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ABSTRACT. We work in the category of locally definable groups in an o-
minimal expansion of a field. Eleftheriou and Peterzil conjectured that every
definably generated abelian connected group G in this category, is a cover of
a definable group. We prove that this is the case under a natural convexity
assumption inspired by the same authors, which in fact gives a necessary and
sufficient condition. The proof is based on the study of the zero-dimensional
compatible subgroups of G. Given a locally definable connected group G (not
necessarily definably generated), we prove that the m-torsion subgroup of G
is finite and that every zero-dimensional compatible subgroup of G has fi-
nite rank. Under a convexity hypothesis we show that every zero-dimensional
compatible subgroup of G is finitely generated.

1. INTRODUCTION

The notion of o-minimal structure provides a general framework for the study of
various “tameness phenomena” typical of semi-algebraic, sub-analytic, and similar
categories of sets (see [vdD98]). A basic example of an o-minimal structure is
given by the ordered field of real numbers (R, <, +,-) and the definable sets in this
structure are exactly the semi-algebraic sets, namely a subset of R™ is semi-algebraic
if and only if it is definable in the field of real numbers. There are also interesting
expansions of the real field which are o-minimal, such as (R, <, +, -, exp), where exp
is the real exponential function.

Any structure elementary equivalent to an o-minimal structure is o-minimal.
Thus in particular every real closed field (M, <, +,+) is o-minimal. In order to be
able to apply the usual tools of model theory (types, saturated models, etc.) it
is convenient to consider, together with a given o-minimal structure, also all the
structures that are elementary equivalent to it. For a general reference to model
theory the reader may consult [TZ12].

In this paper we consider groups which are “locally definable” in an o-minimal
expansion M = (M, <,+,-,...) of an ordered field (necessarily real closed). The
study of definable groups has been a main theme of research in the model theory of
o-minimal structures. More recently various authors considered the larger category
of those groups which are locally definable, namely the domain of the group and the
graph of the group operation are given by countable unions of definable sets. One
of the motivations for working in this larger category is that the universal cover of

Date: September 4, 2012.

2010 Mathematics Subject Classification. 03C64, 03C68, 22B99.

Key words and phrases. Locally definable groups, covers, discrete subgroups.

Partially supported by PRIN 2009WY32E8_003: O-minimalita, teoria degli insiemi, metodi e
modelli non standard e applicazioni.

Partially supported by Fundagio para a Ciéncia e a Tecnologia PEst OE/MAT /UI0209/2011.

Partially supported by Fundagdo para a Ciéncia e a Tecnologia grant SFRH/BPD/73859/2010.

1



2 A. BERARDUCCI, M. EDMUNDO, AND M. MAMINO

a definable group is locally definable [EE07]. Unlike the case of definable groups, in
general one cannot expect a “tame” behaviour for all locally definable groups. For
instance every countable group is obviously locally definable. However under some
natural additional assumptions, such as connectedness (in the sense of [BO10]),
the known examples of locally definable groups seem to exhibit a tame behavior
(when M is an expansion of the reals these groups are connected real Lie groups).
In particular it is natural to conjecture that a locally definable abelian connected
group G behaves in many respects like a finite product of (non-standard) copies
of (R,+) and R/Z, and in particular it is divisible and has an n-torsion subgroup
isomorphic to (Z /nZ)*® for some s < dim(G).

This is indeed true in the definable case (with s = dim(G) if G is definably
compact [EO04]), and remains true for those abelian connected locally definable
groups G which are covers of definable groups (namely there is a locally definable
surjective homomorphism from G to a definable group H of the same dimension).

Let us observe that a locally definable cover of a definable group is always de-
finably generated (see [EP12a]), namely it is generated as an abstract group by a
definable subset. For an example of a locally definable group which is not definably
generated one can take a non-archimedean real closed field (M, <, +,-) and a con-
vex subgroup G of the ordered additive group (M, <,+) of the form (J,cy(—ai, a;)
where na; < a;11 for all n € N [EP12a, Elel2|. Eleftheriou and Peterzil made the
following conjecture:

Conjecture 1.1. [EP12a, EP12b] Let G be a definably generated abelian connected
group. Then G is a cover of a definable group.

A solution of the conjecture would reduce many questions about locally definable
abelian connected groups to similar questions about definable groups, even without
assuming that the group is definably generated. This depends on the fact that
every locally definable group G is a directed union of definably generated subgroups
(which can be taken to be connected if G is connected). For instance a positive
solution of Conjecture 1.1 would yield a positive solution to the following conjecture:

Conjecture 1.2. [Edm03, Edm05, EP12a] Every locally definable connected abelian
group is divisible.

In [EP12b] Eleftheriou and Peterzil proved Conjecture 1.1 for subgroups of
(M™,+). They also proved that Conjecture 1.1 is equivalent to the following:

Conjecture 1.3. [EP12b, Conjecture B] Let G be a definably generated abelian
connected group.
(1) There is a mazimal k € N such that G contains a compatible subgroup T

isomorphic to zk.
(2) If G is not definable, k > 1.

If Conjecture 1.3 holds and we take I as in the conjecture, then G/T" is definable,
and G covers it.

We are now ready to discuss the results of this paper. In Section 4 we prove part
(1) of Conjecture 1.3. In Section 5 we prove part (2) under a convexity assumption
suggested by the work of Eleftheriou and Peterzil. As a result of this analysis we
show:

Theorem (see Theorem 5.6). A definably generated connected abelian group G is
a cover of a definable group if and only if for every definable set X C G there is a
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definable set Y C G which contains the convex hull of X (in the sense of Definition
5.3).

We also consider locally definable connected abelian groups which are not nec-
essarily definably generated. Let G be a locally definable abelian connected group.
We show that G has a finite n-torsion subgroup G[n] (Corollary 4.5) and that every
zero-dimensional compatible subgroup I' of G has finite rank bounded by the di-
mension of G. Under an additional convexity assumption we show that I' is finitely
generated (Corollary 7.4). Since the fundamental group 1 (G) of G is isomorphic to
a zero-dimensional compatible subgroup of the universal cover U of G, the above re-
sults can be applied to bound the rank of 71 (G) (Corollary 4.3) or to prove (under
the appropriate convexity hypothesis) that m1(G) is finitely generated (Theorem
7.2). The actual proof however goes the other way around: first we give bounds
on the fundamental groups, and then we deduce bounds on the zero-dimensional
compatible subgroups.

