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Abstract. The KAES methodology for efficient evaluation of depend-
ability-related properties is proposed. KAES targets systems representable
by Stochastic Petri Nets-based models, composed by a large number of
submodels where interconnections are managed through synchronization
at action level. The core of KAES is a new numerical solution of the un-
derlying CTMC process, based on powerful mathematical techniques, in-
cluding Kronecker algebra, Tensor Trains and Exponential Sums. Specif-
ically, advancing on existing literature, KAES addresses efficient evalua-
tion of the Mean-Time-To-Absorption in CTMC with absorbing states,
exploiting the basic idea to further pursue the symbolic representation
of the elements involved in the evaluation process, so to better cope with
the problem of state explosion. As a result, computation efficiency is
improved, especially when the submodels are loosely interconnected and
have small number of states. An instrumental case study is adopted, to
show the feasibility of KAES, in particular from memory consumption
point of view.
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1 Introduction

Stochastic modeling and analysis is a popular approach to assess a variety of
non-functional system properties, depending on the specific application domain
the system is employed in.

Given the increasing complexity and sophistication of modern and future
contexts where cyber systems are called to operate, their modeling and analysis
becomes on one side more and more relevant to pursue, and on the other side
more and more difficult to achieve (especially when high accuracy of analysis
outcomes is requested due to criticality concerns). Modularity and composition
are widely recognized as foundational principles to manage system complexity



and largeness when applying model-based analysis. Sub-models, tailored to rep-
resent specific system components at the desired level of abstraction, are first
defined, then composed to derive the overall model, representative of the total-
ity of the system under analysis. However, in order to be effective and scalable,
such compositional approach needs to be efficient not only at modeling level, but
also at model evaluation level. This topic has been addressed by a plethora of
studies. When dependability, performance and performability related measures
are of interest, a variety of modeling and solution approaches and automated
supporting tools have been proposed, typically adopting high level modeling for-
malisms (among which the Stochastic Petri Nets family is a major category) and
either simulation-based or analytical solution techniques [14,27].

In this paper, we focus on state-based analytical numerical evaluation and
propose a new approach to address the problem of the state explosion in the
quantitative assessment of dependability and performability related indicators
of large, interconnected systems modeled using Stochastic Petri Net (SPN).
The reference picture is an overall system model, resulting from the compo-
sition of a set of relatively small models (e.g. expressed through the Superposed
GSPN (SGSPN) formalism [13]), each one representing individual system compo-
nent(s) at a desired level of abstraction, then composed through transition-based
synchronization.

Specifically, the paper addresses the solution of the Continuous Time Markov
Chain (CTMC) underlying the SPN, whose evolution represents the behavior
of systems under analysis at a reasonable level of detail. The focus here is on
those CTMCs that present absorbing states, and on the evaluation of the Mean
Time To Absorption (MTTA), i.e., the expected time needed to arrive into an
irreversible state. To the best of our knowledge, this kind of CTMCs has received
low attention in past studies in terms of efficient solutions when dealing with
large interconnected systems. However, addressing this context is relevant, since
it is meaningful in a variety of modeling scenarios of the system under analysis.
For example, depending on the performance or dependability measures under
analysis, absorbing states represent system conditions directly involved in the
computation of the measure, such as:

– in a reliability model [27], absorbing states can be those representing the
system failure,

– in a security model, absorbing states are those representing the fact that a
certain level of confidentiality has been violated or a part of the system is
under the attacker’s control,

– in a safety model, absorbing states are states where the system is considered
unsafe.

Resorting to well known symbolic representation of the CTMC to gain in effi-
ciency, the new approach, called Kronecker Algebra Exponential Sums (KAES),
advances on existing solutions by exploiting powerful mathematical technologies
such as Kronecker algebra [6], Tensor Trains [24] and Exponential sums [3].

The rest of the paper is organized as follows. In Section 2, related work is
discussed. In Section 3 an overview of the proposed contribution is presented. Ba-



sic concepts and model design principles are introduced in Section 4. A detailed
description of the MTTA is offered in Section 5. Then, the proposed KAES
method is described in Section 6. In order to demonstrate the benefits of the
new method, KAES has been implemented in the MATLAB evaluation envi-
ronment and applied to a case study, detailed in Section 7. Obtained numerical
results, discussed in Section 8, show the feasibility of KAES when the MTTA is
evaluated, at increasing the size of the system under analysis, while standard nu-
merical approaches fail due to the state-explosion problem. Finally, in Section 9
conclusions are drawn and future work is briefly discussed.

2 Related Work

It is well known that state-space analysis of discrete event systems has to cope
with the problem of state space largeness, which in many cases makes unafford-
able the analysis of realistic systems. Therefore, many studies have appeared in
the literature, all attempting to alleviate the state space explosion problem.

Among them, a well established strategy consists in promoting state space
reduction through a symbolic representation of the CTMC. Proposals in this di-
rection were already formulated a few decades ago (e.g., in [12,25]), and there was
active research for several years, as documented in the survey in [6]. The overall
system model, resulting from composition of a number of system component
models, is typically expressed through a SPN-like formalism (e.g., Generalized
SPN (GSPN) [8, 16]). The component models are orchestrated by the synchro-
nization of a distinguished set of transitions, called synchronization transitions,
that implement interdependencies among components. Such “high-level” model
is then automatically translated into a “lower level” representation (such as in a
Stochastic Automata Network (SAN) [4]). Moreover, the implicit representation
of the CTMC is not obtained through constructing the Infinitesimal generator
matrix (Q), but through a symbolic representation of Q, the Descriptor ma-
trix (Q̃), that is the sum of two parts: one is the composition of the independent
behaviors of the component automata (all the transitions of each submodel are
not synchronized with transitions of other submodels), called here Local ma-
trix (R), and the other one takes into account only the interdependencies, typi-
cally called Synchronization matrix (W ) [12]. The matrix-vector product, a key
mathematical operation common to all numerical methods, is then performed
through the descriptor matrix-vector product, as in the shuffle, slice and split
algorithms [10].

