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Abstract 

This paper investigates the out-of-plane response of masonry façades under earthquakes by 

means of two different approaches. A discrete macro-element approach, based on modelling 

the structure by means of spatial deformable macro-elements interacting through nonlinear 

zero-thickness interfaces, and the classical approach in which the masonry façade is assumed 

as a rigid block subjected to earthquake loading. The latter method neglects the elasticity of 

the masonry element and contemplates the energy dissipation only at each impact by means of 

a coefficient of restitution. The results of dynamic non-linear analyses, performed with the two 

methods on a real case of a church façade, provide a first comparison between the two ap-

proaches highlighting some limits of application of the simplified rigid block model. 
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1 INTRODUCTION 

The dynamic response of masonry monumental buildings subjected to earthquake excita-

tions is governed by the in-plane and out-of-plane response of masonry walls. When the con-

nections between walls or, more in general, between vertical and horizontal structural elements 

do not guarantee a box-type behavior, the out-of-plane failure mechanisms represent the main 

source of seismic vulnerability of the building. Irregular buildings, where torsional modes in-

crease the seismic demand in specific parts, are also vulnerable to out of plane modes [1][2]. 

Simplified models [3] generally do not account for the in and out-plane behavior in a unique 

numerical model, being based on numerical strategies that accounts for in-plane walls behavior 

only. In these cases, the out of plane response is generally taken into account by limit or non-

linear dynamic analyses in which the walls is regarded as set of rigid block structures rotating 

either around horizontal or vertical axis (in case of simple cantilever or flexural bending mech-

anisms) or  identifying structural portion characterized by a more complex kinematics [4].  

The out-of-plane analysis of masonry walls can be performed by finite element or discrete 

element numerical models or using limit analysis approaches. These latter approaches are often 

based on the Heyman’s assumptions [5], realistic for masonry elements behaving out of plane: 

rigid blocks of infinite compressive strength, joints with null tensile strength and absence of 

sliding failures. The rocking capacity is evaluated by considering force-based or displacement- 

based criteria. Among the force-based approaches, the static analysis is the most straightfor-

ward and easiest tool to assess the seismic force capacity of rocking rigid blocks (e.g. for his-

toric walls [6]). The displacement based approaches consist in analyzing the evolution of the 

seismic force in relationship with the displacement of a control point, generally chosen as the 

center of mass of the rigid element. The force-displacement law, which can be obtained by the 

principle of virtual work, is comparable to a push-over curve expressing the total base force in 

horizontal direction against the displacement. The seismic capacity is generally obtained as a 

fraction of the displacement corresponding to the acceleration capacity, whereas the seismic 

demand is taken from the acceleration-demand response spectrum with the definition of a secant 

period [7].  

Another analysis method that can be compared to force-based and displacement-based ap-

proaches is the non-linear dynamic analysis of rigid blocks. This differs from the former for 

considering the evolution of motion over time. In addition, it takes into account energy dissipa-

tion, issue of primary importance in the seismic analysis of structural elements. The comparison 

between displacement based, force based and rocking approaches was discussed in previous 

works, e.g. in [7].  

Recently, a discrete macro-element method (DMEM) able to account for the in and the out-

of-plane behavior of a masonry structures has been proposed. This innovative strategy has been 

initially presented and validated in the nonlinear static field [8][9], and more recently has been 

extended in the dynamic field and validated through the comparison with experimental tests 

and refined finite element simulations [10][11]. According to the DMEM, a masonry façade is 

discretized as a mesh of shear deformable spatial macro-elements interacting through zero-

thickness interfaces. The basic macro-element possesses a shear-plane deformability governed 

by a single degree of freedom and interacts with the adjacent macro-element by means of 2D 

interfaces whose discretization follows a straightforward fiber calibration strategy, more detail 

on the DMEM can be found in the previous referenced papers. 

 The capability of the proposed DMEM to account for the in and out-of-plane behavior of 

masonry structure has been already numerically and experimentally investigated [12][13]. In 

this paper the DMEM method is applied for evaluating the nonlinear dynamic response of a 
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typical church façade subjected to earthquake loadings. The influence of the masonry deform-

ability and the role of the dissipation are considered in the different implemented models. Fur-

thermore, the DMEM results are compared with those obtained by applying the simplified rigid 

rocking (RR) approach, being the strategy generally adopted and suggested by several technical 

codes. 