The problem of the finiteness of the n-torsion subgroup was considered in the
unpublished note [Edm03] by the second author, but the proof of finiteness of G[n]
contained therein had some gaps (and assumed divisibility). Among the motivations
of this paper there is a desire to provide a correct proof.

In Section 8 we give an example of a locally definable H-space whose fundamental
group is Q. This may explain some of the difficulties in showing that 71 (G) is finitely
generated using only homotopy information, thus giving some indirect justification
for the introduction of the convexity assumption. In the same section we give an
example of a locally definable connected group which has a generic definable subset,
but does not cover a definable group. This shows that the results of [EP12a] do
not extend to non-commutative groups.

The reader may gain some insight on the problems considered in this paper by
first taking a look at Question 8.3 at the end of the paper.

Sections 2 and 3 contain some definitions and background results.

Acknowledgements. The main results of this paper have been presented on Feb.
2, 2012 at the Logic Seminar of the Mathematical Institute in Oxford. The first au-
thor thanks Jonathan Pila for the kind invitation. We also thank Margarita Otero,
Pantelis Eleftheriou, Kobi Peterzil and the anonymous referee for their comments.

2. LOCALLY DEFINABLE GROUPS

We work in an o-minimal expansion M of a field. A subset of M™ is definable
if it is definable in M with parameters. There are several different definitions and
variants of locally definable sets and groups in the literature. The definition is
simpler if M is assumed to be Ni-saturated, so let us momentarily assume that this
is the case. For us a locally definable set is a countable union | J; .y X; of definable
subsets of M™ for some fixed n, and a locally definable function f : X — Y between
locally definable sets X' = (J;cy Xi and Y = {J;¢y Yj is a function whose restriction
to each definable subset of its domain X is definable. Given a locally definable set
X = U,y Xi we can always assume that the union is directed, namely for every
i,j € N there is k¥ € N with X; U X; C X} (if not, we reduce to the directed
case considering the unions of the finite subfamilies). By Nj-saturation it then
follows that every definable subset of | J;cy X; is contained in some X; (or in a
finite union of the X;’s if the union is not directed). In the non-saturated case
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the corresponding property fails, unless we make the convention that a locally
definable set X comes equipped with a given presentation as a directed countable
union | J; o X of definable sets and that by a definable subset of X we really mean
a definable subset of some X;. Consistently with this convention we stipulate that
f X — Y is locally definable if and only if for each ¢ € N the restriction of f
to X; has image contained in some Y; and it is definable as a function from X;
to Yj. For instance if M = R we have M = |J, cy[-7,n] but the identity map
[+ R = U,enl—n,n] is not locally definable since the image through f of the
definable set R is not contained in [—n,n] for any n € N. A locally definable group
is a locally definable set G = |J,cy X equipped with a locally definable group
operation u : G x G — G and group inverse, where we endow G x G with the
presentation G x G =, ;en Xi X X as a locally definable set.

Given a definable set X in M and an elementary extension M’ = M, we denote
by X(M') the set defined in M’ by the same formula defining X (so in particular
X = X(M)). It is easy to see that X (M') does not depend on the choice of the
definining formula for X. Similarly, given a locally definable set X = J;. X we
denote by X (M') the locally definable set  J,, .y X (M’). In the non-saturated case
this depends on the presentation of X as a countable union of definable sets.

Every definable group has a unique group topology making it into a definable
manifold over M [Pil88]. This result was generalized to locally definable groups in
[PS00, Proposition 2.2], [Edm06, Theorem 2.3] and [BO10, Theorem 3.9]. By the
latter reference every locally definable group admits a group topology making it
into a locally definable space with a countable atlas. We call the resulting group
topology the t-topology. When M is an o-minimal expansion of the reals we get a
real Lie group. For the definition and a recent systematic treatment of locally de-
finable spaces we refer to [BO10]. Roughly speaking locally definable spaces stand
to locally definable sets as abstract manifolds (given by atlases) stand to subman-
ifolds of R™. In [BO10] a well behaved subclass of the locally definable spaces is
discussed: the paracompact ones. They admit the following characterization: a
locally definable space X is paracompact if the closure of each definable subspace
of X is definable [BO10, Fact 2.7]. A locally definable group G, with the t-topology,
is always paracompact [BO10, Theorem 3.10]. Thus we can make free use of the
results of [BO10] on locally definable paracompact spaces when dealing with lo-
cally definable groups. Finally, let us recall the following definition: a subset X
of a locally definable group (or space) G is compatible if its intersection with any
definable subset of G is definable. By [Edm06, Lemma 3.3 and Theorem 4.2] a
normal subgroup A < B of a locally definable group B is compatible if and only if
it is the kernel of a locally definable surjective homomorphism f: B — C between
locally definable groups. So the quotients B/A, with A compatible in B, exist in
the category of locally definable groups and they are unique up to locally definable
isomorphisms. Let us also recall that a locally definable space is connected if it is
not the union of two non-trivial clopen compatible subsets [BO10]. This is equiv-
alent to the condition that every two points can be joined by a definable path. It
is easy to see that a locally definable group is connected (in the t-topology) if and
only if it has no compatible subgroups of index < Nj.
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3. COVERS

We recall a few facts from the theory of covering spaces in the locally defin-
able category, as developed in [Edm05, EE07] (see [EO04] for the definable case).
Given two locally definable connected groups U and G, a surjective locally defin-
able homomorphism f : U — G is a covering homomorphism if and only if its
kernel is zero-dimensional, or equivalently if dim(U) = dim(G) [Edm05, Theorem
3.6]. Given such a covering f : U — G, there is an induced injective homomor-
phism f. : m(U) — m1(G) on the o-minimal fundamental groups (see [Edm05,
Proposition 4.6] or [BO10, Proposition 6.12]). We say that U is simply connected
if 1 (U) = 0. By [EdmO05, Prop. 3.4 and 3.12] we have:

ker(f) = m(G)/f«(m (V).

