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Abstract

The Electric Solar Wind Sail is an innovative propulsion system that gains thrust from the interaction of the
incoming ions from the solar wind with an artificial electric field produced by means of long charged tethers,
which are deployed and maintained stretched by rotating the spacecraft around a spin axis. Under the combined
interaction between solar wind dynamic pressure and centrifugal force, the tethers reach an equilibrium config-
uration whose spatial shape must be known for obtaining a reasonable estimate of the propulsive acceleration,
a fundamental information for preliminary mission analysis purposes. This problem has been addressed in recent
papers, which deal with the analytical expressions of thrust and torque vectors of a spinning and axially-symmetric
Electric Solar Wind Sail. The torque acting on the sail induces a perturbation on the orientation of the thrust
vector, which is here studied by analyzing the attitude dynamics. Numerical simulations show that the space-
craft motion is characterized by an undamped precession combined with a nutation motion. The effect due to
the torque acting on the spacecraft is to align the thrust direction along the Sun-sail line, thus reducing the
maneuvering capabilities. This paper proposes an effective control law which is able to remove the torque by
suitably adjusting the tether electric voltage. It is shown that the proposed solution maintains the nominal thrust
magnitude, and requires a small electric voltage modulation.
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Nomenclature

bl = dimensionless coefficient; see Eq. (35)
E , F , G = components of T in TB , [ N m]
f = distance of dx from (xB , yB) plane, [ m]

F = thrust vector, with F , ‖F ‖, [ N]
F t = projection of F on (xB , yB) plane, [ N]
Fx, Fy, Fz = components of F in TI , [ N]
h = dimensionless parameter; see Eq. (17)
It = transverse moment of inertia, [ kg m2]
Iz = longitudinal moment of inertia, [ kg m2]

î, ĵ, k̂ = unit vectors of TB
îI , ĵI , k̂I = unit vectors of TI
kx, ky, kz = components of k̂ in TI
L = tether length, [ m]
M = shape coefficient; see Eq. (8)
mp = proton mass, [ kg]
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N = number of tethers
n = solar wind number density, [ m−3]
P = shape coefficient; see Eq. (8)
r̂ = Sun-spacecraft unit vector
r = Sun-spacecraft distance, [ m]
S = spacecraft center-of-mass
T = torque vector, [ N m]
t = time, [ s]
u = solar wind speed, [ m/s]
V = tether electric potential, [ V]
Vw = solar wind electric potential, [ V]
x = curvilinear abscissa, [ m]
xB , yB , zB = axes of TB
xI , yI , zI = axes of TI
αn = pitch angle, [ rad]
δn = clock angle, [ rad]
ε0 = vacuum permittivity, [ F/m]
ζk = angular position of the k-th tether, [ rad]
φ, θ, ψ = Euler’s angles, [ rad]
λ = Smelt’s parameter
µ� = Sun’s gravitational parameter, [ km3/s2]
ρ = tether linear mass density, [ kg/m]
σ = design parameter; see Eq. (5), [ kg/m/s]
TB = body reference frame
TI = inertial reference frame
Ω = spacecraft angular velocity, [ rad/s]
Ωx, Ωy, ω = components of Ω in TB , [ rad/s]

Subscripts

0 = initial
1 = referred to half-sail no. 1
2 = referred to half-sail no. 2
max = maximum
t = tip

Superscripts

′ = derivative with respect to x
· = time derivative

1. Introduction

The Electric Solar Wind Sail (E-sail) is a propellantless propulsion system that generates a continuous
thrust by exchanging momentum with solar wind particles [1, 2]. The incoming ions interact with an artificial
electric field produced by means of long charged tethers, which are maintained at a voltage level on the order
of a few tens of kilovolts [3]. The spacecraft spins around its symmetry axis, and this rotation is used to
deploy the tethers and maintain them stretched [4, 5, 6]. The same physical principle as the E-sail concept
is also used by the plasma brake device, which is a promising option for reducing the decay time of satellites
in low Earth orbits at their end-of-life [7, 8, 9, 10].

