
Comparing Ensemble Strategies for Deep Learning:
An Application to Facial Expression Recognition

Alessandro Rendaa,b, Marco Barsacchia,b, Alessio Bechinia, Francesco Marcellonia,∗

aUniversity of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, 56122 Pisa, IT
bUniversity of Florence, Dept. of Information Engineering, Via di Santa Marta, 3 - 50139 Firenze, IT

Abstract

Recent works have shown that Convolutional Neural Networks (CNNs), because of their effectiveness in
feature extraction and classification tasks, are suitable tools to address the Facial Expression Recognition
(FER) problem. Further, it has been pointed out how ensembles of CNNs allow improving classification
accuracy. Nevertheless, a detailed experimental analysis on how ensembles of CNNs could be effectively
generated in the FER context has not been performed yet, although it would have considerable value for
improving the results obtained in the FER task. This paper aims to present an extensive investigation
on different aspects of the ensemble generation, focusing on the factors that influence the classification
accuracy on the FER context. In particular, we evaluate several strategies for the ensemble generation,
different aggregation schemes, and the dependence upon the number of base classifiers in the ensemble. The
final objective is to provide some indications for building up effective ensembles of CNNs. Specifically, we
observed that exploiting different sources of variability is crucial for the improvement of the overall accuracy.
To this aim, pre-processing and pre-training procedures are able to provide a satisfactory variability across
the base classifiers, while the use of different seeds does not appear as an effective solution. Bagging ensures
a high ensemble gain, but the overall accuracy is limited by poor-performing base classifiers. The impact
of increasing the ensemble size specifically depends on the adopted strategy, but also in the best case the
performance gain obtained by involving additional base classifiers becomes not significant beyond a certain
limit size, thus suggesting to avoid very large ensembles. Finally, the classic averaging voting proves to be an
appropriate aggregation scheme, achieving accuracy values comparable to or slightly better than the other
experimented operators.

Keywords: Facial Expression Recognition, Convolutional Neural Networks, Ensemble learning, Ensemble
construction

1. Introduction

As facial expressions play vital roles in human interactions and nonverbal communications, Facial Ex-
pression Recognition (FER) is of crucial importance to the development of interactive computer systems.
A facial expression represents a signal that humans use, intentionally or otherwise, in order to convey a
message, i.e. an emotion, an affective state, or a health condition. In 1971, Ekman et al. (Ekman & Friesen,
1971) demonstrated that facial expressions of emotion are universal. The study was carried out on both
literate and preliterate cultures: the universality of the human way of expressing an emotion is supposed
to be an evolutionary, biological fact, not depending on the specific culture. This finding allows modern
Computer Vision studies to focus on the signal (facial expression) in order to analyze the message (emotion),
giving rise to plentiful applications in different fields, ranging from Human Computer Interaction to Data
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Analytics (Martinez & Valstar, 2016). Furthermore, FER has been automated and several machine learn-
ing algorithms have been specifically proposed for this task (Gross & Brajovic, 2003; Zhang et al., 2015a;
Martinez & Valstar, 2016; Pramerdorfer & Kampel, 2016). Effective solutions for expert systems targeted
at solving the FER problem have to be extensively investigated. Automated FER approaches attempt to
classify faces in a given single image as one of the six basic emotions, namely anger, disgust, fear, happiness,
sadness, and surprise.

A related and relatively recent topic in the area of research on affective computing consists in emotion
recognition from videos. On the one hand, video data pose additional challenges to the task of emotion
recognition compared to static images, e.g. the quick and variable dynamics between the beginning of the
expression (onset), its peak, and its vanishing (offset). On the other hand, the amount of information
provided by the sequence of correlated frames and, in some instances, by the associated speech, enables a
variety of automated methods for robust features extraction and classification in a multi-modalities setting.
In this work we focus on FER from static images, rather than from video sequences: the nature of video data
and underlying assumptions (multimodalities of audiovisual data, correlation among sequential frames) make
it a different, although closely related, and more challenging topic than static image analysis. Nevertheless,
many recent works attest that FER on static images is still an active research area and advances in this
field may have a positive impact in the field of emotion recognition from videos too.

In this context, researchers have collected several annotated face databases both in spontaneous uncon-
trolled setting (Dhall et al., 2014) and in more strictly controlled environments (Lyons et al., 1998; Lucey
et al., 2010; Gross et al., 2010). Images acquired in controlled conditions (or lab-conditions) consist in posed
expressions of frontal faces, with standard illumination and background conditions. Nowadays, emotion
recognition in this scenario is considered a solved problem and is primarily used for the proof of concept
of features extraction and classification methods (Pramerdorfer & Kampel, 2016; Sariyanidi et al., 2015).
Indeed, several works have shown that a recognition rate above 90% can be achieved under these conditions
(Dornaika et al., 2013; Mahersia & Hamrouni, 2015) and, in more recent proposals, accuracy values close to
100% on well-known benchmark datasets have been reached (Liang et al., 2019; Xie et al., 2019). Within
the wide assortment of classical machine learning algorithms, several of them - notably Support Vector
Machines and Bayesian classifiers - have proved to be able to classify posed facial expressions generated in
a controlled environment. Nevertheless, these approaches fell short of the generalization capability. FER
under naturalistic conditions, often referred to as in-the-wild, is the scenario of interest for what concerns
the above mentioned applications (Dhall et al., 2014). The factors of variation that make this a harder
problem are the following: subtlety of spontaneous expressions, head pose, illumination, and occlusions.