In particular if U is the universal cover of G (as in [EE0T7]), then m(U) = 0 and
ker(f) = m1(G). So m(G) is isomorphic to a zero-dimensional subgroup of the
universal cover of G. Another way of saying the same thing is A = w1 (U/A),
provided 71 (U) = 0 and A is a zero-dimensional compatible normal subgroup of U.
More generally if I' is a zero-dimensional compatible normal subgroup of a connected
locally definable group G, then I' is a quotient of 71 (G/T") (consider the covering
G — G/T'). So there is a strong connection between compatible zero-dimensional
subgroups and fundamental groups.

4. DISCRETE COMPATIBLE SUBGROUPS

In this section we prove the finiteness of the the n-torsion subgroup G[n] of a
locally definable connected group G. We also prove the finiteness of the rank of
any zero-dimensional compatible subgroup of G. We will make use of homological
techniques. Homology and homotopy in the locally definable category has been
studied by various authors: see [BO10] for some bibliography and recent results.
Given a locally definable space X, we let S,(X) denote the o-minimal singular
chain complex of X, and H,(X; R) the corresponding graded homology group with
coefficients in R.

Theorem 4.1. Let G be a locally definable abelian connected group. Then for any
perfect field R, the R-vector space Hy(G;R) has finite dimension < dim(G). In
particular:

(1) the Q-vector space Hi(G;Q) has dimension < dim(G),

(2) the Z /pZ-vector space Hi(G;Z [pZ) has dimension < dim(G).

The proof is based on the theory of Hopf-algebras (see [Dol95]). The same tool
has been used in [EO04] for the study of definable groups but working in cohomology
rather than homology. We have chosen to work in homology since the homological
Kunneth formula does not require the assumption that the homology is of finite
type (unlike the cohomological version). Note that in the locally definable category
the finite type assumption is not granted a priori. Indeed it is easy to construct
locally definable spaces which do not satisfy it. The Kunneth formula in homology
is used in the proof of the following fact.

Fact 4.2. Let R be a field and let G be a locally definable abelian connected group.
The group multiplication p: G x G — G induces on H.(G; R) the structure of a
commutative (in the graded sense) R-algebra, which is in fact a connected Hopf-
algebra over R in the sense of [Dol95].
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Proof. Given two locally definable spaces X and Y there is a natural chain homo-
topy equivalence

S (X xY) = Su(X)® S, (V)

This has been verified in the definable case in [EO04, Proposition 3.2] and the proof
in the locally definable case is identical. The Kunneth formula

H.(X xY;R) = H,(X;R)® H.(Y;R)

then follows (see [Dol95, ch. vI Theorem 9.13]). Identifying H.(G x G; R) with
H.(G;R) ® H.(G; R), the group multiplication u: G x G — G induces a multipli-
cation p.: Hy(G; R) ® H.(G; R) — H.(G; R) in homology making H,(G; R) into
a Pontryagin’s ring (see [Dol95, ch. viI Section 3]). The diagonal map A: G —
G x G, defined by A(z) = (z, ), induces a natural co-multiplication (or diagonal)
v: H(G; R) — H.(G; R) ® H.(G; R) making the Pontryagin’s ring H,(G; R) into
a connected commutative Hopf-algebra (see [Dol95, ch. vi 10.10]). O

We now proceed to prove Theorem 4.1. The proof is easy when R = Q. In
fact, over a field of characteristic zero, any connected commutative Hopf-algebra
is free by the Hopf-Leray theorem (see [Dol95, ch. viI Proposition 10.16]). For a
contradiction take dim(G) + 1 elements in H; (G; Q) independent over Q. Since the
Hopf Q-algebra H,(G;Q) is free, their Pontryagin product is a non-zero element
of Hgim(a)+1(G, Q). This is absurd since H, (G, Q) vanishes if n > dim(G). In fact,
the homology of a locally definable space is the direct limit of the homologies of its
definable subsets by [BO10, Theorem 3.1], and a definable set of dimension d has
trivial H,, for n > d (see for instance [EO04, Lemma 3.1]). To prove the theorem in
characteristic different from zero we must employ a slightly more involved argument.

Proof of Theorem 4.1. Let H = H,.(G; R). By Fact 4.2, H is a connected commu-
tative Hopf algebra. In general the comultiplication sends a homology class x € H,
with ¢ > 1 to an element ¥(z) of the form x ® 1 + 1 ® = + r where r has the form
¥ia; ® b; with |a;| > 1 and |b;| > 1 ([Dol95, (10.10), p. 229] or [Mim78, ch. 1v, §2,
p. 173]). An element z is primitive if » = 0, namely ¢¥(z) =z ® 1+ 1 ® z. Clearly
each element of Hy := Hy(G; R) is primitive, since ¢ must preserve the degrees. Let
d = dim(G). We must prove that H; has dimension < d over R. For a contradiction
suppose that there are d + 1 R-linearly independent elements z1,...,x44+1 of Hj.
Let P C H be the subalgebra generated by x1,...,z411. So in particular P is
generated by primitive elements of H. If z is primitive, 1 (2") = X, (};) @ ah.
It follows that ¢¥(P) C P ® P, so P is again a Hopf algebra, with comultiplication
given by the restriction of ) to P. Note that since P is generated by primitive
elements, the comultiplication is associative and commutative (see [Mim78, ch. Vi1,
Thm. 1.1, p. 366]), but we will not need this fact. What we need instead is that P
is a connected Hopf algebra of finite type over a perfect field with an associative and
commutative multiplication. So by the Hopf-Borel Theorem (see [Whi78, (8.11),
p. 154] or [Mim78, Theorem 1.3, p. 366] P is isomorphic, as a graded algebra,
to a tensor product of algebras @, B;, where each B; is monogenic, namely it
is generated by a single element y; with |y;| > 0. The isomorphism need not pre-
serve the comultiplication, so it is not in general an isomorphism of Hopf algebras.
In any case the product y; - ...y, is a non-zero element of @, B; of degree
m = |y1| + ...+ |yn| > n. Since the isomorphism P = ), B; preserves the degrees,
we obtain P, # 0, so also H,,(G;R) # 0. This implies m < dim(G) and since
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n < m, we obtain n < dim(G). On the other hand since each B; is monogenic
(i=1,...,n), the subspace of B; consisting of the elements of degree 1 has dimen-
sion < 1, and therefore the subspace of @', B; consisting of the elements of degree
1 has dimension < n. The same then holds for the isomorphic algebra P, which is
a contradiction since P has d + 1 > n independent elements of degree 1. O

Let us recall that the rank of an abelian group I is the cardinality of a maximal
linearly independent (over Z) subset of T'; it coincides with the dimension of ' ® Q
as a Q-vector space.