In these studies, since an irreducible CTMC [27] is assumed, it is required
that the reachability graphs of all component models are fully connected [16].
Notice that “there is no requirement on the number of input and output arcs for
synchronization transitions” [13].

Research on how to manipulate symbolically Q̃ in order to efficiently extract
information needed to generate the relevant part of the Reachable state-space
(RS) of the system model, as well as fast implementation of the descriptor



matrix-vector product, has been the subject of many investigations in the last
twenty five years. A concise survey can be found in [6].

Although the relevant benefits obtained from the symbolic representation and
manipulation of Q̃, when the state-space becomes so large that even storing in
memory vectors of size |RS| is unfeasible, symbolic representations of the vectors,
called descriptor vectors, would be desirable. This is the research area where we
concentrate in this paper. To the best of our knowledge, only two other papers
address symbolic representation of descriptor vectors: Kressner et al. [17] and
Buchholz et al. [5]. In [17] the same symbolic vector representation as in KAES,
i.e., the Tensor Train (TT) format [24], is employed together with standard
numerical solvers, such as Alternating Minimal ENergy (AMEN) [11], for the
evaluation of the steady-state probability vector, meaningful when the Markov
chain is irreducible and finite. In [5] a different representation, the Hierarchical
Tucker Decomposition, is employed again for the evaluation of the steady-state
probability vector in the irreducible context. However, these solutions cannot be
easily generalized to address wider measures of interest, such as the evaluation of
transient properties, or adapt to analyze Markov chains with absorbing states,
which is the target of KAES.

Finally, although not relevant for the developments in this paper, but for
completeness on the literature on efficient management of the generated state
space, we recall that an alternative approach to the symbolic representation
and manipulation of the Q̃ is to exploit a symbolic state-space exploration with
multi-valued decision diagrams (MDDs) [2, 7].

3 Overview of the Novel Contribution

As already introduced, the contribution offered by the KAES approach is an
efficient solution to evaluate MTTA when the CTMC is large and has absorbing
states, working on symbolic representation of the descriptor vectors. First of
all, the KAES approach builds upon the following assumptions, which are also
common to most of the research studies from the literature review:

– the state space generated from each submodel has to be bounded;
– the marking dependencies of synchronization transition rates have strict rules

(see Section 4);
– the Descriptor matrix Q̃ is obtained in two consecutive steps, deriving: i)

first the matrix R, that describes the CTMC generated from each submodel
when all the transitions of the submodel are not synchronized with the tran-
sitions of the other submodels; ii) then the matrix W , that describes only
the interactions among the CTMC generated from the submodels when the
synchronized transitions are considered.

In this paper, in order to ease the notation, no instantaneous transition is con-
sidered, even if both instantaneous local and synchronization transitions can be
tackled, as shown in [6]. The logical view and reasoning behind the contribution
offered in this paper is now outlined:



– The standard representation of the vectors involved in the computations
would require a storage exponential in the number of interconnected systems.
To overcome this difficulty, a compressed representation is employed. Under
suitable assumptions, this only requires a storage linear in the number of
interconnected systems. A vector or matrix which can be compressed in this
format is said to have low tensor train rank.

– Unfortunately, arithmetic operations performed using this representation de-
grade the low tensor train rank property, which can be restored by recom-
pression.

– The evaluation of the MTTA is recast into solving a linear system with a
modified descriptor matrix Q̃−S, where S is a rank 1 correction – efficiently
representable in TT form. Linear system solvers are available in the TT
format, but are ineffective for the problem under consideration.

– Therefore, a new splitting of Q̃ as

Q̃ = Q1 +Q2, (1)

is considered, where Q1 is represented in terms of Kronecker sums and Q2

in TT form.
– The inverse of Q1 can be easily applied to a vector (in TT form) using expo-

nential sums [3], since the exponential of Kronecker sums is the Kronecker
product of exponentials. This property is exploited to efficiently solve the
linear system through an iterative method.

– The way the MTTA is computed guarantees a conservative assessment.

4 System Architecture and Model Design

The systems category we address comprises n components C1,. . . ,Cn. These
components are interconnected, according to a specific topology that depends on
the application domain the system operates in. Such interconnections, also called
dependencies, allow inter-operability among system components, but they also
represent formidable vehicles through which potential malfunctions or attacks
propagate, possibly leading to cascading or escalating failure effects. The analysis
of such systems needs to account for the impact of error/failure propagation due
to dependences, especially when focusing on dependability-critical systems. This
requires cautiousness in building models for such systems, to properly master the
resulting complexity, both at model representation and model solution levels.

At the current stage of development, we target loosely interconnected sys-
tems. Although this might appear a significant limitation of the proposed ap-
proach, loosely interconnection is actually encountered in realistic contexts, such
as the electric infrastructure where grid topologies of hundreds of buses have
number of dependencies around 2-3 on average. On the other side, we aim at
alleviating the problem of state explosion in analytical modeling, that the KAES
approach fulfills at some extent.