2 THE ADOPTED NUMERICAL MODELS 

Two different approaches have been adopted for simulating the out-of-plane seismic re-

sponse of a typical façade of a masonry church: the Discrete Macro-Element Model (DMEM) 

and the Rigid block Rocking (RR) approach. The first model considers the masonry deforma-

bility and allow to account for energy dissipation by introducing a viscous damping matrix, 

whereas the latter takes into account the energy dissipation related to the impacts between rigid 

body through assumed values of the coefficient of restitution.  

2.1 The approach based on the dynamic of the rigid block 

In the RR approach the masonry wall is assumed as a rigid prismatic block subjected to 

earthquake loading. The nonlinear equation of motion [14] can be written as follows: 

 

𝐼0𝜗̈ + 𝑠𝑔𝑛(𝜗)𝑚𝑔𝑅 sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) − 𝑚 𝑢̈𝑔𝑅 cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) = 0 (1) 

 

where the rotation 𝜗 (> 0 if counter-clockwise) has been assumed as the Lagrangian coor-

dinate. In Eq. (1), 𝛼 is the slenderness ratio (arctangent of ratio thickness to height, Figure 1), 

𝐼0 is the inertia moment, 𝑚 the mass and 𝑢̈𝑔 the ground acceleration. Several experimental and 

numerical investigations had shown that the actual behavior of structures whose earthquake 

response is dominated by rigid rocking is characterized by strong nonlinearities and cannot be 

fully predicted. Very small variations in the geometry, support conditions, damping properties 

and the actual elasticity of the block lead to different time histories [9]. In the theoretical model 

here considered the block is considered rigid and the dissipation of energy occurs at each impact 

of the block on its base according to a constant restitution coefficient. According to the Hous-

ner’s formulation, the expression of the coefficient of restitution 𝑒𝑎𝑛 is assumed as [14]: 

 

𝑒𝑎𝑛 = 1 −
3

2
sin2 𝛼 

(2) 

 

  
 

 (a) 
 (b) 

Figure 1: The rocking rigid model (RR, a) and the discrete macro-element (DME, b) model. 
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The analytical value of the coefficient of restitution given by Eq. (2) was generally found to be 

greater than the experimental one in tests of masonry specimens [15]. By recognizing the diffi-

culty in correlating the coefficient of restitution with the maximum rotation before impact or 

with the semi-period, Sorrentino et al. [15] suggested a realistic value of 𝑒 equal to 95% of the 

analytical value for fired clay and tuff brickwork. In addition, Giresini et al. [16] proposed to 

assume 85% of the analytical value for rubble masonry. In this paper two values of 90% and 

95% have been adopted in the numerical investigations.   

2.2 The adopted Discrete Macro-Element Method 

In the adopted DMEM, the masonry façade is discretized according to a mesh of macro-

elements, Figure 1b. Each macro-elements governs the shear deformability while the flexural 

torsional and shear-sliding behavior are governed by the zero-thickness interfaces connecting 

the elements  [9]. The basic element can be regarded as an articulated quadrilateral interacting 

to the other elements and the external supports by non-linear interfaces (Figure 2a) calibrated 

according to a fiber approach in which the nonlinear constitutive law of each fiber can be at-

tributed to a corresponding nonlinear link.  The kinematics of each macro-element is governed 

by seven degrees of freedom only, able to describe the rigid body motions plus the element in-

plane shear deformability. The axial/flexural behavior is governed by m rows of n transver-

sal non-linear links which rule the coupled in-plane and out-of-plane masonry axial/flexural 

behavior (Figure 2b). The in-plane sliding motion between two continuous elements is gov-

erned by a single longitudinal in-plane nonlinear link and two additional links oriented orthog-

onally to the plane of the element (Figure 2c). The latter two additional springs govern both the 

out-of-plane sliding mechanisms and the torsion around the axis perpendicular to the plane of 

the interface. The non-linear Links are calibrated assuming that the masonry is a homogeneous 

non-linear material. Elastic, linear softening constitutive laws with different strength and dis-

placement capacity in tension and compression simulate the masonry flexural behavior while, 

diagonal Links are calibrated according to the Mohr Coulomb criterion. A detailed description 

of the DMEM and its calibration strategies can be found in [8][9] and [17] [19]. 
 

    
                      (a)                                                (b)                                             (c) 

 Figure 2: Mechanical scheme of the discrete macro-model: 2D in-plane model (a); 3D model (b,c). 

 

The DMEM has been employed to simulate the seismic behavior of monumental masonry 

constructions by means of non-linear static (push-over) analyses [20][21]. Recently, the model 

has been extended to the dynamic field [12].  

