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Agrobacterium tumefaciens infection of wounded plant tissues causes the formation
of crown gall tumors. Upon infection, genes encoded on the A. tumefaciens tumor
inducing plasmid are integrated in the plant genome to induce the biosynthesis of auxin
and cytokinin, leading to uncontrolled cell division. Additional sequences present on
the bacterial T-DNA encode for opine biosynthesis genes, which induce the production
of opines that act as a unique carbon and nitrogen source for Agrobacterium. Crown
galls therefore become a very strong sink for photosynthate. Here we found that the
increased metabolic demand in crown galls causes an increase in oxygen consumption
rate, which leads to a steep drop in the internal oxygen concentration. Consistent
with this, plant hypoxia-responsive genes were found to be significantly upregulated in
crown galls compared to uninfected stem tissue. Following this observation, we aimed
at understanding whether the low-oxygen response pathway, mediated by group VII
ethylene response factor (ERF-VII) transcription factors, plays a role in the development
of crown galls. We found that quintuple knock-out mutants of all ERF-VII members,
which are incapable of inducing the hypoxic response, show reduced crown gall
symptoms. Conversely, mutant genotypes characterized by constitutively high levels of
hypoxia-associated transcripts, displayed more severe crown gall symptoms. Based on
these results, we concluded that uncontrolled cell proliferation of crown galls established
hypoxic conditions, thereby requiring adequate anaerobic responses of the plant tissue
to support tumor growth.

Keywords: crown gall disease, Agrobacterium tumefaciens, Rhizobium radiobacter, hypoxia, oxygen sensing,
N-end rule pathway, ERF VII

INTRODUCTION

Crown gall disease is caused by the pathogenic bacterium Agrobacterium tumefaciens (Escobar
and Dandekar, 2003), which, after a revised phylogenetic analysis, was attributed among the
Rhizobium genus as Rhizobium radiobacter (Young et al., 2001). Crown gall formation is the result
of uncontrolled proliferation of neoplastic tissue that is genetically reprogrammed by the insertion
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of bacterium-encoded DNA fragments to produce opines that
Agrobacterium feeds on. Virulent Agrobacteria contain a tumor
inducing plasmid (pTi) that carries the sequences that are
transferred to the host plant (transfer-DNA, T-DNA), containing
genes required for their conjugation, cell proliferation, opine
catabolism genes, and virulence loci. The latter mediates the
broad host range of the Agrobacterium (Thomashow et al., 1980;
Gelvin, 2003), and this feature has been widely employed as a
tool in biotechnology for the generation of transgenic plants
(De Cleene and De Ley, 1976; Păcurar et al., 2011). Instead,
the agricultural impact of crown gall disease is limited to a
subset of plant species, which include nut trees, perennial fruit
trees, vines, and some ornamental plants such as rose (Escobar
et al., 2002; Aysan and Sahin, 2003; Chen et al., 2007). In these
species, crown gall disease causes significant yield loss due to
re-allocation of nutrients to the metabolically active crown galls
and a constriction of the vasculature tissue, which limits xylem
and phloem transport to the organs above (Gohlke and Deeken,
2014).

Upon infection, A. tumefaciens integrates its T-DNA into the
plant genome, likely through hijacking of the endogenous plant
nuclear transport and DNA repair mechanisms (Chilton et al.,
1977; Tzfira and Citovsky, 2006). The T-DNA contains two major
functional sets of genes, namely opine metabolism genes and
oncogenes. The latter induces the biosynthesis of plant hormones
auxin and cytokinin, while other oncogenes may also increase
the sensitivity of the plant tissue to these hormones (Britton
et al., 2008). The upregulated auxin and cytokinin levels promotes
uncontrolled and rapid cell division, leading to the production
of tumor-like heterotrophic galls (Gohlke and Deeken, 2014).
A second class of genes induce the biosynthesis of carbohydrate
and amino acid derived opines, which act as unique energy source
for theAgrobacteria present in the gall (Guyon et al., 1980). Opine
catabolism genes are also located on the Ti plasmid, but are not
integrated into the host genome, thus restricting the use of opines
as an energy source to Agrobacteria only.