In the recent literature several interplanetary mission analyses have been conducted using an E-sail as
primary propulsion system [11, 12, 13]. Usually, the E-sail is described in a simplified way assuming that the
tether arrangement looks like a rigid disc [14, 15]. In such an ideal configuration, the propulsive acceleration
may be analytically modeled using the recent results by Huo et al. [16]. The real shape, however, is more
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complex, since it results from a coupling between the solar wind dynamic pressure and the centrifugal
force due to the spacecraft rotation. The problem of obtaining a more realistic description of the tether
arrangement has been recently addressed in Refs. [17, 18], which deal with the analytical expressions of
thrust and torque vectors of an axially-symmetric E-sail.

The results discussed in Ref. [17], which are based on the assumption of a Sun-facing sail [19, 20], show
that the net thrust is aligned with the Sun-spacecraft direction, while the torque is zero. In that configuration,
the equilibrium shape of each tether is well approximated by a natural logarithmic arc, provided that the
E-sail spin rate is sufficiently high. This result is qualitatively in accordance with the numerical simulations
by Toivanen and Janhunen [21], which show that the tethers form a cone near the spacecraft, whereas
they are flattened by the centrifugal force towards the tip. Actually, the analytical approximation given
in Ref. [21] estimates a parabolic shape of the tethers, with the effect of a null slope at their tip. The
discrepancy between the two models is consistent with the assumption that in Ref. [21] the tips of the main
tethers host remote units connected to an external rim in order to provide mechanical stability to the sail.
In the presented case, instead, the remote units are not included in the model with the aim of decreasing
the stress at tether root. As such, a nonzero tip slope is an expected result. The more complex case of a
sail that generates a transverse thrust (and so a nonzero torque vector) is discussed by Bassetto et al. [18],
whose results are obtained under the assumption that the E-sail maintains a rigid shape independent of the
pitch angle αn between the Sun-spacecraft vector r and the sail symmetry axis zB ; see Fig. 1.
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Figure 1: E-sail conceptual sketch.

Such an assumption is reasonable as long as the pitch angle is small, that is, when the tether arrangement
is not far from the equilibrium shape found in a pure Sun-facing configuration. In particular, Ref. [18]
introduces two dimensionless coefficients related to the E-sail shape, useful for describing the thrust and
torque vectors in a compact, analytical, form. Even though these coefficients must be calculated numerically,
they may be also accurately estimated with a semi-analytical approximation. As a result, closed form
expressions of the E-sail propulsive characteristics are easily derived, which are very useful for both trajectory
simulation, and preliminary mission analysis purposes.

The possibility of generating a trasverse thrust component is a fundamental aspect in most mission
scenarios, when a change of the osculating orbit angular momentum is required. Typical examples are offered
by the design of displaced [22, 23] and linear [24] trajectories, the interplanetary rendezvous [25, 26] or the
outer Solar System exploration [27, 28, 29], and the rendezvous with asteroids and comets [30, 31, 32, 33, 34].
This problem has already been addressed by Toivanen et al. [35], according to which the sail attitude can
be controlled by modulating the tether voltage synchronously with the sail rotation. However, the existence
of a torque (induced by the bending of the tethers) acting on the spacecraft makes the analysis of its
attitude dynamics an interesting problem [36]. In fact, the numerical integration of the Euler’s attitude

3



equations shows that the spacecraft performs an undamped precession combined with nutation oscillations.
In particular, the amplitude and the frequency of these two harmonic motions are affected by the initial
conditions, the spacecraft inertia tensor, the number of tethers, and the electric voltage. Because the external
torque makes the long-period thrust to be oriented in the radial direction, this perturbative effect must be
removed.

The aim of this paper is to discuss a simple but effective control law that counteracts the generation
of the external torque by suitably adjusting the tether electric voltage. Janhunen and Toivanen [37] have
recently presented an algorithm to control the sail attitude. The effectiveness of such an algorithm [37]
is confirmed by a full end-to-end simulation in which the tethers are modeled as elastic wires, while the
solar wind characteristics are taken from historical satellite data. The same problem is here addressed in
analytical way; in essence, the idea is to ideally divide the sail plane into two symmetric parts delimited by
the straight line passing through the torque vector, and to assign a given value of electric voltage to each
part. The value of the two control voltages is chosen such as to remove the external torque and, at the same
time, to maintain the nominal thrust vector. The obtained solution shows that the required variation of
electric voltage is some orders of magnitude smaller than its reference value.