Corollary 4.3. Let G be a locally definable abelian connected group and let R
be a perfect field. Then the dimension of m1(G) ® R as a vector space over R is
< dim(G). In particular:

(1) m(G) has rank < dim(G).

(2) m(G)®Z /pZ has dimension < dim(G) over Z /pZ for each prime p.

Proof. Since G is a locally definable group, m(G) is abelian. Hence, by the lo-
cally definable version of the Hurewicz theorem [BO10, Theorem 6.15], 71 (G) is
isomorphic to H1(G;Z). Tt follows that 7 (G) ® R is isomorphic to Hy(G; R). The
statement now follows from Theorem 4.1. d

Note that the above corollary does not imply that 71 (G) is finitely generated, for
instance it does not rule out the possibility that w1 (G) = Q. The following result
proves part (1) of Conjecture B in [EP12b].

Corollary 4.4. Let G be a locally definable abelian connected group. Let I’ < G
be a zero-dimensional compatible subgroup of G. Then for every perfect field R the
dimension of I ® R as a vector space over R is < dim(G). In particular:

(1) T has rank < dim(QG).

(2) T®Z /pZ has dimension < dim(G) over Z /pZ for each prime p.

Proof. Let m: U — G be the universal cover of G and let A = 7=1(I') < U. Then
A is a compatible zero-dimensional subgroup of U. By Corollary 4.3,

dimg(71(U/A) ® R) < dim(U/A) = dim(G)

where the last equality follows from the fact that A is zero-dimensional. Now
since U is simply connected, A 2 71 (U/A) by the theory of covers, and since I is a
homomorphic image of A, it follows that dimg(T®R) < dimg(A®R) < dim(G). O

We are now ready to prove the finiteness of the n-torsion subgroup G[n| of a
locally definable connected group G. A natural approach would to consider the
homomorphism n: G — G, x — nx. This has been proved to be effective in the
definable case [EO04] and can still be used in the locally definable case to show
that G[n] is a compatible zero-dimensional subgroup of G [EP12a, Proposition 3.1].
However, to prove that the homomorphism n: G — G is surjective, hence a cover-
ing, we would need the divisibility of G, which in the locally definable case is still
conjectural. So we follow a different approach based on Corollary 4.4(2) and an
inductive argument.

Corollary 4.5. Let G be a locally definable abelian connected group of dimension
d. Then for each positive integer n the n-torsion subgroup G[n| of G is finite, and
it has at most n® elements.
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Proof. By [EP12a, Proposition 3.1] G[n] is a compatible subgroup of G. In particu-
lar, for p prime, G[p] is compatible and by Corollary 4.4(2) we have G[p| = (Z /pZ)®
for some s < d. The desired result now follows by elementary arguments in abstract
group theory using only the fact that G is abelian. Indeed note that if p is prime,
multiplication by p gives a homomorphism p : G[p**1] — G[p*] with kernel G[p]. So
IG[p*+1]| < |Glp]| - |G[p*]] and by induction on k, G[p¥] has at most |G[p]|* = (p*)*
elements. This yields the desired result when n is a power of a prime. The general
case follows by considering the prime decomposition n = p* -...-p;"" of n and the
isomorphism G[n] = G[pi*] @ ... ® Gp;"]. O

If G is divisible we can strengthen the conclusion of Corollary 4.5 as follows.

Remark 4.6. Let G be a locally definable connected divisible abelian group of
dimension d. Then for each prime p and positive integer k, G[p*] = (Z /p* Z)* for
some s < d possibly depending on p but not on k.

Proof. Let x1,...,2s € G[p] be a basis of G[p] as a vector space over Z /pZ. By
Corollary 4.5 we have s < d. Since G is divisible, there are y,...,ys € G such
that p*~1y; = a; for i = 1,...,s. It is then easy to verify, by induction on k, that
Y1,--.,Ys have order p¥, and G[p"] is a free Z /p* Z-module generated by 1, ..., ys.

O

Remark 4.6 does not settle the question whether there is some relation between
G|[p] and GJq| for different primes p, q. For instance, even assuming divisibility, we
are not able to exclude the possibility that G[6] = (Z /3Z)? x Z /27. However
in Corollary 7.3 we will show, under an additional convexity assumption, that
Gln) 2 (Z /nZ)® for some s < dim(G) depending only on G and not on n.

5. CONVEXITY

In this section we prove the Conjectures of Eleftheriou and Peterzil mentioned
in the introduction under a convexity assumption. Let us first recall the following
definition.

Definition 5.1. Let G be a locally definable group in a k-saturated strongly -
homogeneous o-minimal structure M for some sufficiently big cardinal .
(1) A subset X C G is type-definable if it is the intersection < x definable sets.
(2) A type-definable subgroup H < G has bounded indez if there are no new
cosets of H in G in elementary extensions of M. Equivalently [G : H] < k.
(3) If H < G has bounded index, we say that X C G/H is open in the logic
topology if its preimage in G is the union of < x definable sets.
(4) If there is a smallest type-definable subgroup of G of bounded index we call
it G' and say that G exists.