Exploiting the modular modeling approach of the SGSPN formalism [13],
each system component Ci is modeled through a GSPN extended with synchro-
nization transitions, and the model that corresponds to Ci is called M i. The



overall SGSPN model, called M sync, is a set of submodels M i which interact
only through synchronized transitions.

To fix the notation, a GSPN [1] can be defined as an 8-tuple

M = (P , T , I, O,H, pri, w,minit),

where P is the set of places and T is the set of (timed and immediate) transitions
with P ∩T = ∅. The functions I: P×T→ N, O: T×P→ N and H: P×T→ N are
respectively the input, output and inhibition functions that map arcs (p, t) or
(t, p) onto multiplicity values. In the graphical representation, the multiplicity is
written as a number next to the arc (when grater than 1). The function pri: T→
N specifies the priority level associated to each transition, that is 0 for timed
transitions and a value greater than 0 for immediate transitions. The weight
function w: T→ R+ assigns rates to timed transitions and weights to immediate
transitions. A marking m of M is a function m : P → N. A place p has n
tokens if m(p) = n. The initial marking of the GSPN is denoted by minit. GSPN
formalism considered in this paper is extended to allow marking-dependent rates
and weights, and marking-dependent multiplicities of arcs. Transition t is enabled

in a marking m, written m
t→, if t has concession (to fire), i.e., m(p) ≥ I(p, t)

and m(p) < H(p, t), and if no other transition t′ exists that has concession in
m, with pri(t′) > pri(t). The firing delay, i.e., the time that must elapse before
the enabled transition can fire, is an exponentially distributed random variable
for timed transitions and is zero for immediate transitions. Firing of a transition

t enabled in a marking m yielding a new marking m′ is denoted by m
t→ m′,

with m′(p) = m(p) − I(p, t) + O(t, p). The set of markings that are reachable
from minit (reachability set) is denoted by RS. A GSPN is called bounded if
for all p ∈ P and m ∈ RS the value of m(p) is bounded. A GSPN is called
structurally bounded if it is bounded for every initial marking [22]. Following
the reasoning briefly outlined in [6], in order to guarantee that every M i will
have a finite state-space, in this paper all the component submodels M i will be
assumed structurally bounded.

In this paper, the standard definition of synchronized transitions is restricted
to timed transitions.

Definition 1 (Synchronization transitions). Let be T sync and T i the sets
of transitions defined respectively in M sync and M i. Let ST ⊆ T sync the set of
synchronization transitions of M sync. A timed transition t is a synchronization
(or superposed) transition, i.e., t ∈ ST , if there is an occurrence of t in two or
more submodels, i.e., t ∈ T i1 ∩ . . . ∩ T ik , with k ≥ 2. A synchronized transition
t is enabled in a marking of M sync if all the occurrences of t within submodels
are enabled in the same marking restricted to the submodels. Formally, calling

m a marking of M sync and mi its projection on M i, m
t→ if mi

t→ for all i such
that t ∈ T i. In the overall model M sync, all the occurrences of t are enabled at
the same time and a unique exponentially distributed firing delay is defined for
all them, thus all of them fire at the same instant of time. The overall SGSPN
model M sync is equivalent to the whole GSPN model M sys obtained joining all



the submodels M i where all the occurrences of t are merged into one transition,
also named t. Firing of t in M sys corresponds to the firing of all the occurrences
of t within the submodels, i.e., formally

m
t→ m′ ⇐⇒ mi

t→ m′i for all i such that t ∈ T i.

All the transitions t that are not synchronization transitions, i.e., those for
which there exists a unique i such that t ∈ T i, are called local transitions.

Allowing general marking-dependent rates and weights for the design of M i

can lead to inconsistent components models and this issue is strictly related to
the granularity of the model and the tensor algebra of choice (see [4, 6, 9]). In
this paper, as in [8], rates and weights of all the local transitions that belong
to M i and multiplicities of the corresponding arcs are allowed to depend on the
marking of M i, whereas rates and weights of the synchronization transitions and
multiplicities of the corresponding arcs should be constant.

As described in [6], the system model SGSPN can be translated into a SAN
and then the state space of M sync, called RS, is not fully explored, and the
CTMC associated to M sync is not assembled. Instead of working with Q, the
SAN provides an implicit representation, called descriptor matrix Q̃, of Q. In
particular, calling RS(i) the state-space of M i when each occurrence of the
synchronization transitions is considered local and Ni = |RS(i)|, Q̃ is defined as

Q̃ = R+W +∆, (2)

i.e., the sum of local contributions, called R, and synchronization contributions,
called W , where

R =

n⊕
i=1

R(i), (3)

W =
∑
t∈ST

n⊗
i=1

W (t,i), (4)

R(i) and W (t,i) are Ni × Ni matrices, the diagonal matrix ∆ is defined as
∆ = −diag ((R+W )e) and the operators ⊕ and ⊗ are the Kronecker sum
and Kronecker product, respectively. The matrices R(i) and W (t,i) are assem-
bled exploring RS(i). Specifically, W (t,i) = λtW̃

(t,i) where λt is the constant
rate associated to t, equal in every M i, and W̃ (t,i) is a {0, 1}-matrix defined as
follows:

W̃
(t,i)
mi,m′

i
=

1 if t is enabled in mi inside M i and mi
t→ m′i,

0 otherwise.
(5)

In particular, if the transition t has no effect on the component M i, we have
W̃ (t,i) = I. The potential state-space of M sync, called PS, is defined as

PS = RS(1) × · · · × RS(n),



and |PS| = N1 · . . . · Nn will be indicated as N in the following. Using this
notation, R, W and ∆ are N ×N matrices.

