized graph K =
(K,N+

K , N�
K). Consider the component on K of the natural transformation ⌘ :

IdGr±
.! T, and let TK = Depol(T(K)) and t = Depol(⌘K) : Depol(K) !

Depol(T(K)), thus t : K ! TK . Furthermore, let m : L ⇢ G be a mono. Then

G)PSqPO
⇢,m H if and only if G)AGREE

(l,r,t),m H

13

Proof. The first phase of PSqPO rewriting consists of building the final pull-
back complement of (Pol(m),bl) in category Gr±. According to Theorem 1, since
Pol(m) is strict such final pullback complement can be obtained as the top
square in the diagram below to the left, where both squares are pullbacks in
Gr±. The second phase consists of taking the pushout of morphisms K

r! R
and Depol(n) : K ! Depol(D) in Gr.

By applying functor Depol to the left diagram we obtain the diagram below
to the right in Gr, where both squares are pullbacks because Depol preserves
limits. In fact, recall that Depol � Pol = idGr, that K = Depol(K) and that
t = Depol(⌘K); the fact that T (L) = Depol(T(Pol(L))) can be checked easily by
comparing the construction of the (S-)partial map classifiers in Gr and in Gr±.

Pol(L)

PB

✏✏

Pol(m)

✏✏

⇥⇥

⌘
Pol(L)

=

⌧⌧

K
bloo

✏✏

n
✏✏

��

⌘K=

⇥⇥

Pol(G)

PB
Pol(m)

✏✏

Dg
oo

q=n
✏✏

T(Pol(L)) T(K)
T(bl)

oo

L

PB

✏✏

m
✏✏

��

⌘L =

⌧⌧

K
loo

✏✏

Depol(n)
✏✏

$$

t
=

{{

G

PBm
✏✏

Depol(D)oo

✏✏

T (L) TK
oo

Now, the first phase of AGREE rewriting with rule (l, r, t) and match m
consists of taking the pullback in Gr of m and the only arrow Tk ! T (L) that
makes the outer square of the right diagram a pullback. This arrow is precisely
Depol(T(bl)), and therefore the pullback is exactly the lower square of the right
diagram. The second phase consists of taking the pushout of K

r! R and of the
only arrow K ! Depol(D) that makes the diagram commute; but Depol(n) is
such an arrow, thus the pushout is the same computed by the PSqPO approach
and this concludes the proof.

6 Related Work and Discussion

In this paper we presented the basic definitions of a new approach to alge-
braic graph rewriting, called AGREE. We showed that this approach subsumes
other algebraic approaches like SqPO (Sesqui-pushout) with injective matches
(and therefore DPO and SPO under mild restrictions, see [5, Propositions 12
and 14]), as well as its polarised version PSqPO. The main feature provided
by this approach is the possibility, in a rule, of specifying which edges shall be
copied as a side e↵ect of the copy of a node. This feature o↵ers new facilities to
specify applications in which copy of nodes shall be done in an unknown context,
and thus it is not possible to describe in the left-hand side of the rule all edges
that shall be copied together with the node. As an example, the anonymization
of parts of a social network was described in Sect. 4.

The idea of controlling explicitly in the rule how the right-hand side should be
embedded in the context graph is not new in graph rewriting, as it is a standard
ingredient of the algorithmic approaches. For example, in Node Label Controlled

14

(NLC) graph rewriting and its variations [14] productions are equipped with em-
bedding rules, which allow one to specify how the right-hand side of a production
has to be embedded in the context graph obtained by deleting the corresponding
left-hand side. The name of our approach is reminiscent of those older ones.

Adaptive star grammars [7] is another framework where node cloning is per-
formed by means of rewrite rules of the form S ::= R where graph S has a shape
of a star and R is a graph. Cloning operation, see [7, Definitions 5 and 6], shares
the same restrictions as the sesqui-pushout approach: nodes are cloned with all
their incident edges.