The paper is organized as follows. Section 2 summarizes the torque model presented in Ref. [18], which
is used in Section 3 to analyze the attitude behaviour of a rigid E-sail-based spacecraft without any voltage
control. Section 4 deals with the proposed strategy to remove the external torque, while some concluding
remarks are reported in the last section.

2. E-sail Model and Mathematical Preliminaries

For mathematical tractability, the spacecraft (including the E-sail) is modeled as an axially-symmetric
rigid body. It is useful to introduce a principal body reference frame TB(S; xB , yB , zB) with unit vectors
{̂i, ĵ, k̂}, where k̂ is aligned with the spacecraft symmetry axis; see Fig. 2. The E-sail consists of an even
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Figure 2: E-sail geometric arrangement. Adapted from Ref. [18].

number N > 2 of tethers, each one being denoted by a subscript k, with k ∈ {0, 1, . . . , (N − 1)}. The
angular position of the k-th tether, measured counterclockwise on the (xB , yB) plane starting from xB , is
characterized by the azimuth angle

ζk =

(
2π

N

)
k (1)
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The spacecraft attitude is described through the pitch (αn) and clock (δn) angles, defined as

αn , arccos(r̂ · k̂) (2)

δn ,


arccos

 r̂ · î∥∥∥r̂ × k̂
∥∥∥
 if (r̂ · ĵ) ≥ 0

2π − arccos

 r̂ · î∥∥∥r̂ × k̂
∥∥∥
 otherwise

(3)

where r̂ is along the Sun-spacecraft line, which also approximately coincides with the direction of the solar
wind velocity vector; see Fig. 3. In geometrical terms, αn ∈ [0, π] rad is the angle between r̂ and the
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Figure 3: Pitch (αn) and clock (δn) angles.

spacecraft symmetry axis (zB), while δn ∈ [0, 2π] rad is the angle between xB and the projection of r̂ onto
the (xB , yB) plane. Note that δn is undefined when k̂ is parallel to r̂.

The mathematical model [17, 18], which is used to simulate the spacecraft attitude behavior, and then
to define a control law capable of counteracting the torque acting on the E-sail when its configuration is not
Sun-facing (that is, when k̂ × r̂ 6= 0), is reassumed in the next section.

2.1. Thrust and Torque Vector Model

The thrust vector F given by an axially-symmetric E-sail may be written as [17, 18]

F =
1

2
N Lσ u

[
(2− P) r̂ + (3P − 2)

(
r̂ · k̂

)
k̂
]

(4)

where N is the number of tethers, L is the length of each tether, u = 400 km/s is the solar wind speed, and
σ is a design parameter given by [4, 21, 38]

σ = 0.18 max(0, V − Vw)
√
ε0mp n (5)

where V is the tether voltage, Vw is the electric potential of solar wind ions (with a typical value of about
1 kV [4]), ε0 is the vacuum permittivity, mp is the proton mass, and n is the local solar wind number density.
The dimensionless parameter P ∈ [0, 1] is related to the tether geometrical characteristics, with P = 1 for
an ideally flat sail.

The torque vector T given by an axially-symmetric E-sail can be written in compact form as [17, 18]

T =
1

2
MN L2 σ u (k̂ × r̂) (6)
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where the dimensionless coefficientM∈ [0, 1] is related to the tether geometrical characteristics. In partic-
ular, the external torque vanishes (M = 0) when the tethers are fully stretched. The magnitude of T can
be expressed as

‖T ‖ =
1

2
MN L2 σ u sinαn (7)

It is worth noting that this torque induces a pitch oscillation resembling that of a spherical pendulum.