Performance, dependability and performability properties can be defined in
terms of reward structures [26,27] at the level of the SGSPN model. These reward
structures are automatically translated to reward structures at the Stochastic
Activity Network (SAN) level and represented by symbolic reward structures at
the CTMC level.

5 Mean Time To Absorption

For simplicity, in the rest of the paper it is assumed that, fixed minit, there exists
a unique4 absorbing state in PS that is the last of the chain defined by Q̃. This
is not restrictive because the problem can be always reduced to this situation
by collapsing all the absorbing states of M i into a single one and reordering the
CTMC of M i so that the absorbing state has index Ni. This guarantees, as a
consequence of the lexicographic ordering defined by the Kronecker product, that
the last state of PS is absorbing and corresponds to the last state of RS, where
all the component models are in their absorbing state. Thus, in the following N
will indicate the absorbing state of PS.

Calling X(τ) ∈ PS the stochastic process defined by Q̃, the MTTA is defined
as the expected time for transitioning into the absorbing state, which can be
formalized as

MTTA =

∫ ∞
0

P{X(τ) 6= N} dτ. (6)

Given the unique absorbing state assumption, Q̃ can be replaced by Q̂, the
submatrix of Q̃ obtained by removing the last row and column (as shown in [27]),
that is

Q̃ =


v1

Q̂
...

vN−1

0 . . . 0 0

 (7)

Then the MTTA can be expressed as

MTTA = −π̂T0 Q̂−1
1, (8)

where π̂0 contains the first N − 1 entries of π0, and therefore the problem has
been recast into the solution of a linear system.

4 Notice that this assumption does not imply that Q̃ has an unique row of zeros, as
for the case of the stochastic process defined by Q.



6 The KAES Approach

Targeting the efficient evaluation of the MTTA as in (8), the KAES approach
develops solutions to treat both the descriptor matrix and the descriptor vector
in a symbolic representation. Specifically, KAES is an iterative method, and
relies on the following steps:

– A compressed representation scheme for the descriptor vector ṽ is devised
by using tensor trains. This representation will be used throughout the iter-
ations, and is described in Section 6.1.

– The linear system (8) is solved by a Neumann iteration obtained by splitting
the descriptor matrix Q̃ as in (1), and analyzed in Section 6.2.

– The core of the iteration is the inversion of Q1, which can be efficiently
performed in the compressed format using exponential sums; this technique
is described in Section 6.3.

– Some further remarks on the efficient computation of the Neumann iteration
are reported in Section 6.4.

6.1 Symbolic Representation of the Descriptor Vector

As already discussed when presenting the related work, studies on the symbolic
representation of the descriptor matrix in the Kronecker algebra are already well
consolidated.

Concerning the descriptor vector, a few approaches have recently appeared
on compact representations, as already reviewed in Section 2, but in the context
of irreducible CTMC. Here, we exploit the Tensor Train (TT)-representation as
in [17], since it is a convenient low-rank tensor format, but addressing CTMC
with absorbing states.

We refer the reader to [24] for an overview of the philosophy and the theory
of TT tensors, including an accurate description of the truncation procedure.

In a nutshell, a TT-representation of a tensor X can be given by a tuple
(G1, . . . , Gn) of arrays, where G1 and Gn are matrices (so they have two indices),
and Gj for j = 2, . . . , n − 1 are order 3 tensors (that is, arrays with 3 indices)
such that

X (i1, . . . , in) = G1(i1, :)G2(:, i2, :) . . . Gn−1(:, in−1, :)Gn(:, in),

where we have used the MATLAB notation : to denote “slices” of the tensors,
and the products are the usual matrix-matrix or matrix-vector products. More
precisely, given an array with two indices G(α, β), we define G(:, β) as the column
vector with entry in position α equal to G(α, β), and G(α, :) is a row vector
with entry in position β equal to G(α, β). Similarly, given an array with three
indices G(α, β, γ), we define G(:, β, :) as the matrix whose entry (α, γ) is equal
to G(α, β, γ).

The Gj , often called carriage, are tensors of dimension νj−1×Nj×νj , where
we fix ν0 = νn = 1 (and thus G1 and Gn are matrices).



The vector (ν0, . . . , νn) is called the TT-rank of the tensor X . In our context,
the initial probability vector π0 and vector 1 can be easily expressed in the
Kronecker form

π0 = π
(1)
0 ⊗ . . .⊗ π(n)

0 , (9)

1 = 1
(1) ⊗ . . .⊗ 1(n), (10)

and in TT-format as:

π0(i1, . . . , in) = π
(1)
0 (i1) · . . . · π(n)

0 (in),

1(i1, . . . , in) = 1
(1)(i1) · . . . · 1(n)(in).

Similarly, also the auxiliary vectors necessary to perform the iterative com-
putation of KAES are expressed in TT-format.

The matrix Q and the other auxiliary matrices used in the following have
low TT-ranks (and so are expressed in TT-format) when the CTMC is obtained
from a loosely interconnected system model, as discussed in Section 4. We refer
the reader to [20] for further details on the justification for the presence of such
low-rank structures.