In [17] a general framework for graph transformations in span-categories,
called contextual graph rewriting, briefly CR, has been proposed. Using CR,
thanks to the notions of rule and of match that are more elaborated than in other
approaches, it is possible to specify cloning as in AGREE rewriting, and even
more general transformations: e.g., one may create multiple copies of nodes/edges
as a side e↵ect, not only when cloning items. The left-hand sides of CR rules allow
to specify elements that must exist for the rule to be applicable, called E, and
also a context for E, i.e. a part of the graph that will be universally quantified
when the rule is applied, called U . A third component plays the role of embedding
the context U in the rest of the graph. The rule for copying a web page shown
in Figure 3 could be specified using CR as rule E ⇢ U ⇢ L K ! R, where
E = L1, U = L = T (L1) and K = R = TK1. Finding a match for a rule in
a graph G involves finding a smallest subgraph of G that contains E and its
complete context. Thus, even if CR is more general, our approach enhances the
expressiveness of classical algebraic approaches with a form of controlled cloning
using simpler and possibly more natural rules.

Bauderon’s pullback approach [1] is also related to our proposal. It was pro-
posed as an algebraic variant of the above mentioned NLC and ed-NLC algo-
rithmic approaches. Bauderon’s approach is similar, in part, to the pullback
construction used in our first phase of a rewriting step, but a closer analysis is
needed and is planned as future work. We also intend to explore if there are
relevant applications where AGREE rewriting in its full generality (i.e., with
possibly non-local rules) could be useful.

Concerning the applicability of our approach to other structures, in prac-
tice the requirement of existence of partial maps classifiers looks quite demand-
ing. AGREE rewriting works in categories of typed/colored graphs, which are
used in several applications, because they are slice categories over graphs, and
thus toposes. But even more used are the categories of attributed graphs [10],
which are not toposes. Under which conditions our approach can be extended or
adapted to such structures is an interesting topic that we intend to investigate.

Acknowledgments

We are grateful to the anonymous reviewers of former versions of this paper for
the insightful and constructive criticisms.

15

References

1. Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism.
Applied Categorical Structures 9(1), 65–82 (2001)

2. Cockett, J., Lack, S.: Restriction categories I: categories of partial maps. Theoret-
ical Computer Science 270(1–2), 223–259 (2002)

3. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theoret-
ical Computer Science 294(1–2), 61–102 (2003)

4. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE - algebraic
graph rewriting with controlled embedding. CoRR abs/1411.4597 (2014), http:
//arxiv.org/abs/1411.4597

5. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) Graph
Transformations, ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

6. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Rozenberg [19], pp. 163–246

7. Drewes, F., Ho↵mann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theor. Comput. Sci. 411(34-36), 3090–3109 (2010)

8. Duval, D., Echahed, R., Prost, F.: Graph rewriting with polarized cloning. CoRR
abs/0911.3786 (2009), http://arxiv.org/abs/0911.3786

9. Duval, D., Echahed, R., Prost, F.: Graph transformation with focus on incident
edges. In: Ehrig, H., Engels, G., Kreowski, H., Rozenberg, G. (eds.) Graph Trans-
formations, ICGT 2012. LNCS, vol. 7562, pp. 156–171. Springer (2012)

10. Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed struc-
tures with cloning. In: Gnesi, S., Rensink, A. (eds.) Fundamental Approaches to
Software Engineering, FASE 2014. LNCS, vol. 8411, pp. 310–324. Springer (2014)

11. Echahed, R.: Inductively sequential term-graph rewrite systems. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) Graph Transformations, ICGT 2008.
LNCS, vol. 5214, pp. 84–98. Springer (2008)

12. Ehrig, H., Heckel, R., Kor↵, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Rozenberg [19], pp. 247–312

13. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, October 15-17, 1973. pp. 167–180. IEEE Computer Society (1973)

14. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Rozenberg
[19], pp. 1–94

15. Hay, M., Miklau, G., Jensen, D., Towsley, D.F., Li, C.: Resisting structural re-
identification in anonymized social networks. VLDB J. 19(6), 797–823 (2010)

16. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

17. Löwe, M.: Graph rewriting in span-categories. In: Graph Transformations, ICGT
2010. LNCS, vol. 6372, pp. 218–233. Springer (2010)

18. Mitchell, M., Oldham, J., Samuel, A.: Advanced Linux Programming. Landmark
Series, New Riders (2001)

19. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific (1997)

16