2.2. Analytical Approximation of P andM
Reference [18] provides an approximation for both P and M, which can be expressed as

P ' 1 , M' ln(4)σ u

ρω2 L
(8)

provided that the spacecraft spin rate is sufficiently high. In Eq. (8), ρ ' 10−5 kg/m is the tether linear
mass density [39], while ω is the sail spin rate. Using the approximate values of P andM given by Eq. (8),
the thrust and torque vectors become

F =
1

2
N Lσ u

[
r̂ +

(
r̂ · k̂

)
k̂
]

(9)

T =
ln(2)N L (σ u)2

ρω2
(k̂ × r̂) (10)

In particular, the expression of the torque given by Eq. (10) is used in the next section to analyze the attitude
dynamics of an E-sail-based spacecraft.

3. Spacecraft Attitude Dynamics

Under the assumption that the spacecraft behaves like a rigid body, the dimensionless coefficient M
and the inertia tensor are both constant. The effects of the torque due to the tether inflection on the
spacecraft dynamics may therefore be analyzed by numerically integrating the Euler’s equations. To that
end, the components of T in the body reference frame are written as a function of the three Euler’s angles
{φ, θ, ψ}, which define the orientation of TB with respect to an inertial reference frame TI(S; xI , yI , zI)
of unit vectors {̂iI , ĵI , k̂I}, where k̂I ≡ r̂, while îI points towards a fixed direction in space. Using the
rotational sequence [40] 3(ψ)→ 1(φ)→ 2(θ) to describe the orientation of TB relative to TI , the kinematic
equations of a rigid E-sail-based spacecraft are

φ̇ = Ωx cos θ + ω sin θ (11)

θ̇ = Ωy − (ω cos θ − Ωx sin θ) tanφ (12)

ψ̇ = (ω cos θ − Ωx sin θ) secφ (13)

Let {Ωx, Ωy, ω} be the components of the spacecraft angular velocity in TB . Accordingly, the Euler’s
equations are

Ω̇x = −hω2 sinφ + λΩy ω (14)

Ω̇y = −hω2 sin θ cosφ− λΩx ω (15)

ω̇ = 0 (16)

with

h ,
ln (2)N L (σ u)2

ρω4 It
, λ ,

It − Iz
It

(17)
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where It and Iz are the longitudinal and transverse moments of inertia, respectively. Finally, the relations
between αn and δn and the Euler’s angles are

cosαn = cosφ cos θ (18)

sinαn sin δn = sinφ (19)

sinαn cos δn = − cosφ sin θ (20)

Although in principle the spacecraft attitude dynamics is affected by the rotation of TB with respect to the
Sun-sail line due to the vehicle orbital motion, this effect is negligible, because the spacecraft mean motion
(about 1.99× 10−7 rad/s for a circular heliocentric orbit of radius equal to 1 au) is usually several orders of
magnitude smaller than the typical values of Ωx, Ωy and ω.

The attitude dynamics of an E-sail-based spacecraft has been analyzed for some E-sail configurations.
In particular, Tab. 1 reports the characteristics of five possible E-sail arrangements, with (N L) = 1000 km,
ω = 0.95ωmax, and V = 20 kV. Using the configurations ¬ and ° as exemplary cases, Eqs. (11)–(16) have

L [km] N ω [rph]
E-sail ¬ 2 500 43.46
E-sail  4 250 21.73
E-sail ® 6 168 14.49
E-sail ¯ 8 126 10.86
E-sail ° 10 100 8.69

Table 1: Major specifications of five possible E-sail arrangements.

been numerically integrated with initial conditions

{αn0 , δn0} = {10, 90} deg (21)

{Ωx0 , Ωy0 , ω0} = {0, 0, ω} (22)

assuming λ = −0.5 and It = 1000 kg m2. The simulation results are illustrated in Figs. 4–7. The pitch
angle shows a periodic time variation due to a nutation motion of the spacecraft symmetry axis; see Figs. 4
and 6. Both the amplitude and frequency of the nutation oscillations are higher for an E-sail with longer
tethers. Moreover, introducing the components of unit vector k̂ in the inertial reference frame TI (that is,
[k̂]TI , [kx, ky, kz]

T), Figs. 4 and 6 show that the E-sail symmetry axis is subjected to a precession motion,
too. Again, the frequency of oscillation is higher for an E-sail with longer tethers.

