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Everyone has a different way of walking, and for this reason gait has been studied in the last years as an important biometric information
source. This paper explores a novel approach, based on ultra-wideband (UWB) technology, for user identification via gait analysis. In the
proposed method, the user is supposed to wear two or more devices embedding a UWB transceiver. During gait, the distances between
the devices are estimated via UWB and then analyzed by means of a machine learning classifier, which provides automatic identification.
Experiments were carried out by twelve volunteers, who walked while wearing four UWB boards (placed on the head, wrist, ankle, and
in a trouser pocket). The off-line evaluation considered a set of different possible configurations in terms of number and position of the
wearable devices. Despite a relatively low sampling frequency of 10 Hz, the results are promising: average identification accuracy is as high
as ∼ 96% with four devices, and above 90% with three devices (wrist, trouser pocket, ankle). This novel approach may enhance the accuracy
of inertial-based systems for continuous user identification.

1. Introduction and Related Work: Wearable devices provide
the opportunity to gather information about their users with
unprecedented detail. The availability of a large amount of
personal data, including movement patterns and physiological
measurements, paved the way to the development of novel
applications in well-being and telemedicine [1, 2, 3]. In this context,
there is great interest in techniques for automatic user identification.

Identification can be defined as the recognition of the current
user among a set of authorized ones. Applications greatly benefit
from this possibility, as they can automatically adapt their mode
of operation according to the identity of the current user. In the
typical scenario, a device (or a set of devices) is time-shared by
a group of users, such as the members of a family, a group of
athletes, or a group a patients. Thanks to automatic identification,
the wearable device can infer who is the current user and then
provide customized services. For example, it may activate user-
specific sensors, use personalized pattern recognition parameters,
as well as perform automatic labeling of collected data.

Everyone has a different way of walking, and as a consequence
gait has been extensively studied as an important biometric
information source [4, 5]. Typically, gait-based identification on
wearable devices relies on the analysis of the acceleration samples
collected by one or more accelerometers. In the seminal work
presented in [6], fifty users were asked to walk for 20 m while
wearing a tri-axial accelerometer in a front trouser pocket. An
analysis based on the absolute distance among acceleration samples
in gait cycles showed a recognition rate of ∼86%.

More recent work focused on the use of common smartphones
as sensing devices. For example, in [7], thirty-six individuals
performed a set of supervised activities while wearing a
smartphone. As it turned out, the activities offering the best
information for identification are jogging and walking, with an
accuracy in the 90-92% range. Gait-based identification proved to
be effective also in uncontrolled environment: experiments based on
acceleration traces from ten volunteers demonstrated that more than
90% accuracy can be achieved [8]. Identification can be performed
successfully also when acceleration patterns are collected at the
wrist, a position characterized by reduced invasiveness [9].

The use of UWB radios in wearable devices has been recently
investigated, as it brings about accurate indoor localization and
limb movement tracking [10]. Wearable UWB was adopted in gait
analysis to estimate the distance of feet from the ground [11]: small
antennas mounted in proximity of the user’s heel and toe were used

to transmit a signal and receive it after reflection from the ground.
Similarly, the flexion angle of a knee was measured using two UWB
wearable antennas, positioned at the user’s thigh and shank [12].
A preliminary evaluation of UWB-based step length estimation
was presented in [13], where collection of data was carried out
by means of two UWB antennas mounted on the subject’s feet
and three anchors. Flexible UWB antennas were developed to
ease the adoption of such technology in wearable applications
[14]. In particular, the performance of printed antennas based on
conductive polymers remains good also when crumpled because of
clothes bending. UWB was also used for identification purposes,
but according to a non-wearable approach [15]: a transmitter
and a receiver were mounted on the top of a door frame; the
UWB signals, scattered by the body of people passing through
the doorway, were used to predict the identity of the user by
means of unsupervised feature learning and classification; accuracy
was approximately 80% with eight users. A similar non-wearable
approach was proposed for human fall detection in [16], showing
promising outcomes.