 With regard to the energy dissipation, the DME model includes two sources of dissipa-

tions: the non-linear hysteresis of the material (tensile cracking, compression crashing and di-

agonal-shear yielding), and an additional viscous Rayleigh damping governed by a global 

damping matrix: 

C= 𝑎0𝐾 + 𝑎1𝑀 (3) 
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proportional to the global initial stiffness (K) and mass (M) matrices of the system. With the 

aim to assume a comparable energy dissipation in the two models, the following expression (4), 

that relate the coefficient of restitution e to an equivalent viscous damping coefficient 𝜉  [22] is 

be used. The main differences between the two modeling approach are summarized in the fol-

lowing Table 1. 

𝜉 =
2(1 − 𝑒)

𝜋(1 + 𝑒)
 (4) 

Table 1: Main differences between the two adopted approaches. 

Method Model Elasticity Energy dissipation 

DMEM Elastic - rotation hinge not 

defined a priori 

Encountered -  

variable elastic modulus 

Rayleigh damping 

RR Rigid block - horizontal 

hinge at the ground 

Neglected - fully rigid block Coefficient of restitution 

3 THE CASE STUDY: SAN MICHELE CHURCH  

 Most historical masonry buildings suffered heavy damage during the 2017-2018 earthquake 

swarm of the Central Italy. The incipient out-of-plane of the main façade of churches repre-

sented a recurrent damage scenario. The out-of-plane mode was triggered by the strong com-

ponent of the earthquake acceleration in north-south direction, particularly in presence of poor 

connection between the main façade and the transversal walls and between the barrel vault and 

façade, as often occurs in historic churches [23][24].  

In this paper the case of San Michele church (Figure 3) located in central Italy, that exhibited 

an incipient out-of-plane response of the main façade, is investigated.  

 

(a) 
(b) 

Figure 3: San Michele church: global view (a); incipient out-of-plane mechanism of the façade, view from inside 

the building (b). 

3.1 Geometry and mechanical features 

The single nave church has a regular rectangular plan (10 m x 20 m), with a bell tower 

located in one side of the church and structural integrated to the building (Figure 3a). The façade 

is 9.30 m wide and 9.70 m high with a volume is 48 m3. Its slenderness ratio α is about 0.07, 

obtained as the arctangent of the ratio height of half-thickness and the depth of center of mass 

(0.325 m/4.545 m, Figure 4). More details on the features of the church can be found in [22]. 

Since no experimental data are available, the masonry mechanical parameters have been esti-

mated from a qualitative survey of the external masonry texture (Figure 3a).  
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Figure 4: Geometrical features of the main façade (units in m).  

 

The masonry has been assimilated to a medium quality masonry of irregular stones, accord-

ing to the classification reported in the Italian technical code [25] with a unit weight w= 20 

kN/m3. The assumed material properties suggested by the code in terms of elastic modulus (E), 

tangential modulus (G), compression strength (fc), shear strength in absence of axial load (fv0) 

are reported in Table 2. The tensile strength (ft) and tensile ductility capacity (t) are assumed 

to be representative of a low quality mortar joints.  

A perfectly plastic behavior has been assumed for compression and a 0.4% ultimate drift for 

the in-plane diagonal-shear mechanism has been adopted.   

Table 2:  Mechanical masonry parameters adopted in the analyses. 

 

Flexural behavior Diagonal shear behavior 

𝑤 

(𝑘𝑁/𝑚3) 

𝐸  

(𝑀𝑃𝑎) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝑓𝑡 

(𝑀𝑃𝑎) 

t



c



𝐺 

(𝑀𝑃𝑎) 

𝑓𝑣𝑜  

(𝑀𝑃𝑎) 

u



20 1500 2.6 0.001 2.0 unlimited 500 0.056 0.4 

3.2 Selection of earthquake inputs 

The earthquakes selected for the numerical analyses are those recorded in the 2016-2017 

Central Italy earthquake and available from the Engineering Strong Motion database [22]. 

Namely the events characterized by the highest PGA, PGV and PGV/PGA have been consid-

ered. The PGV represents one of the most relevant Intensity Measures (IM) that has to be con-

sidered in the rocking analysis of out-of-plane modes, however also other velocity and energy 

based IMs can assume a certain relevance [22]. The considered accelerograms and the corre-

sponding IMs are reported in Table 3. AMT and T1213 have the highest PGA, together with 

high PGV values, whereas NOR has the highest PGV/PGA ratio. The corresponding records, 

in terms of  accelerations, are displayed in Figure 5. 