TT-format representation is convenient, since it employsO(Nmax·n·ν2
eff) flops

for each matrix-vector product, instead of the generally larger O(Nn
max) flops of

the corresponding standard representation, whereNmax = max{N1, . . . , Nn} and
νeff is the effective rank5.

When two tensors are added or other matrix operations are performed, the
result is still represented in the TT format, but usually with a suboptimal value
of the ranks νj . For this reason, it is advisable to recompress the result using a
rounding procedure, available in the TT-format, that has a complexity O(Nmax ·
n ·ν2

eff +n ·ν4
eff). When the rank r is low, this number is still very small compared

to the number of states, which is Nn
max.

Although this unavoidably leads to rounding errors, the accuracy can be
chosen by the user. Note that, differently from the floating point arithmetic,
the trade-off between the rounding error parameter and the required number of
correct digits is more complex to devise, since the computational effort is not an
increasing function of the accuracy level.

Often, in the following, TT-tensor will be treated as first-order objects, as-
suming that the arithmetic on these objects has been overloaded. When this
happens, it is assumed that truncation is performed after each operation, to
restore an optimal representation of the data.

6.2 Matrix Splitting and Neumann Expansion

In order to exploit the low-rank format, it is necessary to avoid the extraction
of the submatrix Q̂, since it cannot be directly expressed in the language of

5 The effective ranks have been obtained through the erank function provided by the
TT-toolbox [24].



Kronecker algebra. Therefore, an auxiliary rank 1 matrix S that satisfies

π̂T0 Q̂
−1
1 = πT0 (Q̃− S)−1

1, (11)

where 1 is the vector of all ones of appropriate dimension, is defined as

S = (Q̃u)uT − uuT , u ∈ CN , uj =

{
0 if j < N

1 if j = N
,

where N = |PS| is the dimension of Q̃. If Q̃ has a low TT-rank, the same
holds for Q̃ − S, and therefore it can be expected that exploiting an existing
TT-enabled system solver to compute the MTTA would maintain the TT-ranks
low.

The solvers AMEN [11] and DMRG [23], used in [17] where Q̃ is irreducible,
have been tested to solve Equation (11). Unfortunately, there was not always
convergence, thus making the measure of interest not assessable in many cases.

For this reason, a different approach has been designed to compute the
MTTA. The idea is to make use of the so-called Neumann expansion:

(I −M)−1 =

∞∑
j=0

M j , (12)

valid for each matrix M that has spectral radius6 ρ(M) < 1.
The crucial point in KAES is the definition of the splitting of Equation (1)

such that M = −Q−1
1 (Q2−S) verifies the necessary condition for the Neumann

expansion applicability and promotes fast evaluation of Q−1
1 . This is done in

two steps: first a diagonal matrix ∆′ is chosen such that ∆′ ≤ ∆, and ∆′ =
∆′1⊕. . .⊕∆′n and then Q1, Q2 are defined as Q1 = ∆′+R, and Q2 = W+∆−∆′.
From the definition of Q1 and Q2 follows that

(Q̃− S)−1 = (I +Q−1
1 (Q2 − S))−1Q−1

1 , (13)

and it is possible to prove [20] that ρ(M) < 1. Using (12) one can approximate
the row vector y = πT0 (Q̃− S)−1 by truncating the infinite sum to k terms:

yk =

k∑
j=0

(−1)jπT0 (Q−1
1 (Q2 − S))jQ−1

1 . (14)

and then compute
MTTA = −yk · 1 +O(ρ(M)k+1) (15)

with a straightforward dot product. The notationO(ρ(M)k+1) is used to indicate
that the error is bounded by a constant times ρ(M)k+1. The choice of ∆′ can be
tuned to choose a trade-off between the speed of convergence and the memory
consumption, determined by the rank growth in the iterations.

6 The spectral radius is defined as the maximum of the moduli of the eigenvalues.



Notice that, defining zk+1 = Q−1
1 (Q2−S)zk and z0 = Q−1

1 (1−eTNQ−1
1 1 ·eN ),

it is possible to re-write Equation (15) as MTTA = −πT0 · zk + O(ρ(M)k+1),
where zk+1 ≥ zk for all k = 0, 1, . . . because eTNz0 = 0 and both Q−1

1 and Q2

are non-negative matrices. This means that the MTTA can be computed in a
conservative way, being the approximation −πT0 · zk a lower bound.

In this paper, a variation of (14) is employed; this modification yields a
method with quadratic convergence, overcoming difficulties encountered when
ρ(M) gets close to 1. It is based on refactoring (I −M)−1 as

(I −M)−1 = (I +M)(I +M2) · · · (I +M2k

) · · ·

The downside is that this variation requires to store powers of the matrix
Q−1

1 (Q2−S) in place of just results of matrix vector products and system solves.
This has higher memory requirements – but all these matrices are stored in the
TT-format, ensuring linear memory storage in the number of subsystems when
the TT-ranks (measuring the level of interaction between components) are low.