The rapid growth of crown gall tumors induces specific
changes in gene expression and metabolic pathways (Deeken
et al., 2006). Interestingly, the expression of genes involved
in ethanol fermentation, alcohol dehydrogenase 1 (ADH1) and
pyruvate decarboxylase 1 (PDC1), were found to be upregulated in
crown gall tissue, as compared to uninfected wounded stem tissue
(Deeken et al., 2006), hinting at potentially underlying hypoxic
conditions within the crown galls. In plants, the expression of
hypoxia responsive genes is regulated by the Arg-Cys N-end
rule pathway (Gibbs et al., 2011; Licausi et al., 2011; Weits
et al., 2014). This pathway regulates the O2, and NO-dependent
proteolysis of group VII ethylene response factors (ERF-VII)
(Licausi et al., 2011; Bailey-Serres et al., 2012; Gibbs et al.,
2014). In this process, the plant cysteine oxidases (PCO) oxidize
the N-terminal cysteine of the ERF-VII transcription factors,
after the co-translational removal of N-terminal methionine by
methionine aminopeptidases (Bradshaw et al., 1998; Weits et al.,
2014; White et al., 2017). The oxidized cysteine is recognized
by arginine transferases (ATE) which conjugate an arginine
residue to the N-terminus, thus providing a specific substrate
for the E3 ligase PROTEOLYSIS 6 (PRT6) (Garzón et al., 2007;

Holman et al., 2009). PRT6 adds ubiquitin units to the ERF-
VII transcription factors so that the polyubiquitinated protein is
subsequently degraded via the 26S proteasome (Gibbs et al., 2011;
Licausi et al., 2011; Varshavsky, 2011). Therefore, ERF-VII are
stabilized under hypoxic conditions and activate the anaerobic
response.

Adaptation to hypoxic stress in plants comprises the
upregulation of several genes (Mustroph et al., 2010), which
include those involved in fueling glycolysis via degradation
of sucrose reserves by sucrose synthases (SUS) (Zeng et al.,
1999). Additional reactions activated as part of the adaptive
program to hypoxic conditions involve regeneration of NADH
through the induction of ethanol fermentation, and this is
catalyzed by the enzymes PDC and ADH (Ismond et al.,
2003). Nitric oxide accumulation is prevented by class 1
PHYTOGLOBIN 1 (AtPgb1), with the consequent production
of NO3− (Igamberdiev et al., 2005). Finally, a group of genes is
induced that control and attenuate low oxygen signaling termed
hypoxia response attenuator 1 (HRA1) (Giuntoli et al., 2014),
and PCO (Weits et al., 2014). The role of several hypoxia-
inducible genes remains undiscovered, such as LOB DOMAIN-
CONTAINING PROTEIN 41 (LBD41) and several hypoxia-
responsive unknown protein (HUP) genes (Mustroph et al.,
2010).

We hypothesized that high rates of cellular proliferation
and opine production causes hypoxia in crown galls, which in
turn triggers plant hypoxic responses, including fermentation.
In this study, we used oxygen microsensors and hypoxia-
responsive reporters to determine if crown gall tumors induced
by A. tumfaciens are hypoxic. Furthermore, we analyzed if the
resulting hypoxic responses induced by the plant contributes to
the proliferation of crown gall disease.

MATERIALS AND METHODS

Agrobacterium Infection
For A. tumefaciens infection studies, seeds of Arabidopsis thaliana
were sown in moist soil and stratified at 4◦C for 48 h. Seeds
germinated at 20◦C in an 18 h light and 6 h dark photoperiod. To
mediate A. tumefaciens infection, a 5 mm incision was made on
young inflorescence stalk tissue using a razorblade. For induction
of crown gall disease, A. tumefaciens strain 30205 (Leibniz-
Institut DSMZ – Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH) was applied to the wounded inflorescence
stalk. Prior to induction, A. tumefaciens was grown overnight in
liquid medium to an OD of 1.0. Liquid medium contained 5 g/l
peptone and 3 g/l meat extract, pH 7.0. Following inoculation,
infected plants were brought back to the growth conditions
described above.

Analysis of Crown Gall Symptoms
For evaluation of disease symptoms, micrographs were
taken 21 days post infection (dpi) using a Leica M205 FA
stereomicroscope equipped with a Leica DFC450 C camera. To
determine the mass of each gall, tumors were carefully removed
from the stem using a razorblade to minimize contamination of
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stem tissue and weight on a precision balance (Sartorius AZ124).
Experiments were repeated at least 4 times for each genotype.