Table 3: Intensity Measures associated to the selected seismic records - Peak Ground Acceleration (PGA),      

Velocity (PGV), Displacement (PGD), Housner’s Intensity (SIH), Arias Intensity (Ia), Energy Density (Iv),                

Fajfar Index (IF). 

Accelerometric 

stations 

PGA PGV PGV/PGA PGD SIH Ia Iv IF 

(cm/s2) (cm/s) (s) (cm) (cm) (cm/s) (cm2/s) (cm/s3/4) 

AMT 521.62 37.91 0.07 6.02 90.41 156.37 667.05 63.59 

NOR 305.74 56.24 0.18 23.02 252.65 288.78 5522.98 109.94 

T1213 779.27 60.73 0.08 12.42 151.47 555.65 1432.70 139.84 
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Figure 5: Seismic records used for the parametric analyses. 

4 RR AND DME MODELS 

In this section the out-of-plane response of façade is numerically investigated. The rigid 

block based numerical analyses are firstly performed considering a free-standing condition of 

the façade, denoted as 2-Sided motion (2S) model. In addition, a condition in which the façade 

interacts with the orthogonal walls, namely 1-Sided motion (1S) model is considered. Aiming 

at evaluating the role of the masonry deformability all the results are compared with those ob-

tained by considering the DMEM strategy.      

4.1 Rigid block based model analyses 

Table 4 reports the mechanical and geometrical needed parameters representing the rigid 

block based models. The equation of motion (Eq. 1) is solved step by step with a 5th order 

Runge Kutta method considering first the façade as completely free-standing, and then taking 

into account a unilateral spring bed as boundary condition (Figure 4); the corresponding equa-

tion of motion is reported in [22]. A compressive bed spring (𝐾𝑐𝑜𝑚𝑝𝑟) is considered in the one-

sided motion calculated as reported in [22], whereas an average tensile spring bed stiffness K𝑡,𝑚
′   

has been assumed. This has been  obtained by imposing and equivalence with a corresponding  

frictional macro-element model [26] for a displacement 𝑑1 corresponding to the end of the con-

stant friction force 𝐹𝑝,1 in the capacity curve obtained from the kinematic analysis. The tensile 

spring bed stiffness K𝑡,1

′
 is the ratio of the corresponding frictional force with respect to the 

displacement times the thickness of the transverse walls 𝑠𝑡, that is K𝑡,1

′
= 𝐹𝑝,1/𝑑1𝑠𝑡 [26]. The 

geometrical parameter Zg represents the height of the center of mass, R is the radius vector, h 

the equivalent block height,  the slenderness ratio of the block,  the masonry density, 𝐼0 the 

moment of inertia. These values are calculated with the expressions reported in [22]. The energy 

dissipation is taken into account considering initially 90% (for one-sided and two-sided motion) 

of the analytical coefficient of restitution (Eq. 2) and secondly 95% of this value (only for two-

sided motion). 

Table 4: Mechanical and inertia features of the rocking block in the RR model. 

Zg  

(𝑚) 

𝑅  
(𝑚) 

ℎ  
(𝑚) 

 

(𝑟𝑎𝑑) 

ρ (kg/
m3) 

𝐼0 
(kgm2) 

𝐾𝑐𝑜𝑚𝑝𝑟  

(N/m2) 
K𝑡,1

′
 (N/m2) 

4.550 4.56 9.10 0.071 2038.73 
2.7E+0

6 
2.79E+8 

1.26E+7 
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4.2 DMEM analyses 

The DMEM analyses  have been performed by using the software HiStrA (Historical Struc-

tures Analysis) [29] in which the macro-model has been implemented. The free-standing façade 

condition (1S DME model) has been also investigated and shown in Figure 1b. The latter is 

composed of 288 shear-deformable elements, 4 rigid triangular elements, 757 interfaces and 

possesses 2040 degrees of freedom. In order to avoid hysteretic dissipation and makes the 

model comparable to the rigid body based strategy, simplified elastic linear softening constitu-

tive laws have been employed in the analyses, calibrated according to the masonry parameters 

reported in Table 2:  Mechanical masonry parameters adopted in the analyses.. The maximum 

in plane (and out-of-plane (tdistances between the transversal Links of the interfaces are 

set respectively equal to 20 cm and 10 cm. The analyses have been performed assuming the 

hypothesis of small deformations and small displacements. The equations of motion have been 

integrated by means of an iterative Newmark algorithm [30] using the coefficients =0.5 and 

=0.25. The initial linear elastic dynamic properties of the free standing façade have been in-

vestigated in terms of frequencies and vibration modes, Figure 6. The corresponding vibration 

periods (T) and effective masses (Meff) are reported in Table 5: Modal characterization of the 

DMEM mode.for two different values of elastic modulus: E=1500Mpa and a ten-times higher 

modulus E=15000MPa in order to obtain a condition similar to those provided by the RR model. 