6.3 Inversion Through Exponential Sums

The main ingredient for implementing KAES is to efficiently evaluate the action
of the inverse ofQ1 on a TT-vector and on a TT-matrix. To this aim, in this paper
a well-known exponential sums construction is adopted. This construction has
been used in a variety of contexts (see, for instance, [15,18,19] and the references
therein), often being rediscovered by different authors. The construction is built
upon a few important observations. The first one is that in Section 6.2 all the
addends are expressed as Kronecker sums, namely

Q1 = Q
(1)
1 ⊕ . . .⊕Q

(n)
1 . (16)

Thus, a very important property of the standard splitting in Equation (2) is
maintained in the new splitting: all the Kronecker products belong to only one
of the splitters, i.e., Q2, and the Kronecker sums to the other one, namely Q1.

The second consideration is that, given a TT-tensor X , it is possible to
efficiently evaluate the product Y = (M1⊗ . . .⊗Mn)X , as this can be performed
in O(n) flops, assuming a low TT-rank for X . Moreover, the result is still a
TT-tensor with the same rank.

All the Kronecker products are in Q2 and the assumption of dealing with
loosely interconnected components implies that there are only a few non-identity
matrices in W , and then in Q2. Thus, in this setting X is the sum of a few terms
with TT-rank 1, and consequently has low TT-rank.

The third observation is that, from Equation (16) follows that

eQ1 = eQ
(1)
1 ⊗ . . .⊗ eQ

(n)
1 . (17)

This can be easily proved using the addends defining the Kronecker sum in
Equation (16) commute, and that eA+B = eAeB whenever AB = BA. Then, the
conclusion follows by (I ⊗A)(B ⊗ I) = A⊗B.



Taking this remarks into account, let to consider the approximated expansion

1

x
≈
∑̀
j=1

αje
−βjx, (18)

which can be obtained truncating the expansion of 1/x to ` terms; the error
in the approximation on [1,∞] performed when truncating to ` terms can be
controlled with a-priori estimates. Several constructions are available, we refer
the reader to [3] which provides the optimal result, and can guarantee an error
term that converges to zero exponentially in `. According to the construction
in [20], one can choose the decomposition Q1 in a way that the eigenvalues of
Q1 are the ones of R shifted to be in the left half of the complex plane. For
simplicity, here the case where the eigenvalues of R are real is considered7 —
the general case can be handled with minimal modifications [20].

In particular, the spectrum of Q1 is contained in (−∞, σmin], and the action
of the inverse can be approximated, applying Equation (17) and Equation (18),
as

Q−1
1 ≈

∑̀
j=1

αje
−βjQ

(1)
1 ⊗ . . .⊗ e−βjQ

(n)
1 (19)

where σmin is the eigenvalue with minimum modulus of Q1 and αj , βj are com-
puted working on − 1

σmin
Q1, that has eigenvalues enclosed in [1,∞).

Since Q1 is a Kronecker sum, the computation of its eigenvalues can be

performed almost for free; in fact, if Q1 = Q
(1)
1 ⊕ . . . ⊕ Q(n)

1 and we denote by
σ(Q1) its spectrum,

σ(Q1) =
{
σ

(1)
i1

+ . . .+ σ
(n)
in
| σ(k)

ik
∈ σ

(
Q

(k)
1

)}
In particular, computing the minimum and maximum eigenvalue just requires

to compute the extreme eigenvalues of each factor Q
(k)
1 .

Consequently, the action of the right-side expression in Equation (19) is cheap
to evaluate, being the sum of l actions of Kronecker products.

6.4 Efficient Computation of the Neumann Iterations

In computing MTTA, one has to evaluate −πT0 (Q− S)−1
1. To accomplish this,

it is possible to either evaluate πT0 (Q−S)−1 and then compute the dot product
with 1, or to compute (Q− S)−1

1 instead, and take the dot product with π0.

It can be seen that the former strategy is more convenient. In fact, the graph
with MT as adjacency matrix is a subgraph of the one induced by Q̃T . In partic-
ular, states in PS \RS have no impact on the evaluation of MTTA because they
correspond to zero entries in π0, and these entries will remain zero in πT0 M

k for

7 This assumption is verified in the cases considered in the numerical experiments.



any k > 0. This guarantees that this part of the chain has no effect on the com-
putation: there is no need to have an explicit algorithm to detect the reachable
states as in [6], because these are implicitly ignored.

Moreover, this strategy is seen to provide lower TT-ranks during the Neu-
mann iterations, compared to computing (Q− S)−1

1 first.
This choice has another beneficial effect: the addends in the series (14) are

non-negative, and therefore the MTTA is approximated from below — and at
every step the partial result is effectively a lower bound [20].

7 Case Study

To illustrate the effectiveness of the proposed approach, we consider a complex
computer system composed by n interconnected components C1,. . . , Cn, prop-
erly functioning at time 0. Each properly functioning component Ci fails after
an exponentially distributed time with rate λi. With probability p the failed
component Ci can be repaired and restarted as properly functioning after an
exponentially distributed time with rate µi. Instead, with probability 1− p the
failure of Ci propagates instantaneously to all the components directly inter-
connected to it. In this case, all the failed components cannot be repaired. The
list of the d̄i indexes of the components where the failure of Ci can propagate is
D̄i = {h1, h2, . . . , hd̄i}. The list of the di indexes of the components whose failure
can propagate to Ci is Di = {j1, j2, . . . , jdi}. The topology of interactions among
components is given by the n × n adjacency matrix T = [Ti,j ], where Ti,j = 1

if j ∈ D̄i, else Ti,j = 0. Thus, T defines an oriented graph that represents how
the n components depend on each other and how they are connected to form
the overall system. Although different topologies T can be defined, for example
when different access rights to components are defined for different types of ser-
vice or customers, for the sake of simplicity only one topology T is considered
in the following.