GUS-Staining
For histochemical GUS-staining, plants of A. thaliana, harboring
a construct consisting of the promoter of the PCO1 gene or
the fivefold Hypoxia Responsive Promoter Element (HRPEx5)
(Mustroph et al., 2010) fused to the GUS reporter gene were
grown and inoculated with A. tumefaciens as described above
(Supplementary Table S1). The segment of the stem harboring
crown gall tumors was harvested 7, 14, and 28 dpi. Following
harvesting, the segments were fixed in ice cold acetone (90%)
for 1 h, and subsequently immersed in GUS-staining solution
(Jefferson et al., 1987). The samples were vacuum infiltrated
briefly to promote distribution of the staining solution in to the
plant tissue. GUS-staining was performed at 37◦C for 5–12 h and
stopped by exchanging the staining solution for 70% ethanol.
Further destaining of the samples was achieved using several
changes of 70% ethanol.

GFP-Imaging
For GFP-imaging, A. thaliana plants, in which the promoter of
the PCO1 gene was fused to a GUS-GFP reporter, were grown and
inoculated with A. tumefaciens as described above. Crown galls
were analyzed using a Leica M205 FA stereomicroscope equipped
with a Leica DFC450 C camera at three different developmental
stages (7, 14, and 28 dpi). GFP was detected using a band pass ET
GFP Filter set (Leica).

qRT-PCR
For gene expression studies, crown galls were harvested 21 dpi
and material of three tumors was combined to make up each
biological replicate. As control, stems were inoculated with a
non-virulent A. tumefaciens strain 30147 (Leibniz-Institut DSMZ
- Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH). Total mRNA extraction was carried out as previously
described (Kosmacz et al., 2015). The mRNA-concentration was
measured by Nanodrop. 2750 µg of mRNA template was used for
TURBO DNAse (Thermo-Fisher scientific) treatment according
to the manufactures instructions and complementary DNA
synthesis was carried out using the RevertAid First Strand cDNA
Synthesis Kit (ThermoFisher scientific). PowerUpTM SYBRTM

Green Master Mix was used for qRT-PCR. UBIQUITIN10 was
used as reference gene, after confirming that its expression is
unaltered by A. tumefaciens infection. Relative gene expression
was calculated according to the 11Ct method (Livak and
Schmittgen, 2001). A full list of primers used in this study is
provided in Supplementary Table S2.

Oxygen Measurements Using
Microsensors
The oxygen concentration in live crown galls and callus was
measured at 14 and 28 dpi using a FireStingO2 oxygen meter and
a retractable needle-type OXR50 oxygen microsensor with a tip
diameter of 50 µm (Pyroscience). Prior to the measurements,
calibration was performed using pure N2 gas and atmospheric
air. At least four measurements were performed for each tissue,

to calculate the average internal oxygen concentration. Stems of
non-inoculated plants were used for comparison.

Oxygen Consumption Measurements
Crown galls were carefully removed from infected A. thaliana
plants using a razorblade. Uninfected stems were harvested as
control. The fresh weight of plant material was determined
precisely prior to the O2 measurements, on a precision
balance (Sartorius AZ124). On average, each replicate had a
mass of approximately 25 mg. Next, O2 consumption was
measured with an integrated optical oxygen sensor in respiration
vials (Pyroscience) filled with sterile distilled H2O and under
continuous mixing using a magnetic stirrer. The oxygen
consumption rate was calculated by dividing the decrease in
oxygen concentration by the time and corrected for the weight
of each sample.

Transient Agrobacterium Transformation
Infiltration of A. thaliana leaves with A. tumefaciens was
performed as previously described with some modifications
(Zipfel et al., 2006). Disarmed Agrobacterium GV3101 strains
carrying a Renilla-intron luciferase construct (Cazzonelli and
Velten, 2003) were grown overnight in LB medium and then
collected by centrifugation and resuspended in 2.5 volume of
AB-MES (Wu et al., 2014), containing 200 µM acetosyringone
and antibiotics (Rifampicin 50 mg/L, Gentamicin 50 mg/L,
Kanamycin 50 mg/L). Following growth for 5–6 h, cells
were resuspended in AB-MES supplemented with 200 µM
acetosyringone at an OD of 0.5 and injected into leaves of 4-
week old plants. Six plants were used per genotype and 3 leaves
were infiltrated per plant. Leaves were harvested 3 dpi and
luciferase activity was quantified according to the manufactures
instructions (Promega).