A standard algorithmic pipeline to address the FER problem on static images relies on the crucial step
of feature extraction. Traditional approaches consist in determining features by hand through mathematical
descriptors (e.g. Gabor filter, Local Binary Pattern, Scale Invariant Feature Transform) (Hussain et al.,
2012), or using facial landmarking (Tie & Guan, 2013). Exploiting hand-crafted features has proved to be
inadequate for the in-the-wild task: an optimal feature extractor should provide information useful for the
classification step, being robust to the above mentioned nuisance factors. Recent research tried to investigate
on the possibility to learn features directly from data (Hertel et al., 2015). In computer vision, the most
popular models used for this purpose are the CNNs, and new practical methodologies have been studied for
their employment in modern expert systems (Han et al., 2018).

The origin of CNNs dates back to the ’80s; nevertheless, they have been largely ignored from the main-
stream computer vision and machine learning communities, up to the ImageNet competition in 2012. Their
resurgence, as well as the impressive results they achieve, can be ascribed to the efficient use of GPUs, Re-
LUs, dropout, and new data augmentation techniques (LeCun et al., 2015). CNNs have thus revolutionized
the field of computer vision, and nowadays they are the dominant approach for all recognition and detection
tasks, even approaching the human performance on specific cases.

The theoretical advantages of using deep architectures have been highlighted in the literature (Bengio,
2009). On the one hand, cognitive processes in humans seem to have a deep structure, with different levels
of representation and abstraction: CNNs are inspired to the mammalian vision system and, in particular, to
the bidimensional structure of visual cortex and to the relative biological neurons. On the other hand, too
shallow architectures fail in representing the desired function with a reasonable number of parameters: the
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required number of units might grow exponentially if the depth is reduced. Furthermore, it has been shown
that the spatial regions of the input facial image, which maximally excite neurons in the hidden layers of
the proposed convolutional networks, correspond to the Facial Action Units described by Ekman (Khorrami
et al., 2015), that is, the network is able to learn relevant high-level features.

It is worth underlining that research in the FER task is hindered by the lack of a large amount of
labeled training data, typically necessary in current deep learning approaches. Indeed, unlike visual object
databases such as imageNet, existing FER databases often have a limited number of subjects, few sample
images or videos per expression, or small variations between sets, hampering the neural network training
procedure. For instance FER2013, which is one of the largest databases built so far, consists of 35,887
images of different subjects and, yet, only 547 of them portray disgust. Gathering and annotating new data
is often a difficult, expensive, and time consuming task. The challenge is indeed to find alternative methods
in order to improve the performance of automatic FER systems.

The reported average human accuracy on FER-2013 dataset is 65%. With the work presented in (Tang,
2013), Tang won the machine learning competition in the ICML 2013 Challenges in Representation Learning,
achieving a test accuracy of 71.2% using a CNN with L2-SVM loss. This figure has been further improved
in the recent years: hereafter, we recall some of the most significant works along with their performance,
i.e. the accuracy obtained over the test set. In (Kim et al., 2016a), Kim et al. achieved a 73.73% test
accuracy by means of an ensemble of CNNs that uses both aligned and non-aligned images: the key factor
for the performance improvement is represented by a pre-processing (alignment) operation carried out by
yet another Deep Convolutional Network that learns the proper mapping. In (Connie et al., 2017), Connie
et al. proposed a model that combines SIFT features and CNN features: the aggregation of three models let
them achieve a 73.4% accuracy. Excellent results have been obtained also by exploiting diversified learning
information: Zhang et al. (Zhang et al., 2015b) reached a 75.1% test accuracy by fusing training data from
multiple sources.

The work presented in this paper aims to propose general, more efficient procedures to construct ensem-
bles of CNNs for the FER task: looking for general results, the relative experimentation must focus on the
basic FER ability of each single network, independently of any possible ancillary geometric pre-processing
action. However, it has been shown that such a pre-processing is crucial in getting top accuracies (Kim
et al., 2016a). As a consequence, the performance obtained through a basic ensembling procedure is not
directly comparable with the most precise state-of-the-art systems, because of the different nature of their
building blocks. Nevertheless, even if our studied configurations adopt neither face-alignment techniques (or
tricks of this kind) nor specific particular features, their delivered accuracy closely trails the top performing
works.