7.1 Model of the Case Study

The SGSPN model representing the overall system of the case study is obtained
defining a submodel for each single component Ci, with i = 1, . . . , n, and com-
posing all such submodels through a transition-synchronization approach, as de-
scribed in Section 4. The model of the component Ci is depicted in Figure 1. The
places Oni (initialized with one token), Downi and Fi are local to the model
and represent the states where, respectively, Ci works properly (one token in
Oni), is under repair (one token in Downi), and is failed and cannot be re-
paired. The transitions TDowni and TOni are local to the model and represent
respectively the exponentially distributed time with rate piλi to the occurrence
of a failure, when the failed component can be repaired, and the exponentially
distributed time with rate µi after which the component returns to operate prop-
erly. The transitions TFaili and TFailjk with k = 1, . . . , di are synchronization
transitions used to synchronize the models representing each component of the



Oni DowniFi

TDowni

pi · λi

TOni

µi

TFaili

(1− pi) · λi

TFailj1

(1− pj1) · λj1
#Downi

TFailjδi

(1− pjδi ) · λjδi

#Downi

...

#Oni

#Oni

Fig. 1. Model of the component Ci of the case study. The shaded transitions are
synchronization transitions.

system, i.e., to propagate the failure that affects Ci to its neighbors with prob-
ability 1 − pi. TFaili represents the exponentially distributed time with rate
(1− pi)λi to the occurrence of a failure on Ci, that instantaneously propagates
to Ch, with h ∈ D̄i (without the possibility to repair the failed components).
TFaili is replicated in the models of Ci and Ch, for each h ∈ D̄i. In each Ch
model, it exists a transition TFailjk with jk = i, synchronized with TFaili,
that propagates the failure occurred in Ci. The transitions TFailjk for each
k = 1, . . . , di in Figure 1 represent the time to the occurrence of a failure on
Cjk that instantaneously propagates to Ci (without the possibility to repair the
failed components). Each transition TFailjk is replicated in the models of Ci
and Ch with jk ∈ Dh. In each model Ch exists a transition TFailh with jk = h,
synchronized with TFailjk , that represents the occurrence of the failure in Ch
that propagates to Ci.

In absence of immediate transitions, a synchronized transition is enabled
when it, and all the transitions synchronized with it, have concession. As shown
in Figure 1, the transition TFaili has concession when one token is in the place
Oni. All the transitions TFailjk , for k = 1, . . . , di, have always concession, being
the multiplicity of each input arc equal to the number of tokens in the corre-
sponding input place Oni and Downi, as shown in Figure 1. Thus, TFaili is
enabled when there is one token in Oni. The firing of TFaili occurs simultane-
ously in the model of Ci where TFaili removes the token from Oni and adds
one token to Fi (the component is failed and cannot be repaired), and in the
model of Ch, for each h ∈ D̄i, where, as shown in Figure 1 replacing i with h,
TFailjk , with jk = i, removes one token from Onh and Downh (if any) and adds
one token to Fh (the failure of Ci propagated to Ch that cannot be repaired).

On the model the following reward structure is considered

r =

{
1 if #Fi = 1 for all i,

0 otherwise,



so that the mean time to system failure τF corresponds to the cumulative mea-
sure defined by r on the interval of time [0,∞).

The model depicted in Figure 1 can be classified as a reliability model [27]
and produces a CTMC with a unique absorbing state. The model of Figure 1
is structurally bounded, being a stochastic finite state machine and the corre-
sponding stochastic automaton is characterized by:

R(i) =

 0 piλi 0

µi 0 0

0 0 0

 , W (t,i) =




0 0 (1− pi)λi
0 0 0

0 0 0

 if j = i


0 0 1

0 0 1

0 0 1

 if j 6= i and

T (i, j) = 1
1 0 0

0 1 0

0 0 1

 otherwise

(20)

The mean time to system failure τF is then evaluated through the MTTA,
because of the correspondence between the unique absorbing state of the CTMC
and the system failure state.

8 Evaluation Results

In this section, details on how the case study described in Section 7 has been
evaluated through KAES are discussed, and the obtained results in terms of time
and memory consumption are presented in Table 1. The analysis is carried out
for different numbers of components n = 10, 20, . . . , 50 and generating random
topologies of interactions following a predefined template. Results are obtained
implementing8 the case study SAN, i.e., Equation (20), and the KAES method
in MATLAB [21].

As a form of validation of KAES, it has been verified that for n ≤ 10 the
values obtained for the mean time to system failure τF with KAES coincide with
the values obtained with the standard technique (full exploration of RS followed
by the linear system of Equation (8) solution). However, since here the analysis
focuses on assessing the efficiency of the proposed method, the results obtained
for τF are out of the scope of this paper, and then are not shown.

In order to demonstrate the ability of KAES in improving on current lim-
itations suffered by standard techniques, analyzed scenarios are characterized
by: 1) both PS and RS are large; 2) the model parameters define a stiff [27]
CTMC. In particular, |PS| = 3n, being |RS(i)| = 3, and |RS| depends on T .

8 https://github.com/numpi/kaes



Note that if T represents the complete graph of interdependencies then |RS|
is trivially small. In fact, the initial state is the one with 1 token in Oni for all
i = 1, . . . , n, and when the first TFailj fires, all the tokens are removed from
Oni for all i; thus, the system only has two reachable states.