Callus Induction and Imaging
Callus induction was carried out using root explants of 7-
day old promPCO1:GG and promPCO2:GG plants on callus
induction medium according to (Sugimoto et al., 2010). GFP
fluorescence of calli was imaged using an inverted Zeiss LSM 800
confocal laser scanning microscope, equipped with a WPlan-
Apochromat40x/1,0DICVIS-IRM27 dipping objective. N-
(3-Triethylammoniumpropyl)-4-[6-[4-(Diethylamino) Phenyl]
Hexatrienyl] Pyridinium Dibromide staining (FM4-64 dye,
Thermo Fisher Scientific) was carried out according to the
manufacturer’s instructions.

Statistical Analysis
To evaluate the differences between genotypes and tissue
inoculated with A. tumefaciens one-way analysis of variance
(ANOVA) tests were performed using the SigmaPlot 14.0
software (Systat Software). After one-way ANOVA, a Holm-Sidak
post hoc test was performed to assess if there is a statistically
significant difference between the measurements. Asterisks
indicate a significant difference between the genotypes or tissue
(∗<0.05, ∗∗<0.01). BoxPlotR (Spitzer et al., 2014) was used to
generate boxplots. Histograms show mean values ± standard
deviation (SD).
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RESULTS

Agrobacterium tumefaciens Induced
Crown Gall Tumors Are Hypoxic
Induction and proliferation of crown galls due to Agrobacterium
infection leads to an increased energy demand. We therefore
measured oxygen respiratory rates in freshly isolated crown
galls and uninfected plant tissue. We observed a more than 2.5
times increase of the oxygen consumption rate in crown gall
tissue, as compared to non-inoculated stem tissue (Figure 1A).
Subsequently, we measured the oxygen concentration within
intact crown galls using oxygen microsensors at 14 and 28 dpi. In
non-inoculated stem tissues, an oxygen gradient was observed,
which reaches its lowest concentration of on average 40% of air
saturation in the core of the stem (Figure 1B). In contrast, in
crown gall tumor tissue the O2 concentration dropped to much
lower values (<5% of air saturation) at both developmental stages
(Figures 1B,C). Apparently, the increased oxygen consumption
rate of the crown gall tumors induces a much steeper oxygen
gradient, as compared to the oxygen gradient in non-infected
tissue.

Next, we confirmed the O2 measurements of the sensors
using hypoxia responsive promoter reporters, which provide a
readout for underlying hypoxic conditions in the galls. These also
allowed us to visualize activation of hypoxia in the earlier time
points in crown gall development, where the O2 microsensors
were too large to be used. We employed genetically encoded
hypoxia signaling reporters based on the promoter of the
PCO1 gene, which is strongly and specifically induced upon

hypoxia (Weits et al., 2014), fused to a chimeric β-glucuronidase
(GUS) – enhanced green fluorescent protein (eGFP) reporter
(promPCO1:GG). Additionally, we utilized a synthetic promoter
composed of a fivefold repeat of the Hypoxia Responsive
Promoter Element that was also linked to the combined GUS-
GFP reporter cassette (promHRPEx5-GG). The HRPE is an
evolutionary conserved 12-bp cis-regulatory motif, that provides
hypoxia-inducibility in A. thaliana (Gasch et al., 2015). Both
hypoxia reporters were previously shown to be strongly activated
upon low oxygen treatments (Weits et al., 2014; Gasch et al.,
2015). Next, we infected transgenic plants harboring these
constructs, and performed GUS staining and GFP imaging at
several stages post infection (7, 14, and 28 dpi). We observed
the first crown gall symptoms at 7 dpi, which already showed
strong GUS staining of the promPCO1:GG and promHRPEx5-
GG low oxygen reporters, while the surrounding stem tissue
showed only a weak or no activation of the reporters (Figure 2A).
Both hypoxia reporters remained strongly activated at the 14
and 28 dpi time points. GFP fluorescence of promPCO1:GG lines
displayed a comparable specific activation of the hypoxia reporter
in crown galls, during all time points, and no GFP signal was
observed in stem tissue (Figure 2B). These observations show
that crown galls become hypoxic during their formation and
remain hypoxic throughout their development.