Ensemble solutions are widely exploited in neural networks, with the aim of boosting classification
performance. Giacinto et al. highlight the keypoint on network ensembles for image classification purposes
(Giacinto & Roli, 2001): beyond general theoretical analysis (Brown et al., 2005), experimental evidence
exists showing that an ensemble can outperform the best single neural network, provided that the networks
make different errors. From this perspective, the task of producing error-independent networks is not trivial,
mainly because of the weight space symmetry. Two approaches can be exploited to design ensembles of neural
networks: implicit and explicit methods. The former consists in directly creating error-independent neural
networks by forcing diversity among them; the latter consists in producing a large set of base classifiers
and selecting the optimal subset with respect to a given measure of the error diversity. In our work we
focus on implicit ensemble design strategy. The most commonly adopted strategies to create heterogeneous
ensembles are: i) varying the initial random weights, ii) varying the network architecture, iii) varying the
network type, and iv) varying the training data (Giacinto & Roli, 2001). The way the networks outputs are
aggregated to produce a final output represents another central issue in the ensembling approach: the most
straightforward strategies for combining outputs computed by base classifiers are Average and Majority
voting (Ponti Jr, 2011).

The network size represents a key factor for the learning dynamics: in fact, deeper models are less
sensitive to randomness in the initialization and training procedure, leading to a less sparse distribution of
loss in multiple repetitions (Choromanska et al., 2015). As a consequence, ensemble learning has proven
to be more effective when using shallow networks (Ju et al., 2018) since the network high sensitivity to
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initialization and training most likely results in different local minima.
Recent proposals in the field of expert and intelligent systems have mainly focused on devising more

sophisticated ensemble design and fusion strategies for the FER problem. Liu and Zhang proposed a two-
step ensemble framework in the context of granular computing (Liu & Zhang, 2019). In their approach,
ensembles can be viewed as information granules; a further level of ensemble and information fusion completes
the granular architecture with a coarser level of granularity. The approach, however, is validated using a
training dataset of only 344 instances, on which deep learning architectures fail in obtaining competitive
performance. In (Gan et al., 2019), authors combined eight neural networks obtained by training a CNN
architecture on a training set with different perturbations of soft-labels, which are supposed to capture
latent similarity and mixture among different facial expressions. Hierarchical committees of CNNs have
been introduced as well (Kim et al., 2016b), and in this case the single decisions are fused according to a
multi-level structure. Finally, Wen et al. proposed a probability-based fusion rule to combine diverse base
classifiers obtained by varying initialization of parameters and hyperparameters of a CNN architecture (Wen
et al., 2017). None of these works, however, has improved state-of-the-art performance on the FER-2013
dataset and disentangled the factors that influence performance in ensemble of neural networks.

In this paper, in order to find efficient procedures for the ensemble construction in FER problems we
evaluate the effectiveness of several strategies in exploiting the sensitivity of shallow networks used as basic
classifiers. We fix the classifier type, namely CNN, and the network architecture using a model that can be
considered shallow if compared to modern very deep architectures such as VGG (Simonyan & Zisserman,
2014), Inception (Szegedy et al., 2016), and ResNet (He et al., 2016). As the ensemble performance is
tightly related to the diversity of the classifiers making up the ensemble, particular care must be placed in
the selection of the strategy used to generate the base classifiers. We present an analysis of various techniques
for generating diversity within ensembles of base networks, varying training data and weight initialization.
Furthermore, we compare different fusion schemes for merging the outputs of the base classifiers. We also
investigate whether it is appropriate to use aggregation methods other than the common Average and
Majority Voting. To this aim, we experiment with different Ordered Weighted Averaging (OWA) operators
(Yager, 1993; Fodor et al., 1995). The final objective is to provide some indications for building up effective
ensembles of CNNs.

Although ensemble learning has been widely employed in FER and in other similar contexts, an experi-
mental analysis of the aspects that influence its performance with CNNs as base classifiers has never been
carried out. The main contributions of this study can be summarized as follows:

• achieving competitive performance for the in-the-wild emotion recognition, avoiding to use hand-
crafted features and adopting simple design strategies for the ensemble of CNNs;

• shedding light on the factors that influence the performance, in terms of recognition accuracy, of such
ensembles. Notably, the extensive analysis aims to compare different simple strategies for generating
diversity among base classifiers, and different aggregation schemes for combining the prediction at the
decision fusion level, and further to investigate the dependence of the performance upon the ensemble
size.

The paper is organized as follows: in Section 2 we provide the background about CNNs. In Section 3
we describe the approaches for designing different ensembles of CNNs and the adopted fusion strategies.
Section 4 presents the experimental setup: we describe the datasets used in the present work and the
details of our implementation. In Section 5 we show and discuss the experimental results. Section 6 draws
conclusion remarks.

2. Convolutional Neural Networks Background

CNN (LeCun et al., 2010) is a type of feed-forward artificial neural network. The building blocks of a
convolutional layer are the following: (i) the linear convolutional stage performs the convolution operation
between a kernel, or filter, and an input bi-dimensional array; (ii) the non-linear activation stage consists
in the pointwise application of a non-linear function; (iii) the pooling stage computes a summary statistic
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of a group of input neurons. Thanks to its architecture, CNN can take into account the spatial structure of
the input: this is a desired property when the input layer has a known topology, e.g. the 2D grid of pixels
that constitutes an image. Moreover, CNNs require fewer parameters than fully-connected networks. As a
consequence, CNNs are faster to train and less prone to overfitting. Further, deeper models can be designed.