The long-term propulsive effect due to the torque acting on the spacecraft is better visualized by
representing the time evolution of the thrust vector components in the inertial reference frame, that is,
[F ]TI , [Fx, Fy, Fz]

T. Both Figs. 5 and 7 show that the long-term thrust direction is radial, with a small-
amplitude and short-period oscillations due to the nutation motion. Therefore, an active control system is
necessary to counteract the effect of the external torque, thus allowing the spacecraft to give a long-term
nonzero transverse thrust. This problem is discussed in the next section.

4. Torque Removal

The numerical simulations have shown that the torque acting on the spacecraft tends to re-align its spin
axis with the radial direction. Such a torque must therefore be removed in order for the E-sail to generate a
long-term nonzero transverse thrust. This is possible by properly adjusting the tether voltage, according to
a control law that is now discussed. In the following analysis the assumption is made of small pitch angles
(that is, αn ≤ 10 deg), which implies that the tethers have approximately the same equilibrium shape as
that in the Sun-facing configuration [18]. In that case, the tether shape is accurately described by a natural
logarithmic arc, provided the E-sail spins at a sufficiently high rate [17]. The second approximation here
introduced is that the E-sail shape does not change when the electric voltage is slightly modified from its
nominal value. Actually, a realistic dynamic behaviour of each tether would require a simulation with a
finite element analysis, but this issue is beyond the scope of this paper and is left to future research.
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Figure 5: Time variation of [F ]TI for E-sail ¬ defined in Tab. 1.

A simple control strategy is now proposed, which consists in changing the design parameter σ with
respect to its nominal value by changing the tether electric voltage; see Eq. (5). Using the results discussed
in Ref. [17], the expression of T is

T = E î + F ĵ + G k̂ (23)

and the problem is to look for a control law able to cancel the resultant torque. For the sake of completeness,
the expressions of the components E , F , and G are reported in the Appendix. To face the problem, the
tethers are first divided into two subsets by the plane passing through T and k̂ (referred to as partition
plane), as is schematically illustrated in Fig. 8 by the dotted line. The tethers in the same subset have all
the same electric potential, but those belonging to the half-plane containing the projection of the thrust
on the sail nominal plane (F t) are at a higher potential (σ2) than those belonging to the other half-plane
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(σ1 ≤ σ2). Moreover, the potential of a generic tether is changed from σ1 to σ2 (or, viceversa, from σ2 to
σ1) when it crosses the partition plane; see Fig. 8. With such a control strategy, the tether electric voltage
must be changed every half turn of the sail about its spin axis. Note that, as long as σ2 , 2σ − σ1, the
overall thrust does not vary, and therefore it is possible to maintain a fixed attitude with respect to the
Sun-spacecraft line without affecting the propulsive acceleration.

With reference to the configuration of Fig. 8, the torque balance requires the following equilibrium
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conditions to be met

E ,
∫ xt|σ1

0

N/2−1∑
k=0

dEk|σ1
+

∫ xt|σ2

0

N−1∑
k=N/2

dEk|σ2
= 0 (24)

F ,
∫ xt|σ1

0

N/2−1∑
k=0

dFk|σ1 +

∫ xt|σ2

0

N−1∑
k=N/2

dFk|σ2 = 0 (25)

G ,
∫ xt|σ1

0

N/2−1∑
k=0

dGk|σ1
+

∫ xt|σ2

0

N−1∑
k=N/2

dGk|σ2
= 0 (26)

where xt is the distance of the tether tip from the spacecraft spin axis, while the whole expressions of dEk,
dFk, and dGk are reported in the Appendix. With the aid of Tab. 2, the summations in Eqs. (24)–(26) give
the following results ∑N/2−1

k=0

∑N−1
k=N/2

sin(ζk) cot (π/N) − cot (π/N)

cos(ζk) 1 −1

sin(2ζk) 0 0

sin2(ζk) N/4 N/4

cos2(ζk) N/4 N/4

Table 2: Summations of trigonometric functions in Eqs. (24)–(26).