Plant Anaerobic Genes Are Induced in
Crown Galls
Since crown galls are hypoxic, we investigated if plant transcripts
associated with tolerance to hypoxic stress are also induced in

FIGURE 1 | Increased oxygen consumption causes hypoxia in crown galls. (A) Oxygen consumption rate of crown galls and stem tissue. O2 consumption rate over
time was calculated per gram fresh weight. (B) Oxygen concentration (% of air saturation) in crown galls, measured at 14 and 28 dpi using an oxygen microsensor.
(C) Photographs of tumor formation on Arabidopsis stems after 14 and 28 days of inoculation with Agrobacterium tumefaciens. Arrows indicate the position of the
microsensor. Scale bars, 1 mm. Data are presented as means ± SE of at least 4 independent measurements. Stars indicate a statistically significant difference
[∗<0.05, ∗∗<0.01, one-way analysis of variance (ANOVA) followed by Holm-Sidak post hoc-test].
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FIGURE 2 | The low oxygen reporter gene PCO1 and the hypoxia inducible promoter HRPEx5 are specifically induced in crown gall tumors at different development
stages. (A) Histochemical GUS staining of promPCO1:GG and promHRPEx5:GG infected with A. tumefaciens. Staining was performed at 7, 14, and 28 dpi. Arrows
indicate crown gall formation on the stem. (B) GFP fluorescence and bright field images of crown galls, harboring the promPCO1:GG construct. GFP imaging was
performed at 7, 14, and 28 dpi. Scale bars indicate 100 µm for promPCO1:GG at 7 dpi, all other scale bars indicate 1 mm.

galls. Interestingly, we found that all 10 tested genes, belonging
to the core set of hypoxia-inducible transcripts (Mustroph et al.,
2010), were strongly upregulated in crown galls, as compared to
stem tissue that was infected with a non-virulent A. tumefaciens
strain (Figure 3 and Supplementary Table S3). Taken together,
crown galls clearly show an upregulation of the majority of
measured hypoxia associated transcripts.

The Plant Hypoxic Response Supports
Tumor Development
Based on the increased expression of hypoxia-responsive genes in
crown gall tumors, we hypothesized that the anaerobic response
of the plant contributes to the development and maintenance of
crown gall tissue. In plants, adaptation to hypoxic conditions is
mediated by the induction of anaerobic genes under the control
of ERF-VII transcription factors. To investigate if ERF-VIIs are
required for the development of crown galls, we analyzed crown
gall symptoms in erf-vii quintuple mutants (Abbas et al., 2015)

infected with A. tumefaciens. Indeed, crown gall symptoms were
decreased in the erf-vii knockout lines (Figure 4A), which also
corresponded with a significantly decrease in total crown gall
weight (Figure 4B). These results demonstrate that the hypoxic
response mediated by ERF-VII contributes to the development of
crown gall tumors.

To investigate whether induction of the hypoxic response
indeed positively affects the development of crown galls, we
analyzed crown galls symptoms in several previously described
N-end rule mutants (pco1pco2, prt6, and ate1ate2) (Garzón et al.,
2007; Holman et al., 2009; Weits et al., 2014). These mutants
lack activity of essential components of the Arg-Cys branch of
the N-end rule pathway, which leads to an accumulation of ERF-
VII proteins that promote the induction of hypoxia responsive
genes (Gibbs et al., 2011; Licausi et al., 2011). Indeed, we observed
a significant increase in gall symptoms and gall weight after
21 dpi in pco1pco2, prt6 and ate1ate2 mutants, indicating that
the induction of the anaerobic response promotes crown gall
development (Figures 5A,B).
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FIGURE 3 | The expression of hypoxia related genes is upregulated in crown
gall tumors. Relative expression of hypoxia-responsive genes in crown gall
tumors compared with stem tissue inoculated with a non-tumor producing
Agrobacterium strain. Data are presented as boxpots. Stars indicate a
statistically significant difference [∗<0.05, ∗∗<0.01, ANOVA followed by
Holm-Sidak post hoc test].

The N-End Rule Pathway Does Not
Affect the Susceptibility of Plants to
A. tumefaciens Mediated Transformation
Previously it has been reported that the N-end rule plays a role
in the immune response to a wide range of pathogens, including

bacteria (de Marchi et al., 2016; Vicente et al., 2018). Therefore,
we set out to investigate to which extent altered susceptibility
of N-end rule mutants to A. tumefaciens infection may play a
role in the development of crown gall tumors. For this purpose,
we used a disarmed GV3101 A. tumefaciens strain to entangle
the potential role that the N-end rule plays during the initial
stage of Agrobacterium infection and transfection, from its role
in regulating the plant anaerobic response in hypoxic galls. The
susceptibility of ate1ate2, prt6, pco1pco2 and erf-vii mutants was
assessed by infiltration of an Agrobacterium carrying a Renilla
reporter gene in its T-DNA, whose expression is limited to
eukaryotic cells by the presence of an intron from the castor bean
catalase gene CAT-1 (Cazzonelli and Velten, 2003). Compared to
the wild type, none of the mutants showed a significantly different
luminescence signal after 3 days of infection, indicating that they
are not affected in their susceptibility to Agrobacterium infection
(Figure 6).