When a network is trained from scratch, random values are initially assigned to the parameters (weights
w). Then, the gradient-based learning procedure iteratively updates the weights w by using an optimization
algorithm, a form of stochastic gradient descent (Goodfellow et al., 2016). In its basic implementation,
given the learning rate ε and a cost function f that we aim to minimize by modifying the parameters
w, the weight update takes place according to the formula w ← w − ∆w, where ∆w = ε∇wf(w). Each
iteration is performed on a fixed number of images (batch size) and requires two steps: a forward step and
a backward step. During the forward step, the network maps each input sample to an output and produces
a scalar cost, i.e. the discrepancy between the predicted output and the expected output. The backward
step computes the gradient of the scalar cost with respect to the weights of the network. This procedure is
efficiently performed by means of the backpropagation algorithm (LeCun et al., 1998). The training process
is repeated for a given number of epochs: at each epoch the input pipeline covers the entire training set.

The validation set is used during the training to periodically evaluate the performance of the model on
previously unseen examples. The model hyperparameters are tuned to maximize the validation accuracy
(or minimize the validation loss) and to avoid overfitting. In this scenario, several techniques are typically
adopted to reduce the discrepancy between training and validation errors:

• dropout (Srivastava et al., 2014): it reduces the co-adaption between units by randomly turning off
with probability p each unit of a layer at every training step;

• data augmentation: it consists in artificially increasing the size of the training set by applying one or
more transformations in the input image domain, provided that the transformed image and original
label mapping is preserved. Such an approach represents a convenient and efficient trick whenever
gathering and annotating more training data is expensive, unfeasible, or time-consuming. Although
violating the i.i.d. assumptions over the data generating process (i.e. examples should be independent
and identically distributed), which let us to estimate the test error from the training error (Goodfellow
et al., 2016), data augmentation is widely adopted in practical cases. Indeed, it has proven to be
effective in improving generalization capability of deep learning models in several application areas,
ranging from image classification (Han et al., 2018) to speech recognition (Jaitly & Hinton, 2013);

• weight regularization: it typically consists in penalizing the magnitude of the weight by adding a
term to the loss function. If L2 regularization is chosen, the loss function J(w) becomes J(w)∗ =
J(w) + λwTw , with λ as the weight decay factor.

3. Ensemble Design

In this section, we first describe the different ensemble design strategies to investigate, pointing out how
variability among the base networks is generated, and then we show the aggregation methods adopted in
our experiments.

3.1. Ensemble Design Strategies

In our investigation, we take into account four different ensemble design strategies, selected to consider
the main possible ways to address diversity in the construction of the base classifiers:

1. the first strategy, denoted as Seed Strategy (SE), exploits a plain random initialization of the weights;

2. the second strategy, proposed in (Kim et al., 2016a) and denoted as Preprocessing Strategy (PS),
produces an ensemble by combining networks generated by different seeds and different image prepro-
cessing functions;
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3. the third strategy, denoted as Pretraining Strategy (PT), exploits other, albeit small, datasets: it uses
a combination of different preprocessing functions and weight initialization obtained by pretraining
the network on datasets different from the one used in the training phase;

4. the fourth strategy, denoted as Bagging Strategy (BS), uses bagging to generate variability among the
base networks.

For each strategy, we use an ensemble of nine networks. In the following, we describe in detail the four
strategies.

3.1.1. The Seed Strategy

The first strategy produces networks with the same configuration by simply varying the seed that ini-
tializes the pseudorandom number generator. Since the pseudorandom number generator determines how
the network is generated by affecting the shuffle of the dataset, dropout, data augmentation, and initial
distribution of the weights, different seeds produce different networks. SE is the simplest and, to the best of
our knowledge, the most commonly used strategy in the case of the Deep Convolutional Neural Networks.
The resulting ensemble structure consists of nine base classifiers obtained by setting nine different integers
as the seeds for the learning procedure.

3.1.2. The Preprocessing Strategy

PS is defined according to the work by Kim et al. (Kim et al., 2016a): it combines three different
seeds with three preprocessing strategies that introduce variability on training data. In particular, the
preprocessing strategies consist of, respectively, keeping the images unchanged (default), modifying the
images by histogram equalization (histEq), and preprocessing them by using illumination normalization
(iNor). The illumination normalization technique tries to compensate for illumination-induced variations in
images (Gross & Brajovic, 2003) by smoothing with an isotropic diffusion technique. Histogram equalization
is a fairly standard approach aimed at achieving contrast enhancement (Gonzalez & Woods, 2006). The
resulting ensemble structure consists of nine base classifiers obtained by setting three different integers as
the seeds for each of the three preprocessing techniques.