For G definable, G exists and G/G® is a real Lie group [BOPP05]. For G
locally definable we have:

Theorem 5.2. [EP12a] Let G be an abelian, connected, definably generated group
of dimension d. Then:
(1) The subgroup G emists if and only if G covers a definable group;
(2) If GO ezists, then G is divisible and G /G is a Lie group isomorphic to
R* (R /Z)" for some k,r with k +r < d.
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Although we will not need it explicitly, let us also recall that, under the same
hypothesis, in [EP12a] it is also shown that G exists if and only if G has a generic
definable subset, where a subset X of G is generic if for every definable Y C G
finitely many translates of X cover Y.

The other ingredient that we need is the following notion of convexity.

Definition 5.3. Let C be a subset of an abelian group G. We say that C' is convex
if for every a,b € C and m,n € N, not both null, C contains every solution z € G of
the equation (m + n)x = ma + nb. Note that if G is divisible, there will be at least
one solution. Given a subset X C G, the conver hull ch(X) of X is the smallest
convex set containing X. It can be equivalently defined as the set of all x € G
such that kx = a1 + ... + ax for some positive integer k and some aq,...,ar € X
not necessarily distinct. Note that the convex hull of a definable set need not
be definable. We say that a locally definable abelian group has definably bounded
convez hulls if for all definable X C @ there is a definable Y C G containing ch(X).

Notation 5.4. Let X be a subset of an abelian group G. We write nX for
{nz |z e X}and ¥,X for {1 +...+ 2z, | z1,...,2, € X}, where + is the group
operation.

Remark 5.5. If G is divisible and torsion free, then X is convex if and only if n.X =
¥, X for every positive n € N. In this case G is a Q-vector space and convexity
has the usual meaning (the Q-segment between two points in X is contained in X).
If G is only assumed to be divisible, then X is convex if and only if we have both
nX = X, X for every positive n € N and g + X = X for every torsion element
g € G. Example: the convex hull of the zero element of G is the torsion subgroup
of G.

We are now ready to state the main result of this section.

Theorem 5.6. Given a definably generated abelian connected group G in an o-
minimal expansion M of an ordered field, the following are equivalent:

(1) For every definable set X C G, there is a definable set Y C G such that
Y X CnY for alln € N.

(2) The group G is a cover of a definable group.

(3) The group G is divisible and has definably bounded convex hulls.

Moreover these properties are stable under elementary extensions (i.e. preserved
upwards and downwards).

Theorem 5.6 says in particular that if a locally definable connected abelian group
G is generated by a definable convex subset, then G is a cover of a definable group.
Indeed it suffices that G is generated by a set whose convex hull is contained in a
definable set.

Remark 5.7. Condition (3) is equivalent to the conjunction of (1) and the condi-
tion that the torsion subgroup of G is contained in a definable set.

Proof. Let us first observe that the convex hull of the identity of the group is the
torsion subgroup of G. Therefore if (3) holds the torsion subgroup is contained in a
definable set. Unraveling the definitions, (1) says that given a definable set X C G
there is a definable set Y C G, such that, for every positive integer k and elements
ai,...,ar € X (not necessarily distinct), the equation a; + ... + ax = ky has at
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least one solution y in Y. Condition (3) says almost the same thing, except that it
is required that all the solutions y of the above equation belong to Y (it also says
that G is divisible, so there is at least one solution). Thus clearly (3) implies (1).
Conversely assume that (1) holds and the torsion subgroup is contained in a
definable set Z C G. Given a particular solution y = yg of a1 + ...+ ap = ky, all
the other solutions differ from yg by a k-torsion element, namely y —yo € G[k] C Z.
So if X is given and we take Y as granted by (1), then Y + Z contains the convex
hull of X and we get (3). O

In the proof of the Theorem we will make use of the following remark, which
justifies the technical condition (1).

Remark 5.8. Condition (1) in Theorem 5.6 is inherited by the quotients of G,
namely if G satisfies (1) and H < G is compatible, also G/H satisfies (1).

We will first prove Theorem 5.6 under the assumption that the o-minimal struc-
ture M is sufficiently saturated. In the next section we show how to relax the
saturation assumption. The next lemma contains the main idea of our argument.

Lemma 5.9. (Assume M Ni-saturated.) Let G be a locally definable abelian group
generated by a definable set X such that 0 € X and X = —X. Assume that for
some definable subset Y of G and for all positive n € N we have nY ¢ £,X. Then
there is an infinite cyclic compatible subgroup of G.

Proof. By our assumptions for every n there is an element a,, € Y with na, ¢
Y¥poX. Let A C M be a countable set containing all the parameters needed to
locally define G and to define X and Y. Let p,(z) be the type of a, over A. So
pn(x) € Sy (A), where Sy (A) is the space of types in the parameters A containing a
defining formula for Y. Since Sy (A) is compact, there is some ¢(z) € Sy (A) which
is an accumulation point of {p, : n > 0}. Let b € Y be a realization of the type ¢
(here we need Nj-saturation). It suffices to show that Zb is an infinite compatible
subgroup of G. We will actually prove that Z 2b is an infinite compatible subgroup
of G, which is clearly equivalent (and in any case it suffices for our purposes).
Choose k so big that Y C X3 X and let n, m be any positive integers with n > 4km.
Claim. For ally € Y, if ny ¢ £, X, then 2my ¢ ¥,, X.

Granted the claim, we have in particular 2ma,, ¢ 3,,X for all n > 4km. Since
the type ¢(x) of b is an accumulation point of {p, : n > 0}, where p,, is the type
of a,, it follows that 2mb ¢ X, X for all m. Thus for m — oo the point 2mb
eventually escapes from every definable subset of G. This implies that Z2b is an
infinite compatible subgroup of G.

It remains to prove the claim. Let n > 4km and let ¥y € Y be such that
2my € ¥,,X. We must show that ny € ¥, X. Write n = 2mq + r with r < 2m.
So ny = 2mqy + ry € LngX + X X. To prove ny € X, X it suffices to show
that mq + kr < n. Indeed we have mq + kr < m|5% | + k2m < n where the last

2m
inequality follows from the assumption n > 4km. The proof is thus complete. [

Corollary 5.10. (Assume M Ni-saturated.) Let G be a locally definable abelian
group generated by a definable set. If G is divisible and has property (1) of Theo-
rem 5.6, then either G is definable or G has an infinite cyclic compatible subgroup.