Callus Regeneration Induces the Plant
Anaerobic Response and Is Associated
With a Low Oxygen Concentration
The establishment of hypoxia in crown gall tumors raised the
question if this a unique feature associated with crown gall tumor
proliferation, or if it may occur more commonly in actively
dividing and tightly packed tissue. With the aim of investigating
this, we analyzed the oxygen availability in callus, which is
characterized by a rapid proliferation of undifferentiated cells
from pericycle tissue in the presence of auxin and cytokinin (Atta
et al., 2009). The hypoxia signaling reporters promPCO1:GG and
promPCO2:GG each showed a strong induction in root-derived
calli as indicated by intense GFP fluorescence, as compared to the
weak expression of these reporters in the neighboring root tissue
(Figure 7A). Moreover, direct oxygen measurements in the callus
showed that this tissue is indeed hypoxic, suggesting that hypoxic
conditions may be a common feature of rapidly dividing tissue
(Figure 7B).

DISCUSSION

Upon infection of plant tissue by the bacterium A. tumefaciens,
plant cells are genetically transformed with the genes present
on the T-DNA to induce rapidly expanding tumor tissue,
from which the bacteria are nourished. As a consequence,
both opine metabolism and proliferation of plant cells are
strongly activated, which imposes a strong demand on
the plant’s energy metabolism. Therefore, the crown galls
become a strong metabolic sink and vasculature formation
is induced to provide additional nutrients to the tumors
(Melnyk, 2017). Previous reports identified the induction
of gene expression of the fermentative enzymes PDC1 and
ADH1 in crown galls (Deeken et al., 2006), but it was
not shown if this response was linked to changes in the
concentration of oxygen inside the tumor tissue. Using
both oxygen microsensors and genetically encoded hypoxia
reporters, we now show that crown gall tumors are indeed
hypoxic (Figure 1). Interestingly, these hypoxic conditions
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FIGURE 4 | Arabidopsis lines with a constitutively repressed hypoxia response show reduced crown gall symptoms. (A) Representative images of crown gall disease
symptoms at 21 dpi in erf-vii and wild type plants. Scale bar, 1 mm. Crown galls are indicated with white arrows. (B) Gall fresh weight of erf-vii and wild type plants at
21 dpi. Data are presented as boxplots. Stars indicate a statistically significant difference [∗<0.05, ∗∗<0.01, ANOVA followed by Holm-Sidak post hoc test].

FIGURE 5 | Arabidopsis lines with a constitutively active hypoxia response show reduced crown gall symptoms. (A) representative images of crown gall disease
symptoms at 21 dpi in wild type, pco1pco2, prt6, and ate1ate2 plants. Scale bar, 1 mm. Crown galls are indicated with white arrows. (B) Gall fresh weight of wild
type, pco1pco2, prt6 and ate1ate2 plants at 21 dpi. Data are presented as boxplots. Stars indicate a statistically significant difference [∗<0.05, ∗∗<0.01, ANOVA
followed by Holm-Sidak post hoc test].

are already established early after infection (7 dpi), when
tumors have not expanded markedly (Figure 2). Apparently,
the steep oxygen gradient in the crown galls is not a direct
consequence of the occurrence of bulky tumor tissue, but rather

the result of increased oxygen consumption rate by the infected
tissue.

To verify that the steep oxygen gradient that we measured
in crown gall tumors is indeed caused by the upregulation of
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FIGURE 6 | N-end rule mutants do not show altered susceptibility to
A. tumefaciens infection. Quantification of the relative luminescence of leaves
from wild type, ate1ate2, prt6, pco1pco2, and erf-vii lines infiltrated with a
disarmed GV3101 A. tumefaciens strain carrying a Renilla luciferase reporter.
The Renilla luciferase gene carries an intron to restrict its expression in
Agrobacterium. Relative luciferase signal of each genotype was calculated per
µg of protein. ANOVA was performed to test for statistically significant
difference between the genotypes.

respiratory activity, we measured the oxygen consumption rate
of this tissue (Figure 1A). We found that galls have an increased
oxygen consumption rate compared to stem tissue, which likely
explains the hypoxic conditions inside the galls. We therefore
concluded that the increased energy demand that is required by
the plant cells to maintain tumor cell proliferation and opine
metabolism, induces a steep oxygen gradient in the tumor tissue.
This observation shows a striking resemblance to solid animal
cancer tumor tissue, which is also characterized by very high
metabolic activity that is linked to increased oxygen consumption
rates and concomitant hypoxia (Vaupel and Harrison, 2004;
Schito and Semenza, 2016).