3.1.3. The Pretraining Strategy

PT is a modification of PS obtained by pursuing a higher inter-network variability: the combination
of three seeds and three preprocessing methods is kept, but weights are initialized in three different ways,
coherently with the seeds, by pretraining networks on other facial expression datasets. In particular, the
three different initial conditions are: i) random initial distribution of the weights, ii) parameter configuration
obtained by pretraining the network on the Extended Cohn-Kanade (CK+) dataset (Lucey et al., 2010), and
iii) parameter configuration obtained by pretraining the network on the Static Facial Expression in the Wild
(SFEW) dataset (Dhall et al., 2012, 2014). When training on FER2013, i.e. the target dataset described in
Section 4.1, the initial weights of the convolutional layers are the same as obtained in pretraining, whereas
the top fully connected layers are trained from scratch. This idea relies on the assumption that each of
the datasets, described in Section 4.1, has a unique fingerprint, for example, typical illumination and pose
condition. Since CK+ consists of posed and lab-controlled images, while SFEW is by definition in-the-wild,
we expect that these two datasets can fulfill the purpose. The resulting ensemble structure consists of nine
base classifiers obtained by initializing the weights according to three pretraining options (and setting three
different integers as the seeds) for each of the three preprocessing techniques.

3.1.4. The Bagging Strategy

The fourth strategy exploits bagging to generate a different dataset for each network in the ensemble
(Breiman, 1996), still keeping all the remaining random components fixed, using a single seed. Despite
the popularity of this approach in the machine learning community for the generation of ensembles of
classifiers, it is not widely applied in Deep Learning. The resulting ensemble structure consists of nine base
classifiers obtained by setting nine different integers as the seeds for the random operation of sampling with
replacement.
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3.2. Aggregation strategies

The output layer of our CNN is the well-known “softmax” layer. Let K be the number of the neurons
in this layer. The output value σj(z) of neuron j is computed as:

σj(z) =
ezj∑K
k=1 e

zk

where z is a K-dimensional vector. The output values σj(z) satisfy the following properties:

• σj(z) : RK −→ [0, 1]

•
∑K

j=1 σj(z) = 1

Softmax is the default choice for neural networks in multi-class classification problems since it can be
interpreted as the probability distribution over the classes.

Given the FER2013 test-set images, the evaluation step produces a matrix P ×K ×D, where P is the
number of base classifiers, K is the number of classes (emotions), D is the number of images. Ensemble
learning aims to combine the outputs of multiple classifiers in order to have a final prediction matrix of size
1×K ×D. The class with the highest σ value represents the predicted label.

Our analysis focuses further on how to combine these pieces of information from the base classifiers in
the ensemble. Average and Majority voting are the aggregation schemes typically adopted in ensembles
of neural networks: majority voting selects the class that obtain the highest number of votes, and average
voting can be interpreted as a special case of OWA operators.

Given a vector of P non-negative weights zi such that
∑

i zi = 1, the OWA aggregator F (P ) applied to
a vector x ∈ RP corresponds to:

F (x) =

P∑
i=1

zix(i)

with x(1) ≤ ... ≤ x(i) ≤ ... ≤ x(P ). The final prediction for a given image can be interpreted as the
combination, parametrized by the vector z, of the decision profile matrix P × K. The i-th row of this
matrix represents the softmax output of the i-th base classifier, and the j-th column represents the posterior
probabilities for class j from different classifiers.

As suggested in (Yager, 2007), the weight vector z could be obtained through the definition of a stress
function: it let users determine what argument values should be weighted more than the others in the
aggregation. Figure 1 shows the stress functions adopted in this work.
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Figure 1: The stress functions used to generate the weight vectors for OWA operators.

In our work, we follow the procedure proposed in (Alajlan et al., 2013) in order to obtain the final
predictions by using OWA operators. Indeed, we adopt the following aggregation techniques:
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• Majority Voting

• OWA operators with the following stress functions:

– AV: Average

– LD: Linear Decreasing

– LI: Linear Increasing

– GA: Gaussian

4. Experimental Set-up

In this section we describe the datasets used in the experiments and the details of our implementation.

4.1. Facial Expression Datasets

The experiments were carried out on three widely used facial expression datasets: the Facial Expression
Recognition 2013 (FER-2013) dataset (Goodfellow et al., 2015), the Extended Cohn-Kanade (CK+) dataset
(Lucey et al., 2010), and the Static Facial Expression in the Wild (SFEW) dataset (Dhall et al., 2012,
2014). CK+ and SFEW have been used in the pretraining procedure only, while FER-2013 have been used
for training and test. It represents a proper choice for our investigation because it consists in the largest
available collection of uncorrelated in-the-wild images. Other datasets (e.g. MMI (Valstar & Pantic, 2010),
BP4D/BP4D+ (Zhang et al., 2014, 2016), JAFFE (Lyons et al., 1998), CMU MultiPIE (Gross et al., 2010))
have not been considered for the evaluation of our approach because of one or more of the following reasons:
i) consisting in collections of video clips, thus resulting in highly correlated examples, ii) having limited
number of subjects, iii) consisting in posed expressions or controlled pictures.

Table 1 shows the number of images per each of the six basic expressions and neutral faces in each
dataset used in our experiments.

Table 1: Number of images per class in the three datasets used in the experiments.