In this letter, a novel approach to the problem of user
identification through gait analysis is presented. The proposed
method takes advantage of wearable UWB technology: users
are supposed to carry two or more devices embedding UWB
transceivers, which enable the estimation of interdistances between
worn devices in real time. The pattern of such interdistances during
gait activity is analyzed to achieve identification. To the best of our
knowledge, this is the first time that gait patterns are analyzed, for
identification purposes, by means of distances estimated through
UWB.

It is foreseen that wireless technologies, like UWB, will be an
integral part of future wearable systems [17]. In such body sensor
networks, UWB-based information could be fused with inertial
data in order to provide better identification accuracy. Reliable
identification, in turn, will play a key role in enabling personalized
applications related to healthcare and well-being.

2. Method: The method is based on the idea of identifying the
user by observing the interdistances between a set of wearable
devices during gait periods. This approach is motivated by the
increasingly popular adoption of wearable devices. Examples
include smart-watches, smart-glasses, and smart-shoes. Also
smartphones are frequently “attached” to the user’s body (e.g
carried in a pocket) and thus they partially belong to the
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Figure 1: UWB sensors and the six interdistances: ankle-pocket
(AP), wrist-pocket (WP), ankle-wrist (AW), head-pocket (HP),
head-ankle (HA), and head-wrist (HW).

Figure 2: Overview of the proposed method.

wearable category. Another motivating reason is represented by
the availability of low-cost transceivers able to estimate, with
reasonable accuracy, the distance from another transceiver via
UWB. An example is provided by the IEEE 802.15.4-2011 UWB
standard.

Let us call XY the interdistance between devices X and Y .
Interdistance XY is computed as the average of the measurements
provided by the devices at its two ends (namely X and Y ). Figure 1
depicts a system based on four devices, and thus characterized
by six interdistances. With a period T , each device estimates the
distance from all the other devices using two-way ranging. A vector
u of interdistances is thus produced with period T . Let us call ujT

the vector of interdistances produced at time jT with j a non-
negative integer. Interdistances are analyzed in non-overlapping
blocks with fixed duration (equal to L). The ith block thus contains
all ujT with jT ∈ [iL, (i+ 1)L). All blocks that correspond to
walking periods are used to identify the user, whereas remaining
blocks (i.e. those belonging to other activities) are discarded. To
identify the user, first a vector vi of features is extracted from the
ith block of interdistances. Then, vi is fed into a classification
system which provides the estimated identity of the user during
such interval. The classification system is supposed to be previously
trained with labeled data (supervised training). An overview of the
main phases of the method is depicted in Figure 2.

2.1. Prototype: A prototype of the proposed method was
implemented using four DecaWave EVB1000 boards. The
EVB1000 board is based on a DW1000 IEEE 802.15.4-2011 UWB
compliant wireless transceiver and an STM32F105 ARM Cortex
M3 microcontroller. The four boards were enclosed in small plastic
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Figure 3: Two of the collected distances during five seconds of gait.

boxes and powered by means of powerbanks connected via USB
cables. The user is supposed to wear up to four devices. Thus, two
boards were attached to the right wrist and the right ankle to mimic
the presence of a smart-watch and a smart-shoe; a board was carried
in the left trouser pocket to emulate the presence of a smartphone;
another board was attached to a hat to emulate the use of a pair of
smart-glasses. Transceivers were set up to operate at 3.993 GHz
with a datarate of 6.8 Mbps. Distances were estimated by all
transceivers according to the two-way ranging mode. Interdistances
between the four nodes were collected at 10 Hz, which is the
maximum frequency allowed by the adopted combination of boards
and sampling software.

2.2. Collection of data: Twelve volunteers were recruited and
involved in a data collection campaign. Age: 24.8± 6.5 yr, height:
171.7± 8.7 cm, weight: 70.3± 10.7 kg, Body Mass Index (BMI):
23.8± 3.0 km/m2 (mean ± std. deviation). The characteristics of
the single users are reported in Table 1. It is interesting to note that
eight users fall within a rather small range of height (from 172
to 179 cm). This makes the identification process possibly more
difficult, as the length of limbs, and thus interdistances, tend to be
characterized by small changes across users.