Proof. Let X be a definable set generating G. Without loss of generality 0 € X
and X = —X. Assume that G is not definable, i.e. n < m implies £,,X ¢ ¥, X.
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Let Y’ be 2Y where Y is a definable set witnessing property (1) for X. We claim
that for our sets X and Y’ the hypothesis of Lemma 5.9 holds. In fact nY’' =
2nY 2%, X €3, X. O

We are now ready to complete the proof of the Theorem in the saturated case.

Proof of Theorem 5.6 (for M sufficiently saturated). We have already remarked that
(3) implies (1) (Remark 5.7).

Now assume (1) with the aim of proving (2). Assume M R;-saturated. We need
to prove that G covers a definable group. Let I' be a torsion free discrete compatible
subgroup of G of maximal rank, which exists by Corollary 4.4. Consider G/T.
Observe that G/T" inherits property (1) from G by Remark 5.8. We claim that
G/T is definable. If not, then by Corollary 5.10 it has an infinite cyclic compatible
subgroup A and, as in the proof of [EP12b, Theorem 2.5], the inverse image of A
in G has rank greater than rank(T"). This contradiction establishes (2).

Now assume (2) with the aim of proving (3). Assume M sufficiently saturated (as
in Definition 5.1). By [EP12a, Theorem 3.9] G% exists. By [EP12a, Proposition 3.5
G is divisible and G/ G, endowed with the logic topology, is an abelian connected
real Lie group. Let X be an M-definable subset of G. We must find an M-definable
set D C G containing the convex hull of X. To this aim consider the natural
projection 7 : G — G/G". We will make use of the following facts, which follow
easily from the definition of the logic topology (see [EP12al):

(i) The image under 7 of a definable subset of G is a compact subset of G/G°.
(ii) The preimage under 7 of a compact subset of G/G% is contained in a
definable subset of G.

Moreover, since G is divisible, the preimage under 7 of a convex (in the sense of
Definition 5.3) subset of G/G is easily seen to be a convex (but not necessarily
definable) subset of G. The strategy of the proof should now be clear. Given
X, we consider its projection 7(X) C G/G%, which is compact. By [EP12a]
G/G" =~ R* x(R /Z)" for some k,l € N. It then easily follows that any compact
subset of G/G® is contained in a compact convex set. So m(X) is contained in
a compact convex set, and its preimage 7! (7(X)) is convex and contained in a
definable set D. Finally note that D contains the convex hull of X. O

We have thus completed the proof of Theorem 5.6 in the saturated case. In the
next section we will show how to prove it in general. Let us however first derive
some corollaries of the theorem.

Corollary 5.11. Let G be a locally definable abelian connected group. If G covers
a definable group, then also any quotient of G by a compatible subgroup covers a
definable group.

Proof. By the equivalence between condition (1) and (2) in Theorem 5.6 and the
fact that (1) is preserved under quotients. O

Discussion 5.12. Let us now discuss the conjecture of Eleftheriou and Peterzil
(Conjecture 1.1) in the light of Theorem 5.6. According to the conjecture, every
definably generated connected abelian group is a cover a definable group. By Theo-
rem 5.6 this is equivalent to the conjecture that every definably generated connected
abelian group G has definably bounded convex hulls. By Corollary 5.11, passing
to the universal cover, it suffices to state this last conjecture under the additional
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assumption that G is simply connected. This may shed some light on the conjecture
of Eleftheriou and Peterzil, at least if we assume divisibility. In fact the universal
cover of a divisible locally definable abelian group is always divisible and torsion
free (see Proposition 5.13 and Proposition 5.14 below), and for divisible torsion
free groups the convexity condition takes a very simple form (see Remark 5.5). So
finally we are lead to the conjecture that a definably generated divisible torsion free
group has definably bounded convex hulls. This is equivalent to the conjecture of
Eleftheriou and Peterzil if we assume that the relevant groups are divisible.

We finish the section with a proof of the two propositions mentioned in the above
discussion.

Proposition 5.13. Let m: G — H be a locally definable covering homomorphism
between locally definable connected abelian groups. If H is divisible, then G is
divisible.

Proof. We must show that nG = G for all n € N. Without loss of generality
we can assume M sufficiently saturated (if not go to a saturated extension and
note that the property to be proved is preserved). Since H is divisible we know
that 7(nG) = nH = H. It follows that (nG)(ker 7) = G. So nG has bounded index
in G (see Definition 5.1). A locally definable subgroup of bounded index is always
a compatible subgroup [EP12a, Fact 2.3]. Therefore nG is a compatible subgroup
of G. But since nG is open and G is connected, it must coincide with G. (]

Proposition 5.14. The universal cover of a locally definable abelian connected
divisible group is divisible and torsion free.

Proof. Let G be our locally definable abelian connected divisible group, and let U be
its universal cover. Using Proposition 5.13 we have the divisibility of U, so for every
positive n € N multiplication by n is a covering homomorphism n : U — U. Its
induced homomorphism on the fundamental group is again given by multiplication

by m, so by the results on coverings in Section 3 we have U[n] & w1 (U)/nm1(U).
Since 71 (U) = 0, we get U[n] = 0. So U is torsion free. O

6. AVOIDING SATURATION

In this section we prove Theorem 5.6 when M is not assumed to be saturated.
So in particular the theorem is valid when M an o-minimal expansion of the field
of real numbers (in which case G(M) is a real Lie group). We need the following
lemmas.

Lemma 6.1. Let M’ be an elementary extension of M. Let G be an M-locally
definable connected abelian group. If G(M') covers an M’-definable group, then
G(M) covers some M-definable group (the converse is also true and obvious).