Label FER-2013 CK+ SFEW

Neutral 6197 327 228

Anger 4945 135 255

Disgust 547 177 75

Fear 5121 75 124

Happiness 8988 207 256

Sadness 6076 84 234

Surprise 4001 249 149

Contempt - 54 -
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4.1.1. The FER-2013 Dataset

The classification accuracy on the FER2013 dataset represents the performance measure of the models
used in the present work. Since the FER2013 dataset is one of the largest collections of in the wild facial
images, it can be used as a proxy for FER task in real world condition. It has been released in 2013 for a
machine learning contest held as part of the ICML workshop “Challenges in Representation Learning”. The
official split of the FER-2013 dataset was used in the present work. The only modification was the removal
of 11 “black” images (zero in all the pixels). This resulted in 28699 images as training set, 3588 images as
validation set, 3589 as test set. The provided face crops have been used with no additional detection stage.
Two example images are shown in Fig. 2.

Figure 2: Two examples of FER-2013 images

4.1.2. The Pretraining datasets

The application of the pretraining strategy (PS) asks for specific, different datasets. Hereafter we provide
an accurate description of the two used in our experiments.

The CK+ dataset consists of 593 sequences from 123 subjects. Only 327 sequences of them are annotated
with the labels reported in Table 1. In the present work, four images were selected from each sequence,
according to the protocol used in (Khorrami et al., 2015): this resulted in 1308 images. As shown in Fig. 3,
images have been obtained in lab-condition. The 1308 images of the dataset were split in training and
validation sets. The unique constraint was that images of the same subject belonged to the same set. In
order to accomplish this, an 1/10 fraction of the subjects was sampled to generate the validation set. This
resulted in 1208 images for the training set and 100 images for the validation set. Faces were detected using
Haar Cascade frontal face detector from OpenCV. Images were then re-sized to 162× 162 and converted to
gray-scale.

Figure 3: Two examples of CK+ images after face detection with openCV

The SFEW dataset consists of images with temporal facial expressions, acted facial expressions in the
wild, extracted from movies. The images are aligned as shown in Fig. 4. Even when using aligned datasets,
FER is a difficult task because of variation in head pose, age, occlusions, focus and real world illumination
condition. The original split of the dataset consists of 890 images for training set and 431 images for
validation set. For the purposes of the present work a new split was adopted in order to increase the
training set size. A tenth of the entire dataset was sampled to generate the validation set. This resulted in
1036 training images and 285 validation images. For consistence with the CK dataset, the images were then
converted to gray-scale and resized from 143× 181 to 162× 162. The resize operation introduces an aspect
ratio distortion, as can be noticed by comparing Figs. 4b and 4c.

4.2. Adopted model and parametrization

Input data have been zero-centered after the application of the input transformation described in Section
4.1: a global mean value µ, and a global standard deviation value σ have been evaluated over each of the
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(a) (b) (c)

Figure 4: Example of SFEW Image: a) Image of the original dataset; b) Image of dataset Aligned-SFEW; c) Image after
grayscale transformation and resizing

training sets of interest. The normalization step has been performed by subtracting µ and dividing by σ.
The transformation has been subsequently applied to every training, validation, and test image.

The CNN architecture

For all experiments presented in this paper, we used a classical feed-forward CNN, inspired by the
work in (Kim et al., 2016a). The architecture is illustrated in Fig. 5: the input layer is followed by three

Figure 5: Scheme of the adopted network architecture

convolutional and max pooling layers with respectively 32, 32, and 64 feature maps. A fully connected layer
of 1024 neurons precedes the output layer composed by 7 units, i.e. the seven classes of emotion considered
in the FER-2013 database. The total network depth is 5 and the total number of trainable parameters is
2, 436, 007. The rectifier (ReLU) is used as non-linear activation function, for both convolutional and fully
connected layers. Softmax activation is used in the output layer. Batch normalization (Ioffe & Szegedy,
2015) is applied after every convolutional and fully connected layer; zero-padding is used in the convolutional
layers in order to preserve the original size of the input. The max-pooling layer consists of an overlapping
kernel of size 3 × 3 and stride 2 × 2 that resulted in a size halving. Dropout layer is added after the fully
connected hidden layer, with drop-probability of 0.15.

The training and inference on the FER2013 dataset

The learning algorithm adopted in the experiments is the stochastic gradient descent with momentum of
0.9. The loss function is composed by a cross-entropy term and an L2 regularization term with a weight decay
factor of 0.0001. The learning rate schedule is determined by the array of step boundaries [12000, 18000,
24000, 30000, 36000] and the array of learning rate values [0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125]. The
batch size is 200. After 300 epochs, the learning process stops if the validation accuracy does not increase
for consecutive 20 epochs.
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Data augmentation is performed during the training: a random crop of size 48 × 48 is selected after
zero-padding the original images from 48 × 48 to 54 × 54. Every image is then flipped horizontally with
probability 0.5. During the evaluation over the validation and test sets, a ten-crop oversampling is performed
as suggested in (Krizhevsky et al., 2012): after zero-padding at 54 × 54, 5 crops are selected: the central
one and four patches of size 48× 48 at the corners. The five images are then horizontally flipped, resulting
in 10 versions of the same image. The softmax outputs of the ten images are then averaged to obtain the
final prediction.