Each user was asked to walk for approximately 60 s while
wearing the four UWB boards. One of the boards was connected
to a portable PC via USB, where ranging information was logged
using the TREK1000 software [18]. Figure 3 shows the periodic
behavior of two distances, AW and WP, during approximately five
seconds of gait.

Data was saved onto persistent memory and analyzed off-line
to ensure repeatability of experiments. In particular, this allowed
us to explore the impact of some parameters of operation on
identification accuracy and the efficacy of different classification
approaches in the considered problem.

The collected dataset is publicly available at:
http://vecchio.iet.unipi.it/vecchio/data.

2.3. Identification: Interdistance samples are organized in non-
overlapping blocks. A walking detection technique is supposed
to be used to retain only the blocks containing gait data. This
is a reasonable assumption, as previous work showed that it is
possible to achieve high accuracy in walking detection with body-
worn UWB sensors [19]. In addition, a regularity test like the one
proposed in [8] could be included to further remove non-walking
data, as gait cycles are expected to produce a periodic pattern.

Table 1 Users’ characteristics.
User Gender Age (yr) Height (cm) Weight (kg) BMI (kg/m^2)

1 F 25 171 80 27.4
2 F 25 165 70 25.7
3 M 19 179 69 21.5
4 M 23 179 65 20.3
5 M 19 176 65 21.0
6 M 22 179 63 19.7
7 F 25 155 56 23.3
8 F 21 156 60 24.7
9 M 25 172 73 24.7

10 M 25 173 67 22.4
11 M 25 179 95 29.6
12 M 44 177 81 25.9
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Figure 4: Accuracy obtained by the five considered methods.

In the proposed identification method, blocks associated to gait
periods are processed to extract a vector of relevant features (feature
extraction). More precisely, the following features are calculated for
each interdistance: mean, standard deviation, skewness, root mean
square (RMS), min-max (the difference between the maximum
and minimum value in a block), kurtosis, mean crossing rate (the
number of times the mean value is crossed in a block), inter-quartile
range (IQR), mean absolute deviation (MAD, a robust measure of
statistical dispersion) [20], average absolute acceleration variation
(AAV), min, max. AAV, which has been previously used in similar
contexts, is calculated as follows:

AAV =
1

S − 1

S−1∑

i=1

|xi+1 − xi|

where xi is the ith sample in the block and S is the number of
samples in the block [21]. In the end, for each segment, a vector
v containing 72 elements is produced (twelve feature functions,
computed on the six interdistances in u). Finally, the vector of
features is used to feed a classifier, which returns the predicted user
identity.

3. Results and Discussion: Five classification methods were
considered: Subspace kNN [22], Weighted kNN [23], Bagged
Tree [24], Ensemble Subspace Discriminant [25], and Support
Vector Machine (SVM) [26]. In detail, the implementation of the
methods provided by Machine Learning toolbox of MatLab 2018b
was adopted. To calculate the accuracy of the methods, ten-fold
stratified cross validation was used. In ten-fold cross validation, the
dataset is divided in ten disjoint subsets of roughly the same size.
Nine subsets are used to train the considered classification method,
whereas the remaining subset is used to evaluate the method on
previously unseen data. The process is repeated so that all the
subsets are used in the evaluation phase, then results are averaged.
Stratified means that when the subsets are generated, the original
frequency of the different classes is preserved.

Identification attempts occurred at every block, and accuracy is
defined as the percentage of blocks where the user was correctly
identified.