N/2−1∑
k=0

dEk|σ1
=

[
σ1 u cosαn cot

( π
N

) x1 + f1 f
′
1

1 + (f ′1)2
− N

4
σ1 u sinαn sin δn

f1 + x1 f
′
1 + 2 f1 (f ′1)2

1 + (f ′1)2
+

−f1 ρ x1 ω2 cot
( π
N

)] √
1 + (f ′1)2 dx1 (27)
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N−1∑
k=N/2

dEk|σ2
=

[
−σ2 u cosαn cot

( π
N

) x2 + f2 f
′
2

1 + (f ′2)2
− N

4
σ2 u sinαn sin δn

f2 + x2 f
′
2 + 2 f2 (f ′2)2

1 + (f ′2)2
+

+f2 ρ x2 ω
2 cot

( π
N

)] √
1 + (f ′2)2 dx2 (28)

N/2−1∑
k=0

dFk|σ1 =

[
−σ1 u cosαn

x1 + f1 f
′
1

1 + (f ′1)2
+
N

4
σ1 u sinαn cos δn

f1 + x1 f
′
1 + 2 f1 (f ′1)2

1 + (f ′1)2
+

+f1 ρ x1 ω
2
] √

1 + (f ′1)2 dx1 (29)

N−1∑
k=N/2

dFk|σ2 =

[
σ2 u cosαn

x2 + f2 f
′
2

1 + (f ′2)2
+
N

4
σ2 u sinαn cos δn

f2 + x2 f
′
2 + 2 f2 (f ′2)2

1 + (f ′2)2
+

−f2 ρ x2 ω2
] √

1 + (f ′2)2 dx2 (30)

N/2−1∑
k=0

dGk|σ1
= σ1 ux1 sinαn

[
sin δn − cos δn cot

( π
N

)] √
1 + (f ′1)2 dx1 (31)

N−1∑
k=N/2

dGk|σ2
= σ2 ux2 sinαn

[
− sin δn + cos δn cot

( π
N

)] √
1 + (f ′2)2 dx2 (32)

where fi , fi(xi) describes the tether shape in the plane (̂ik, k̂), while, with reference to Fig. 8, the clock
angle is given by

δn =
3π

2
− π

N
(33)

In order to integrate Eqs. (27)–(32), it is assumed that f1 ≡ f2 = f , that is, the shape of the E-sail
corresponds to the nominal one. As stated, the latter may be approximated by a natural logarithmic
arc [17], viz.

f , bl L ln
(

1 +
x

L

)
(34)

where

bl ,
2σ u

ρω2 L
(35)

Moreover, the assumptions are made that (f ′)2 ' 0 and xt|σ1 ≡ xt|σ2 ' L, which are consistent with
Eq. (34) and with the hypothesis of high spin rate [17, 18]. Equation (26) is satisfied for any value of σ1,
while Eqs. (24) and (25) are equivalent to each other. In particular, from Eq. (33) it may be verified that

sin δn
cot(π/N)

≡ cos δn = − sin
( π
N

)
(36)

The three integrals obtained by substituting Eq. (27) into Eq. (24) reduce to∫ L

0

(x+ f f ′) dx =
L2

2

[
(bl ln 2)

2
+ 1
]

(37)

∫ L

0

(f + x f ′) dx = L2 bl ln 2 (38)

∫ L

0

(x f) dx =
bl L

3

4
(39)
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where f is given by Eq. (34). The solution of Eq. (24) is then

σ1 = σ

1− N sin(π/N) bl ln 2

2
[
(bl ln 2)

2
+ 1
] tanαn

 (40)

which implies that
(σ1 − σ) ∝ − tanαn (41)

Instead, Ref. [21] shows that the voltage modulation necessary for removing the torque is proportional to a
function of αn, that is

(σ1 − σ) ∝ − sinαn (1 + sinαn) (42)

Therefore, when αn is sufficiently small, the right-hand side of both Eqs. (41) and (42) may be approximated
as −αn. As a result, Eq. (40) is in agreement with Ref. [21] as long as αn � 1. For exemplary purposes,
consider the E-sail configurations ¬–°, whose characteristics are defined in Tab. 1. Figure 9 shows the
required variation of σ1/σ as a function αn. Note that σ1/σ is a monotonically decreasing function of the
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Figure 9: Variation of σ1/σ as a function of αn. See Tab. 1 for E-sail characteristics.