A natural approach to the proof would be to use the characterization given in
[EP12a]: G covers a definable group if and only if G has a definable generic set.
This latter condition is easily seen to transfer from M’ to M and viceversa, but
unfortunately the proof of this equivalence given in [EP12a] uses saturation (via
the consideration of G/G%). So we need to analyze more closely the details of the
argument in [EP12a].
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Proof of Lemma 6.1. In [EP12a] Eleftheriou and Peterzil proved that G covers of
a definable group if and only if G has a compatible subgroup I' such that G/T" is
definable and T' is isomorphic to Z* for some k. One direction is clear: if T exists, G
covers the definable group G/T". The proof of the other direction in [EP12a] however
requires to work in a saturated structure M, since one makes use of G/G% in order
to find the appropriate I' < G. It turns out however that a modification of the
proof in [EP12a] gives the desired result. So assume that G(M’) covers an M’-
definable group. We can assume M’ sufficiently saturated. As in [EP12a], working
in M’, we have that G0 exists, and G/G is an abelian Lie group isomorphic to
R* x (R /Z)" for some k,1 € N. So we can write G/G as the direct sum L + K of
two subgroups with L = R* and K = (R /Z)'. Note that K is uniquely determined
(it is the closure of the torsion subgroup), but L is not. Our proof will rely on
the possibility of making a suitable choice of L. To this aim fix a subgroup I' of
G/G" isomorphic to ZF say Lo+ ...+ Lz < G/G", with z1,...,2, € L (so
I' < L). Choose uy,...,ur € G(M') such that 7(u;) = z;, where 7 : G — G/G%
is the projection, and let ' = Zuj + ... + Zuy < G(M'). Eleftheriou and Peterzil
show that G(M')/T" is M'-definable. If we could choose uy,...,u; to be in G(M),
the same argument would show that G(M)/T is M-definable and we would be
done. However it may happen that there are no points u; in G(M) mapping to
the given points z; € G/G". To overcome the impasse, we pick a small open
neighbourhood V; C G/G of each z;. The inverse image U; C G of V; is a union of
subsets of GG definable over the ground model M. Hence U; contains a non-empty M-
definable set D;, and we pick each u; in D;(M). Let z; = 7(u;) € V;. It is easy to see
that, if the neighbourhoods V; were chosen small enough, there is an automorphism
¥ of G/G® mapping each 2/ to the corresponding z;. In fact, considering the
universal cover R*™ of R¥ x (R /Z)! this amount to show that if we have a k-tuple
of points in R**! whose R-linear span is a k-dimensional subspace transversal to the
subspace 0 x Rl, then the same remains true after a small perturbation of the points.
We have thus reduced to the case when I' = Zuy + ...+ Z uy, where uq,...,u; are
in G(M). To complete the proof that G(M)/T" is definable we must find a definable
set containing representatives for all the cosets of ' in G(M). For this we can
reason as in [EP12a, Lemma 3.3], going to a saturated model M’ if needed, but
then observing that every M’-definable set is contained in an M-definable set. O

Lemma 6.2. Assume that G is locally definable over M and let M’ be an elemen-
tary extension of M. Then the convexity condition (1) of Theorem 5.6 holds for
G(M) if and only if it holds for G(M'). Similarly for condition (3).

Proof. The key observation is that, since G is locally definable over M, every M’-
definable subset X of G(M’) is contained in an M-definable set X; C G(M’). Now
observe that condition (1) has the following form: for every definable set X C G
there exists a definable set Y C G satisfying, for all positive integer k, a suitable
first order property ¢ x,y, where ¢ xy says that every equations of the form
a1+ ...+ ax = ky, with aq,...,ar in X, has at least one solution y in Y. Clearly
if X,Y are defined over M, then ¢y xy holds in M if and only if it holds in M’.
Moreover by enlarging X or Y we can always assume, in checking (1), that X
and Y are defined over M. So we have the result for (1), and the proof for (3) is
similar. g
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Proof of Theorem 5.6 (general case). Let G be locally definable over M and let M’
be a sufficiently saturated elementary extension of M. We have already proved that
Theorem 5.6 holds for G(M’). By Lemmas 6.1 and 6.2 we deduce it for G(M). O

7. FURTHER CONSEQUENCES OF CONVEXITY

In this section we will show that the convexity hypothesis considered in Section 5
can be used to study locally definable connected abelian groups even without assum-
ing that the group is definably generated. In particular, we will prove that under
suitable hypothesis the fundamental group m(G) is finitely generated. We recall
that every definable set X has a finitely generated fundamental group [BO02], but
this result does not extend to locally definable sets. So we need to make essential
use of the group structure of G.

Proposition 7.1. Let s € N and let T be a subgroup of Q° of rank s. Let vy, ..., vs
be Q-independent elements of T', and assume that T Nch(vy,...,vs) is finite, where
ch(vy,...,vs) is the convex hull of {v1,...,vs}. Then T is isomorphic to Z°.

Proof. The hypothesis implies that the group identity is an isolated point of I" in
the topology inherited by Q¢ as a topological subgroup of R?. Now it suffices to
recall that the only discrete subgroups of R? are of form Z° for some s. (I

Theorem 7.2. Let G be a locally definable abelian connected group. Assume that
the universal cover U of G is divisible and has definably bounded convex hulls. Then
m1(G) 2 Z° for some s < dim(G).

Proof. By Proposition 5.14 U is divisible and torsion free, so it is a vector space over
Q. By the theory of covers 71 (G) is isomorphic to a zero-dimensional compatible
subgroup T' of U. So in particular 71 (G) is torsion free. Moreover it has rank
< dim(G) by Theorem 4.3. It follows that T' is isomorphic to a subgroup of Q°
where s is the rank of m1 (G). Let vy,...,vs € T be Q-linearly independent elements.
By the hypothesis ch(vy, ..., vs) is contained in a definable subset D of U. Since I'
is compatible and zero-dimensional, I' N D is finite. So a fortiori I' N ch(vy, ..., vs)
is finite. Hence, by Proposition 7.1, T" is isomorphic to Z°. (]

Corollary 7.3. Under the same assumptions G[n] = (Z /nZ)®.