The Pre-training on the CK+ and SFEW datasets

Due to the limited size of the CK+ and SFEW datasets, an additional data augmentation step is
performed. Images are resized from 162× 162 to 54× 54. Each image is rotated by a random angle in the
range [−15◦ , +15◦] and horizontally flipped with probability 1/2. Then, a random crop of variable size is
selected in order to achieve a random scaling of the input image. The scaling factor is drawn from a uniform
distribution in the range [0.852, 1] and generate a patch whose size is in the range from 46× 46 to 54× 54.
The image is then re-sized to 48×48 to make it consistent with the chosen architecture for the network. The
weight decay factor is set to 0.0005, the learning rate schedule is determined by the array of step boundaries
[400, 600, 800, 1000, 1200] and the array of learning rate values [0.05, 0.02, 0.01, 0.005, 0.002, 0.001]. The
maximum number of epochs is set to 150 and 500 for the CK+ and the SFEW datasets, respectively.

5. Experimental Results

The performance metric used in the present work is the accuracy on the reference dataset, i.e. the
percentage of correctly classified examples. We evaluated the four selected strategies relying on two measures:
the base classifier accuracy and the ensemble accuracy. The difference between these two values represents
the performance gain, obtained thanks to the combination of the base classifiers. For each strategy we
performed three repetitions with different seeds in order to assess the stability of the measures.
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Figure 6: Bar plots show average results grouped by strategy. In each plot, the first two bars represent the average and
the highest classification rates obtained by the single base classifiers, respectively; the other bars represent classification rates
obtained by using different aggregation functions. Results are obtained averaging 3 ensembles of 9 networks each. The error
bars represent the standard deviation over the three repetitions.

Results concerning single base classifiers and ensembles are summarized in Fig. 6 and in Table 2.

Accuracy Analysis

According to the results, average accuracies for the base classifiers are fairly stable across different runs,
independently of the strategy. The highest average accuracy is achieved by SE networks: this could be
ascribed to the usage of solely default images without additional pre-processing. Indeed, we observed that
the introduction of contrast enhancement leads to a slight performance drop. The SE networks have also the
lowest standard deviation of accuracy values, indicating that the introduction of other factors of variation
(e.g. pre-training and pre-processing) increases the variability of the trained models. The BA networks
achieve the lowest accuracy: the procedure of sampling with replacement on the training dataset reduces
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Table 2: Average accuracy in case of base classifiers and ensembles, and ensemble gains for all the different strategies proposed
in this work.

Strategy
Average Base Classifier Accuracy Ensemble Accuracy Ensemble Gain

Single Run Mean/StdDev Single Run Mean/StdDev Single Run Mean/StdDev

SE
69.561± 0.451

69.606± 0.035
71.245

71.236± 0.013
1.684

1.630± 0.04769.608± 0.362 71.245 1.637

69.648± 0.332 71.218 1.570

PS
69.128± 0.596

69.206± 0.057
72.026

71.728± 0.220
2.898

2.522± 0.27169.230± 0.489 71.496 2.266

69.261± 0.363 71.663 2.402

PT
69.081± 0.538

69.252± 0.139
72.249

72.044± 0.160
3.168

2.793± 0.26569.252± 0.508 71.858 2.606

69.422± 0.573 72.026 2.604

BA
66.617± 0.392

66.512± 0.136
70.577

70.558± 0.387
3.960

4.046± 0.38766.599± 0.488 71.023 4.424

66.320± 0.426 70.075 3.755

the total number of different images that each network experiences by a factor of ∼ 0.63, thus reducing its
generalization capability. There is no significant difference between the mean accuracy values of PS and PT
networks.

Comparison of aggregation methods

As can be noted in Fig. 6, all the aggregation methods employed in this work achieve very close accuracy
values, independently of the selected ensemble strategy. Each of the fusion methods yields accuracy values
that are significantly higher than those of any base classifier. At least for Pretraining and Bagging Strategy,
Average voting (AV) performs better than Majority voting (MAJ). This slight performance drop could be
ascribed to the information loss of Majority voting, since it only takes into account the predicted label
instead of the posterior class probability. The difference among OWA operators is negligible for all the
proposed strategies. Hereafter, for the sake of simplicity, we show and discuss only the results concerning
AV.

Ensemble Accuracy

The SE strategy achieves the lowest ensemble gain: adding pre-processing and pre-training to seed
variation helps increase the gain values. The accuracy gains obtained by the PS and PT strategies are
similar to each other. Bagging guarantees significantly higher gain values, combining the predictions of
networks trained on different subsets of the same dataset (i.e. with the same fingerprint, without any
dataset bias issue).