The low oxygen concentrations within the gall tumor tissue
induced the expression of all 10 tested genes that are known
to be responsive to hypoxia (Figure 3). The expression of the
genes SUS1 and SUS4, encoding for sucrose synthase enzymes,
were induced upon A. tumefaciens infection. Both SUS1 and
SUS4 were previously found to be strongly upregulated in crown
galls (Deeken et al., 2006). Upregulation of SUS is a well-known
adaptive response to low oxygen stress in plants, as the cleavage
of sucrose to glucose and fructose by SUS is energetically more
favorable, then when the hydrolysis of sucrose is catalyzed by
invertases (Bologa et al., 2003). The upregulation of the ADH1
and PDC1 genes that encode for the fermentative enzymes
alcohol dehydrogenase and pyruvate decarboxylase are also part
of an important adaptive metabolic response of the plant to low
oxygen conditions (Figure 3, Gohlke and Deeken, 2014). Clearly,
the upregulation of these genes in Arabidopsis tumor tissue are

linked to a plant adaptive response to hypoxic conditions inside
the gall.

On first sight, it might seem counterintuitive that gall
tumors have high respiratory activity, while their internal
oxygen concentration is very low (Figure 1). Despite its low
concentration, oxygen is apparently not a limiting substrate for
oxidative phosphorylation in this tissue as long as the flux of
oxygen into the tissue along its concentration gradient remains
high. A similar situation has been described in dense cancer
tumors that may also maintain respiratory ATP production
even in the presence of hypoxic conditions (Kim and Dang,
2006; Gogvadze et al., 2008; Semenza, 2012). Remarkably, while
glycolysis and fermentation are strictly activated under hypoxic
conditions, cancer tissue can activate anaerobic metabolism while
there is sufficient O2 for oxidative phosphorylation (Lopez-
Lazaro, 2008). Here, glycolysis functions not just to provide
additional NADH for respiration, but it is also essential to provide
the building blocks for biosynthesis in rapidly dividing tissue.
This phenomenon has been well described as the Warburg effect.
Moreover, although oxidative phosphorylation is a more efficient
process per molecule of glucose, glycolysis can produce ATP
significantly faster (Pfeiffer et al., 2001; Bui and Thompson, 2006).
Therefore, we suggest that also in crown gall tumors the Warburg
effect is activated to keep up with the rapid proliferation rates of
this tissue.

Other genes that were found to be upregulated in the crown
gall tumors are involved in the signaling cascade by which
plants activate hypoxic responses. PCO1 and PCO2 encode for
the cysteine oxidases that oxidize the N-terminal cysteine in
ERF-VII proteins, thereby promoting their destabilization (Weits
et al., 2014; White et al., 2017). Thus, PCO1 and PCO2 act
to repress hypoxic responses in aerobic conditions, and act
as a negative feedback loop to control the strength of these
responses under hypoxia. HRA1 regulates the activity of ERF-
VII members, and thereby its induction under hypoxia also
acts as a negative feedback loop to modulate this response
under fluctuating oxygen conditions (Giuntoli et al., 2014).
However, the upregulation of HRA1, PCO1 and PCO2 in crown
galls is apparently not sufficient to abolish the plant anaerobic
response in this tissue (Figure 3). For PCO this is due to
the remarkably low O2 concentration in the tumors (<5% air
saturation, Figure 1B), which is below the Km of PCO for oxygen
(White et al., 2018).

We found that the fatty acid desaturase SAD6 is induced in
crown galls (Figure 3). The genes encoding for the desaturases
SAD6 and FAD3 were previously shown to display increased
expression in crown galls (Klinkenberg et al., 2014). SAD6
and FAD3 are hypoxia-inducible and they were proposed to
promote tolerance to hypoxia and drought in crown galls through
production of unsaturated fatty acids. While the fad3-2 mutant
developed significantly smaller galls under normal conditions,
the down regulation of SAD6 through RNA interference did
not reduce growth of crown galls, hinting at the importance of
both genes in the maintenance of crown galls. Taken together,
it becomes clear from these data that the plant responds to
the infection of A. tumefaciens by activating various adaptive
responses to hypoxia.
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FIGURE 7 | Callus is hypoxic. (A) GUS activity of promPCO1:GG and promPCO2:GG hypoxia-signaling reporters in root-derived calli. GFP fluorescence of
promPCO1:GG and promPCO2:GG in calli. FM4-64 was used to stain the cell membranes. Scale bars, 50 µm. (B) Direct oxygen measurements in callus using an
oxygen microsensor (% of air saturation). The inlet shows insertion of the microsensor into a callus.