pitch angle αn, and its value reduces as long as an E-sail with longer tethers is used. This is an expected
result, since the external torque is higher when, for a given thrust magnitude, the tethers have a greater
length. In particular, for a fixed value of the product (N L), the external torque is proportional to L2, being
ωmax ∝ L−1 [18]; see Eq. (10). Note also that the required σ1 and σ2 are not much different from their
nominal value σ; hence, the previously enforced hypothesis that f1 ≡ f2 = f is realistic. For example, for
a 5-type E-sail, and assuming αn = 10 deg, we get σ1 ' 0.9938σ and σ2 ' 1.0062σ. This is an interesting
result, as it shows that the external torque may be counterbalanced and, correspondingly, the E-sail may be
maintained at a given attitude angle with a modest modulation of the tether electric voltage.

5. Conclusions

The most recent torque model is used in this paper to analyze the attitude behaviour of an axially-
symmetric E-sail-based spacecraft. In the presented model the E-sail is assumed to maintain its equilibrium
shape found in a Sun-facing configuration, which is a reasonable hypothesis as long as the sail pitch angle
is sufficiently small. Therefore, under the assumption of rigid body behavior, the E-sail-based spacecraft
performs an undamped oscillatory motion due to the external torque, with the result that the thrust vector
tends to align along the radial direction. To counteract such an effect, a simple and effective control law may
be used, which consists in modulating the tether electric voltage without modifying the total thrust. The
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simulations show that the tether electric voltage requires a very small variation with respect to its nominal
value (on the order of 1% or less), thus allowing the E-sail to maintain a fixed attitude and, as such, to
generate a long-term nonzero transverse thrust.

A natural extension of this work is represented by the formulation of a voltage control that is able to
change the sail pitch angle and, at the same time, to compensate for the torque due to the tether inflection
during the attitude maneuver. In particular, an interesting point to investigate is the time history of the
electric voltage and the required maneuver time.

6. Appendix

With reference to Fig. 10, the torque dT k given by an infinitesimal arc-length dsk of a generic tether
may be expressed as [17]

ik
ˆS

k
x

k
fd ks

tip
( +1)-th tetherk

sp
in

 a
x
is

d
k

k
t

x

k̂

d Fk

Figure 10: Geometrical representation of dk and dF k. Adapted from Ref. [17]

dT k = dk × dF k (43)

where dk is the position vector of dsk with respect to S, while dF k is the elementary force acting on dsk.
The infinitesimal torque dT k can be rearranged by introducing the principal body frame TB of unit vectors
{̂i, ĵ, k̂} as

dT k = dEk î + dFk ĵ + dGk k̂ (44)

where

dEk =

{
xk sin ζk

[
σk u cosαn −

f ′k σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+

−fk sin ζk

[
ρ xk ω

2 − σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+

−fk σk u sinαn sin δn}
√

1 + (f ′k)
2

dxk (45)
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dFk =

{
−xk cos ζk

[
σk u cosαn −

f ′k σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+

+fk cos ζk

[
ρ xk ω

2 − σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)
2

]
+

+fk σk u sinαn cos δn}
√

1 + (f ′k)
2

dxk (46)

dGk = σk uxk sinαn sin(δn − ζk)

√
1 + (f ′k)

2
dxk (47)

The torque T k acting on the k-th tether is therefore provided by

T k =

∫ xtk

0

dT k = Ek î + Fk ĵ + Gk k̂ (48)

where

Ek ,
∫ xtk

0

dEk , Fk ,
∫ xtk

0

dFk , Gk ,
∫ xtk

0

dGk (49)

whereas the total torque T acting on the E-sail is

T =

N−1∑
k=0

T k ≡ E î + F ĵ + G k̂ (50)

in which

E ,
N−1∑
k=0

Ek , F ,
N−1∑
k=0

Fk , G ,
N−1∑
k=0

Gk (51)
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