The latter model has periods of vibration about three times lower, which is in effect coherent 

with the fact that the circular frequency is proportional to the square of the stiffness, linear 

function of the elastic modulus. 

   Table 5: Modal characterization of the DMEM mode. 

Model 
First mode Second mode Third mode 

Period (s) Meff  (%) Period (s) Meff  (%) Period (s) Meff (%) 

E=1500 MPa 0.955 
60.96 

0.378 
0 

0.169 
38.65 

E=15000 MPa 0.302 0.120 0.054 

 

   
First mode 

 
Second mode 

  
Third mode 

 

Figure 6: Modes of vibration of the HISTRA DMEM model (E=1500 MPa). 

5 THE NONLINEAR TIME HISTORY ANALYSES 

The non-linear dynamic analyses have been performed employing the RR and DME models, 

considering the influence of the masonry deformability as well as a damping contribution. The 

previously introduced two values of Young modulus (E1=1500Mpa and E2=15000Mpa) have 

been assumed as representative of the effective masonry deformability and of an almost rigid 

facade. In the DME model the damping effects has been introduced according to a mass and 
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stiffness (Ray-damp) and only stiffness proportional (K-damp) damping matrix. The equiva-

lence with the damping introduced by the RR model have been considered by applying Eq. (6). 

The corresponding values of the damping ratios and the 𝑎0 and 𝑎1 parameters, proportional to 

the stiffness and mass matrices, are reported in Table 6.  

Figure 7 reports the deformed shapes of the DME model, corresponding to the peak-dis-

placement of each considered earthquake, while  Figure 8 shows the deformation shapes at the 

maximum, positive and negative displacement of the DME model in presence of the transversal 

walls (2S DME model) for the T1213 earthquake. The time-histories of the DME models are 

reported in the following and referred to the top section of the tympanum for the 2S model and 

the top section of tympanum and the top corner façade for the S1 model.     

Table 6: Viscous damping factors. 

 

  𝜔1 𝜔2 Rayleigh K proportional 

 (%) (rad/s) (rad/s) 𝑎0 𝑎1 𝑎0 

E=1500 MPa 
1.9 

6.579 16.622 
0.1772 0.0016 0.0057 

3.6 0.3347 0.0031 0.0108 

E=15000 MPa 
1.9 

20.805 52.360 
0.5598 0.0005 0.0018 

3.6 1.0571 0.0010 0.0034 

    

    
AMT - time 5.65s T1213 - time 2.90s NOR - time 3.30s 

Figure 7: Maximum deformations of the 2S model - E=15000 MPa and Rayleigh damping 3.6%. 

 

(a) (b) 

Figure 8: Maximum deformations of the 1S model - E=15000 MPa, Rayleigh damping 3.6% and T1213 signal.  
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In the following two subsections the comparison between the RR and the DME models in 

the free standing and the constrained conditions are reported. 

The results are expressed in terms of the out-plane drift of the wall () normalized by its 

slenderness (). 

5.1 Comparison between the RR and the DME models in the free standing condition  

In Figure 9 the time-histories of RR and DME models in the freestanding conditions e=90% 

and the considered assumptions on damping are reported. The DME models show similar re-

sults for both the assumed viscous damping matrices. The comparison with the rigid block ap-

proach shows that the results corresponding to the RR models are generally characterized by 

larger rotations particularly for the NOR and T1213 accelerograms independently on the 

adopted elastic modulus. A better agreement between the RR and DME models can be observed 

at the beginning of the time-histories than the RR generally exhibits greater rotation amplitudes. 