We first evaluated the impact of the block duration on the average
performance of the considered classifiers. For L we considered the
set of values ranging from 1.0 s to 3.0 s, with step equal to 0.5 s.
This interval was chosen because the typical duration of a stride
is between 1 and 2 seconds, so the considered values allowed us to
explore the effect of blocks with a duration that goes from below the
typical stride duration to approximately two times the typical stride
duration. Table 2 shows that all block durations equal to or above
1.5 s are able to provide excellent results. A duration of 1 s produces
slightly lower accuracy values, probably because it is too short to
capture a full gait cycle for most of the users. The other results
presented in this section are based on L= 2 s. Such value is able to
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Figure 5: Confusion matrix obtained with Ensemble Subspace
Discriminant.

provide the best average results for the considered classifiers, and at
the same time provides quicker reaction times with respect to 2.5 s.

The accuracy obtained by the five methods, averaged over
all users, is shown in Figure 4. The method that provided the
best results is Ensemble Subspace Discriminant (ESD), with an
accuracy equal to 96.9%. The performance obtained with the other
methods is also almost excellent, with the exception of Weighted
kNN that is characterized by a lower accuracy rate. Overall, results
confirm that an accurate recognition of the identity of the user
is possible when using the proposed method. To further improve
identification accuracy, majority voting methods operating on
multiple blocks can be used (as the one suggested in [8]). Figure 5
shows the confusion matrix obtained with ESD (30 runs, ten-fold
stratified cross validation). The off-diagonal cells correspond to
misidentified users. The rightmost column shows the percentages
of instances predicted to belong to each user that are correctly and
incorrectly classified (usually called precision and false discovery
rate, respectively). The bottom-most row shows the percentages of
instances belonging to each user that are correctly and incorrectly
classified (recall and false negative rate, respectively). For example,
User 3 is sometimes misidentified as User 11. The classifier
obtained precision rates above 90% for all users, and recall rates
above 90% for eleven users out of twelve.

3.1. Varying the number and position of the devices: The above
results (Figure 4 and 5) have been obtained using all the available
interdistances. We then studied how the single interdistances, and
their combinations, contribute to the identification process. Let I =
{AP,WP,AW,HP,HA,HW} be the set of all the interdistances

Table 2 Average accuracy obtained by the considered classifiers
when varying the duration of blocks.

L (s) Accuracy (%)
1.0 91.0
1.5 93.3
2.0 93.4
2.5 93.4
3.0 93.3
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Figure 7: Accuracy when the size of the group of users changes.

(illustrated in Figure 1), and let P(I) be the powerset of I
(excluding the empty set). We evaluated the identification accuracy
for all p∈P(I) when using the ESD method (the one that provided
the best performance). Figure 6 shows the obtained results averaged
over all users. When a single interdistance is used, accuracy
ranges within 41-69%. As expected, when the number of used
interdistances gets larger accuracy gets better. For instance, when
using two interdistances, accuracy approximately falls in the 58-
86% range. The behavior of the system gets more consistent when
using a larger number of interdistances (dispersion gets smaller).
Figure 6 also reports the best subset p for each |p|. When a single
interdistance is used, the one that provides the best identification
accuracy is WP. When using two interdistances, the best accuracy
is reached when using {AW, WP}. When using three, four, and
five interdistances, the best accuracy is obtained when adopting the
following subsets respectively: {AP, WP, HP}, {AP, WP, HP, HW},
{AP, AW, WP, HP, HW}.

Table 3 reports the results of a similar analysis when varying the
number of devices (results are averaged over all users). When all
four devices are used, as previously stated, the obtained accuracy
is 96.9%. When three devices are used, the best accuracy is
obtained using the ankle, pocket, and wrist configuration (90.9%).
Similar results are obtained when using the ankle, head, and pocket
configuration (88.7%), and the head, pocket, wrist configuration
(87.4%). A lower accuracy is reached with the ankle, head, wrist
configuration (83.0%). When using only two devices, the best
results are achieved by the wrist, pocket configuration (68.9%).