Therefore, to have large |RS|, the topology T of interactions is obtained as
follows: first, a star topology is constructed, where, labeling the nodes from 1
to n, there exist n− 1 edges connecting 1 to j, for j = 2, . . . , n. Then, for each
node with index greater than 1, another edge connecting it to a random node is
added with probability 0.2. Although artificially generated, such topologies are
good representatives of topologies addressed by KAES (large number of com-
ponents, loosely interconnected), and are suitable for the case study illustrated
in Section 7.

The parameters for each M i have been randomly selected, but aiming at
obtaining a stiff CTMC. Specifically, in the performed evaluations they are:

λi ∈ [0.5, 1.5], µi ∈ [2000, 3000], pi ∈ [0.95, 1],

so that there are 4 orders of magnitude among the parameters. The tests have
been repeated 100 times for each value of n, using the randomized topology
described above. For large n, not all the cases could be solved using the avail-
able system memory. The percentage of cases exceeding the available memory is
reported in Table 1 for each n.

The average amount of CPU (user and system) time (in seconds) and the
average amount of the RAM memory (in GB) consumed by KAES have been
quantified. The averages are computed only on those cases where KAES was
successful. Computations were performed on a Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20GHz, where each experiment had 12 CPUs and 120GB of RAM at its
disposal. As shown in Table 1, the actual memory consumption for all the values
of n is much lower than the maximum available.

Note that, although not reported in the table, the standard approach was
not able to complete the state space exploration for n ≥ 20.

Table 1. Potential spaces dimensions, memory consumption, time and number of cases
where the KAES approach was successful, where µ reports the average over the 100
runs and σ is the standard deviation.

n |PS| memory (Gb) time (s) % solved
µ σ µ σ cases

10 59049 0.90 0.08 1.17 0.81 100%
20 3.49 · 109 3.07 9.68 65.83 346.24 100%
30 2.06 · 1014 8.31 19.40 193.29 619.63 91%
40 1.22 · 1019 4.42 9.97 140.89 477.67 91%
50 7.18 · 1023 7.79 17.27 299.44 840.78 84%

The method is able to solve the great majority of cases, although the rate
of success decreases as the number of components increases. For n equal to 10



and 20, all cases are solved, and the lowest percentage is 84 for the most pop-
ulated scenario (n = 50). An important observation is that time and memory
consumption seem to depend on the adopted topology, and in fact they can vary
significantly for the different topologies generated for a given n, as confirmed
by the values of the standard deviations reported in Table 1. However, it is
not straightforward to understand the phenomena leading to this result, namely
whether it is strictly related to the theoretical definition of the KAES method
or to its implementation (especially, how the rounding is performed since the
adopted toolbox for this procedure is a general one), or to both of them. Fur-
ther investigations are necessary to shed light on this aspect, so to promote
refinements in the KAES methodology and/or implementation.
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Fig. 2. Evolution of the effective ranks, representing an average of the TT-ranks of the
carriages, for each iteration of KAES, with n = 20 and a specific topology.

To confirm the low memory consumption, in Figure 2 the evolution of the
ranks (represented using the “effective ranks”, a single number that measures
an average of the TT-ranks in the various modes) is reported. The ranks are
considerably small, compared to |PS|, and for all the experiments evolve in a
similar way. This is a strong indicator that KAES has been well conceived as an
efficient solution method.

9 Conclusions and Future Work

This paper addressed analytical modeling of large, interconnected systems by de-
veloping a new numerical evaluation approach, called KAES, to efficiently evalu-
ate the Mean-Time-To-Absorption in CTMC with absorbing states. Resorting to
powerful mathematical theories, properly combined, the symbolic representation
of both the descriptor matrix and the descriptor vector is pursued to mitigate
the explosion of the state space when evaluating the stochastic model. Although
symbolic representation has been already applied in existing studies, such pre-
vious works focus on steady-state analysis while KAES targets limiting analysis
in presence of absorbing states.

KAES has been implemented in the MATLAB evaluation environment and
compared with traditional numerical solution when applied to a representative



case study for the evaluation of the MTTA. Although preliminary and restricted
to the studied scenario, obtained results clearly show the feasibility of KAES
at increasing the size of the system under analysis, while standard numerical
approaches fail due to the generated state space being too large. Moreover, the
way the measure is computed guarantees a conservative assessment, which is
relevant when dealing with dependability critical applications.

Of course, more experiments are needed to better understand strengths and
limitations of this new technique in a variety of system scenarios, at varying
both the system topology and the parameters setting. In particular, a deeper
understanding of the link between TT-ranks and the topology of interactions
among system components would be desirable, since the memory consumption
is strictly related to TT-ranks. This extended evaluation campaign is already
in progress. The obtained outcomes are expected to trigger improvements at
methodology and/or implementation level.

Further and most important, the powerfulness of the adopted techniques and
the conceived organization of the KAES steps make this method not restricted
to the evaluation of the MTTA measure only, but adaptable to evaluate gen-
eral performability related indicators. In fact, a straightforward generalization
of KAES is represented by the substitution of the all-ones-vector 1 in Equa-
tion (8) with a more general reward vector r, to promote the evaluation of other
performance and dependability properties of single absorbing state CTMC, ex-
pressed as cumulative measures over the interval [0,∞). Whenever r can be
expressed in terms of AND and OR conditions based on r(i), defined on M i, it is
possible to write r in terms of Kronecker products and sums, and apply KAES
as presented in this paper.
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