It should be observed that due to the high nonlinearity of the dynamic response it not possible 

to provide general conclusions with reference to few investigations. Furthermore, in the as-

sumed RR model the dissipation is associated only to the impact conditions while in the DME 

approach the dissipation is expressed according to a viscous matrix. The deformability of the 

masonry walls, related to the elastic modulus in the DME models, lead to some differences in 

the time-histories analyses of the corresponding DME models but do not provide a better a 

substantially better agreement with the RR model. This can also be related to the small dis-

placement hypothesis assumed for the DME models. However, in this case neither the RR mod-

els or the DME models show an overturning of the façade. Table 7 reports the results in terms 

of peak rotations.  

In the case of lower energy dissipation, Figure 10, corresponding to 𝑒 = 95% 𝑒𝑎𝑛 and 𝜉 =
1.9%, the RR models exhibit overturning of the façade for the earthquakes with highest PGV 

and PGV/PGA values (NOR and T1213). However, all the DME models do not show rotation 

values corresponding to the condition of overturning although the displacement amplitude of 

DME models are very close to the critical rotation, corresponding to the rotation according to 

which the gravity loads do not contribute to the stability of the façade.  

5.2 Comparison between the RR and the DME models in the restrained condition  

Figure 11 reports the time-histories of RR and DME models in the restrained conditions 

corresponding to the value of the restitution coefficient e=90% and the corresponding value of 

Rayleigh damping (=3.6%) subjected to the AMT and T1213 accelerograms. The rigid block 

rotation is compared to the values of the two monitored target point of the façade corresponding 

to the top of the tympanum and the corner point, in order to highlight the effect of the spatial 

response of the DME model. The results show a different time history between the rigid body 

simulation and the DME model however in this case a better agreement can be observed in 

terms of maximum rotations. The results in terms of normalized rotations are rather similar in 

the two cases (Table 8), with the only exception of NOR earthquake, which is characterized by 

the lowest value of PGA and lower frequencies (Figure 5) among those selected.  

The DME seems to be slightly more conservative, assuming the top of the corner as control 

point. In this case the RR shows maximum normalized rotations of approximately 0.03 which 

corresponds to a maximum horizontal displacement of about 2 cm. With regard to the DMEM 

response, the peak displacements of tympanum assumed as control point resulted from 29% 

(NOR) to 43% (T1213) greater than the peaks at the corner. This clearly denotes the formation 

of a 2-way bending mechanism within the façade, even in presence of wake lateral connections.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 9: Comparison of results for 𝑒 = 90% 𝑒𝑎𝑛 (𝜉 = 3.6%). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 10: Comparison of results for 𝑒 = 95% 𝑒𝑎𝑛 (𝜉 = 1.9%). 
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Table 7: Maximum normalized rotation amplitude - 𝑒 = 0.95 𝑒𝑎𝑛 −  ξ = 1.9%. 

 
DMEM Rigid Block 

E1-Ray E1-K E2-Ray E2-K  

T1213 0.4064 0.1481 0.2185 0.2123 Overturning 

NOR 0.5746 0.6764 0.5045 0.4122 Overturning 

AMT 0.1273 0.1481 0.1005 0.0958 0.2912 

Table 8: 1S-models: maximum normalized rotation amplitude - 𝑒 = 0.90 𝑒𝑎𝑛 −  ξ = 3.6%. 

 
DMEM RR (Rigid Block) 

Tympanum Corner K𝑡,1
′  

T1213 0.054 0.031 0.027 

NOR 0.048 0.034 0.010 

AMT 0.032 0.021 0.020 

 

 
        (a) 

 
        (b) 

Figure 11: Comparison of results for 1S-models with K𝑡,1
′  and 𝑒 = 90% 𝑒𝑎𝑛 (𝜉 = 3.6%): AMT (a); T1213  (b). 

6 CONCLUSIONS 

This paper investigates the out-of-plane response of masonry façades under earthquakes by 

means of two different approaches. A discrete macro-element approach, based on modelling 

the structure by means of spatial deformable macro-elements interacting through nonlinear 

zero-thickness interfaces, and the classical approach in which the masonry façade is assumed 

as a rigid block subjected to earthquake loading. The condition of free standing façade and 

unilateral constrained façade have been investigated for both models. The results of dynamic 

non-linear analyses, performed with the two methods on a real case of a church façade, provide 

a first comparison between the two approaches, highlighting some limits of applications of the 

simplified rigid block model.  

The comparison between the two models, although requiring further investigations, seems to 

suggest that the free standing model does not adequately represent the nonlinear dynamic re-

sponse of masonry facades. A better agreement can be obtained by considering a unilateral 

restrained rigid block; however, also in this case the masonry deformability significantly mod-

ifies the time-history responses. 
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