Table 3 Accuracy when using four, three, or two devices.
N Accuracy (%) and devices

(A: ankle, P: pocket, H: head, W: wrist)
4 96.9 {A, H, P, W}
3 90.9 {A, P, W}

88.7 {A, H, P}
87.4 {H, P, W}
83.0 {A, H, W}

2 68.9 {P, W}
66.6 {A, W}
60.0 {A, P}
50.0 {H, A}
42.6 {H, W}
41.4 {A, H}

3.2. Varying the number of users: Accuracy of automatic
identification methods is known to be dependent on the size of the
group of users (identification in large groups is more difficult with
respect to small groups). Figure 7 shows the average accuracy of the
proposed method when the size of the group is varied. The average
is computed over all k-combinations in the set of twelve users, with
k in the 4–12 range (from the size of a family to the size of a team).
The performance of the method is almost constant, this means that,
for the considered range, the capacity of the method to separate
the instances belonging to the different users in the feature space is
almost unaffected.

3.3. Discussion and comparison with existing approaches: The
results in Table 3 show that the proposed approach achieves high
accuracy when at least three devices are used. More specifically, the
devices should be placed near the wrist, pocket, and ankle to obtain
an identification rate above 90%. This configuration, which may
seem cumbersome, may become a reality for a significant portion
of users in the near future. In fact, thanks to the recent explosion
of the wearable market, it is already common for users to wear
two devices placed at pocket and wrist position, like a smartphone
and a smart-watch. In addition, smart shoes are already available
for the general public and recent studies have shown their potential
use in applications related to health and well-being [27, 28]. These
three “devices”—smartphone, smart-watch, and smart-shoes—may
actually enable the procedure shown in this paper.

As mentioned in the Introduction, wearable systems based
on inertial sensors have been extensively investigated for
identification [5]. The results shown in this work are in line with
the best performing inertial-based approaches presented in the
literature. Two recent examples are [8] and [29]. These systems
used a single wearable device placed in a pocket or on the
wrist, respectively. Estimated accuracy was above 90%. It should
be highlighted that it would not be correct to directly compare
accuracy values, as they were obtained on different experiments.
Nevertheless, we can conclude that both approaches, inertial
sensor-based and UWB-based, have shown promising results. As
identification and authentication on wearable devices is going to be
used even for critical applications (e.g., related to the user’s health
or to authorize payments), it will be paramount to ensure the best
possible accuracy. This could be achieved by combining different
biometric approaches, like those based on inertial sensors and the
proposed one based on UWB technology.

Some works also investigated a completely different approach,
based on ambient sensors like cameras mounted in the user’s
environment [30]. This approach achieved promising results as
well [31], with an accuracy above 91% under cross-view conditions
(i.e., using possibly different viewing angles) and above 98% with
a single-view approach. However, ambient sensors can provide
identification only in properly equipped environments, for instance
in a “smart home” context. Instead, wearable sensors pave the
way for new applications based on continuous and ubiquitous user
identification and authentication.

4. Conclusion: Knowing the identity of the user can be useful
for customizing the operations of wearable devices and their
applications. Presented results show that the interdistances between
wearable devices, collected during gait periods, represent valuable
information for user identification. Moreover, the increasing
adoption of wearable devices from the general public makes this
information easier to be collected. It is important to highlight
that the proposed approach represents an addition and not an
alternative to current techniques, which are generally based on
inertial sensors. Thus, information originating from UWB-enabled
transceivers can be combined with information coming from
accelerometers and gyroscopes to achieve even better identification
results. In future work we plan to perform an in-depth evaluation of
power consumption during real-time operation. Adaptive strategies
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could be exploited to dynamically change the sampling frequency
based on the user’s current activity. This will enable the system
to select low-power modes and preserve battery life when the
user is not walking. Another important research direction is the
evaluation of the proposed method in uncontrolled environment.
We foreseen that advancement in miniaturization will enable
unobtrusive experiments during the user’s daily routine. Finally,
to improve the accuracy of the identification method, the use of
a higher sampling frequency and majority voting techniques are
worthy of further investigation.
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