The expression of hypoxia inducible genes is mediated via
the hypoxia-dependent stabilization of ERF-VII transcription
factors (Gibbs et al., 2011; Licausi et al., 2011). The conditional
stabilization of these proteins is controlled by the Arg-Cys N-end
rule pathway (Varshavsky, 2011; Tasaki et al., 2012). Genes
belonging to the N-end rule pathway may thus provide an
interesting target for plant breeders to produce crops resistance
to A. tumefaciens infection. Therefore, we analyzed what impact
modifications to the low-oxygen signaling cascade had on the
development of crown gall tumors after A. tumefaciens infection.
Knocking out all genes encoding for the ERF VII transcription
factors, strongly inhibited the development of the crown galls
(Figure 4). Apparently, activation of plant adaptive responses
to low oxygen is essential for the development of the bacterial-
induced tumors, because it allows the plant cells to maintain
energy supply for opine production, and cell proliferation.
Interestingly, when components of the N-end rule pathway were
silenced, the tumors that developed were significantly larger, as
compared to when crown galls were induced on wild type plants
(Figure 5). Apparently, stabilization of the ERF VII proteins,
which was shown previously to trigger the hypoxic responses of
plants (Gibbs et al., 2011; Licausi et al., 2011), supports tumor
growth.

The upregulation of hypoxia responsive genes has also been
observed in clubroot and root-knots (Gravot et al., 2016),
suggesting that the activation of hypoxia responsive genes is
a common features of pathogen induced tumor formation
in plants. Moreover, similar to our findings in crown gall
induction, clubroot symptoms were reduced in the erf-viimutant,
while they were enhanced in the prt6 mutant. Therefore,
manipulation of the plant anaerobic response, would provide

a promising goal for plant breeding approaches that aim to
increase resistance against gall inducing pathogens. However, it
must be considered that the plant anaerobic response mediated
by ERF-VII is also critical for tolerance to submergence stress
(Gibbs et al., 2011; Licausi et al., 2011; Riber et al., 2015), so
the manipulation of this pathway may result in unwanted side
effects.

The N-end rule has been implicated in plant responses to a
wide range of pathogens, broadening the role that this pathway
plays in plant immunity (de Marchi et al., 2016; Vicente et al.,
2018). Based on these findings, altered crown gall symptoms in
prt6, ate1ate2 and erf-vii could also be explained by the role
that the N-end rule plays in plant defense responses. Therefore,
we investigated the susceptibility of plants to Agrobacterium
infection and transfection using a disarmed strain harboring a
Renilla-intron reporter. None of these mutants showed altered
A. tumefaciens mediated transformation, indicating that these
lines are not affected in their susceptibility to Agrobacteria
(Figure 6). Instead, we suggest that proteolysis of ERF-VII by
the N-end rule play a role in tumor development by regulating
the plant anaerobic response to sustain energy production under
hypoxic conditions in the galls.

We also observed hypoxic conditions and the concomitant
induction of hypoxia-responsive genes in hormone-induced
callus (Figure 7), indicating that tissue with rapid cell division
rates consumes sufficient oxygen to cause internal low oxygen
conditions. This would also imply that hypoxia is a common
occurrence in proliferating plant tissue. It remains to be
discovered if the role that the N-end rule plays in crown
gall development may also extend to other rapidly dividing
tissue.
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CONCLUSION

In this study, we show that A. tumefaciens induced crown
gall tumors are hypoxic due to their high energy demand and
concomitant upregulation of respiratory oxygen consumption.
The plant cells respond to these hypoxic conditions by activating
adaptive responses to hypoxia that aim to maintain energy
production. Further activation of the ERF-VII-mediated hypoxic
response pathway resulted in larger tumors, while abolishing the
ERF-VII mediated responses significantly reduced the formation
of crown gall tumors. Decreasing the hypoxic response of
crown gall tumors may be considered as a viable strategy
for the breeding of cultivars with higher resistance against
Agrobacterium infection.
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