Proof. The assumption implies that G is a connected divisible abelian locally defin-
able group. Thus the multiplication by n is a covering homomorphism n: G — G,
and from the theory of covers G[n] & m1(G)/nm1(G) [Edm05, Theorem 3.15]. Now
apply theorem 7.2. O

Corollary 7.4. Let G be a locally definable, abelian, connected group. Suppose
that the universal cover of G is divisible and has definably bounded convex hulls.
Then every zero-dimensional compatible subgroup I' of G is finitely generated, with
at most dim(G) generators.

Proof. From the theory of covers it follows that I' is a quotient of 71 (G/T"), which
is isomorphic to Z*® for some s < dim(G) by Theorem 7.2. O
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8. EXAMPLES AND QUESTIONS

Let us recall the conjecture of [EP12al: every definably generated abelian con-
nected group is a cover of a definable group. We show that this conjecture cannot
be generalized to non-abelian groups.

Example 8.1. There is a non-abelian locally definable group G such that G is
generated by a definable generic set, but G does not cover a definable group.

Proof. Let H be any definably connected centerless group of positive dimension
definable in an w-saturated real closed field M. We will show that no locally
definable connected proper subgroup G of H of maximal dimension can cover a
definable group; then reasoning as in [HPP08, Proposition 7.8] we will construct
such a subgroup which is generated by a definable generic set. For the first part, let
G be a connected locally definable proper subgroup of H with dim(G) = dim(H).
Suppose that G covers a definable group L. Take any non-trivial element x of G
in the fibre over the identity of L. Clearly x must belong to the center of G, hence
the centralizer Cy(x) of z in H has maximal dimension. By the connectedness
of H we get Cy(x) = H, hence x € Z(H), which is impossible since H has trivial
center. Now we construct a locally definable subgroup G as before. H has a C*
group-manifold structure. Taking a local chart of H around the identity e, we can
assume e € U C H for some open definable subset U of M4™(&) guch that on U
the group topology coincides with the subset topology. Without loss of generality
eis 0 € MIm(&) | Take a definable open neighbourhood V of e such that the group
operation restricted to V' x V is a differentiable function taking values in U. Hence,
for all z and y in V, we have -y = x + y + f(z,y) with f(x,y) € o(|z| + |y|) for
(z,y) — (e,e). By saturation, take an € > 0 such that |f(z,y)| < |z| + |y| for all
x and y with |z| + |y| < € (where a < b means na < b for all n € N). Basically,
for elements smaller that e, the group structure of H and the group structure
of (M™,+) are infinitesimally close, this enables us to construct our example in
a straightforward way. Pick a positive 6 < € and let X be {z | |z| < }. We
claim that the group G generated by X is (J;cy Xi, where X; = {2 | |z| < id}.
In fact, clearly X; - X; € X441, and for any  in X and any n in N, we have
|(nx)-27"| < |z|, hence (nz)-2™™ € X and X,, C X" 1. To prove that X is generic
in G observe that there is a countable set Y = {y;};en such that G =Y + 1X. It
is easy to see that G =Y - X. (]

With the next example we show that the fundamental group of a locally definable
H-space may not be finitely generated. (The reader may consult [Dol95] for the
definition of H-space, and figure out the obvious adaptation of the definition to the
locally definable category.) This may explain the difficulties in proving, without
convexity assumptions, that the fundamental group of a locally definable connected
abelian group is finitely generated.

Example 8.2. There is a locally definable set C' with 71 (C) = Q and such that C
can be endowed with a locally definable H-space structure.

Proof. Our H-space is going to be “definably compact” in the sense that all definable
paths in it have a limit. Moreover we believe that the construction can be modified
to yield a locally definable manifold as well, however the details are very tedious to
verify. Notice that the fundamental group of a compact topological manifold can
not be Q [She88]. This is the plan of the example: working in a real closed field M,
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first we describe a definably compact locally definable space with QQ as fundamental
group, then we show how to endow it with an H-space structure and how to embed
it in M®, and finally we suggest how to turn it into a locally definable manifold.
Let {G;}i=1,2,.. be infinitely many copies of SO(2). It is useful to consider them
as distinct groups. Consider the maps m;: G; — G;41 where m;(z) = ix. Let C;
be the mapping cylinder of m;. By a slight abuse of notation we can consider G;
and G;11 as subspaces of C;. Then the definable fundamental group of C' = Ui C;
is Q. In fact, let S,, denote the initial segment [ J,., C; of the union. Clearly S,
retracts onto Gy,41, hence m1(S,) = Z. Also 7r1(C’)_: liﬂm(Sn) where the maps
are those induced by the inclusion. Now, by the retraction, the inclusion of S,
in Sy 41 induces on the fundamental groups the same map as the inclusion of G, 1
in Cy,4+1, which is the multiplication by n + 1. So 71(C) is the group generated by
the generators «; of m1(G;) with relations ia; = a;41, and this is Q. The H-space
structure is given by the following map. Let x = (z,t) € C; \ Gi41 ~ G; x [0,1)
and y = (y,s) € C; \ Gj+1 ~ G; x [0,1) be two elements of C. If i = j then we
let u(x,y) = (z -y, max(t,s)) € C; \ Gip1. If i < j we let p(x,y) = (pj(z) -y, s) €
C; \ Gj4+1 where p; is the retraction from C; U---UCj_;1 to G;j. The case j < ¢
is symmetric. For the embedding in M®, we first embed SO(2) in M? in the
standard way. Subsequently we map G; to SO(2) x {(0,0,4)} € M®. The mapping
cylinder C; maps to

{(1—t)a+ta™ t (1 —t)a,i+t) |acSO?2),te[0,1]} C M?*x M?* x M = M®

C is the union of the mapping cylinders. Finally, our H-space is not a definable
manifold. We suggest that taking a suitably small tubular neighbourhood of it
(in M?) should yield a homotopy equivalent locally definable manifold. O

The following questions remain open:

Question 8.3. Assume G is a locally definable abelian connected group.

(1) Is G divisible? [EAdmO03, Edm05, EP12a]

(2) Suppose G is definably generated. Is G a cover of a definable group?
[EP12a]

(3) Is the torsion subgroup of G contained in a definable set?

(4) Is m(G) finitely generated?
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