It is straightforward observing that the overall ensemble accuracy depends on the average accuracy
achieved by the base classifiers and on the ensemble gain: the highest ensemble accuracy values are achieved
by the PS and PT strategies, thanks to the high values of accuracy achieved by the corresponding base
classifiers. These strategies achieve comparable values and these values are significantly higher than the
ones obtained by the BA and SE strategies. The stability among different measures of ensemble accuracy
for the SE strategy is not confirmed for the other strategies, thus suggesting that the variability introduced
by the three different seeds for each group leads to slightly different ensembles.
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Increasing the number of base classifiers

We have also evaluated how the ensemble performance is affected by an increase in the number of base
classifiers. We evaluated the Average voting performance for ensembles of 9, 18 and 27 base classifiers. For
each strategy, we employed the three ensembles of 9 base classifiers obtained by adopting three different
repetitions, as explained above. Thus, per sizes 9, 18 and 27 we measured the accuracy of, respectively, 3
ensembles of 9 networks, 3 ensembles of 18 networks (using different pairs of the ensembles of 9 networks)
and 1 ensemble of 27 networks (only one ensemble of 27 networks can be generated by using the three
ensembles of 9 networks), as shown in Table 3. Results are shown in Fig. 7.

Table 3: Number of ensembles per ensemble size values obtained by 3 groups of 9 networks for each strategy.

Ensemble Size 9 18 27
Number of Ensembles 3 3 1

9 18 27
Number of base classifiers

0.7025

0.7050

0.7075

0.7100

0.7125

0.7150
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0.7200

0.7225
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Figure 7: Average accuracy values versus number of base classifiers in the ensemble (ensemble size up to 27) for all the strategies.
The bands represent the standard deviation evaluated on three values for the ensembles with 9 and 18 base classifiers. One
single accuracy value is available for the ensemble with 27 base classifiers.

As expected, the BA strategy has the highest increase in performance (+0.60%) with the increase of
the number of networks in the ensemble. Likewise, the accuracy achieved by the PS strategy increases
(+0.49%) with the increase of the number of networks in the ensemble. The SE strategy struggles to show
any improvement (+0.09%): no significant accuracy improvement is achieved by increasing the number of
networks above 9, if the networks are differentiated only by their seeds. Somewhat surprisingly, the accuracy
achieved by the PT strategy (-0.24%) seems to be negatively affected by the increase of the ensemble size;
the accuracy achieved by the PT strategy is probably hindered by the fact that the additional networks are
pre-trained on the same datasets, thus they do not contribute to variability.

Since the increase in accuracy of the BA and PS strategies is almost linear with respect to the number of
base classifiers in the ensemble, we extended the analysis for these two strategies by increasing the ensemble
sizes in order to verify whether this trend was confirmed for sizes higher than 27. By training other 3
ensembles with 9 base classifiers, we could rely on several repeated measures for different ensemble sizes:
we computed the average values as indicated in Table 4 by using all the possible combinations. Results are
presented in Fig. 8. In Fig. 9 we report the first order discrete difference of the accuracy plots in Fig. 8.

Table 4: Number of ensembles per ensemble size values: 6 groups of 9 networks are available for Bagging and Pretraining
Strategies.

Ensemble Size 9 18 27 36 45 54
Number of Ensembles 6 15 20 15 6 1
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Figure 8: Average accuracy values of ensembles versus number of base classifiers (ensemble size up to 54) for the BA and PS
strategies. The plot is superimposed to the one reported in Fig. 7.
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Figure 9: Difference between average accuracy values of consecutive ensemble size groups in the Bagging and Preprocessing
strategies.

As regards the BA strategy, it is worth noticing that, as expected, the performance does not increase
linearly with the number of base classifiers. In Fig. 9 it can be observed that the performance gain decreases
as the number of base classifiers increases, and eventually becomes negative. As a consequence, the plateau
is reached at an accuracy value significantly lower than the other strategies. The performance gain obtained
by increasing the ensemble size is lower than the one obtained with BA strategy, reaching negative values.
Finally, it is worth underlining that an ensemble strategy that let us achieve good results yet keeping
low the ensemble size is certainly preferable, since training from scratch a lot of networks is an extremely
time-consuming activity.

Merging the best ensembles

As last experiment, we merged the two best performing ensembles: base classifiers from the PS and PT
strategies have been combined in a PS+PT Strategy. The bar plot in Fig. 10 shows that no significant
improvement is obtained by using the proposed aggregation. Nevertheless, the average accuracy is more
stable with the increase of the number of base classifiers than using the single strategies separately. Thus,
we can conclude that the best strategies for generating ensembles of CNNs in the context of FER are the
Preprocessing Strategy and Pretraining Strategy. Also, merging the two strategies is not convenient with
respect to the delivered average accuracy, but the stability of results is higher with respect to the number
of base classifiers.
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Figure 10: Average accuracy versus number of base classifiers in the ensemble for the PS and PT strategies and for their
combination.

6. Conclusion

We have presented a comprehensive comparison of four different strategies for the design of an ensemble
of CNNs in the context of facial expression recognition. The Seed Strategy simply combines CNNs generated
by using different pseudorandom number generator initializations; since the generator affects the behaviour
of several CNN components, variability is thus induced. The Preprocessing Strategy employs diverse image
preprocessing methods and different seeds. The Pretraining Strategy aims to introduce a factor of variation
among the CNNs by pre-training them using different datasets: this leads to different parameter configura-
tions that are used as initial configurations for fine-tuning the networks on the dataset of interest. Finally,
the Bagging Strategy introduces a bagging step in the image input pipeline. The comparison between the
strategies has been carried out by using also different ensemble aggregation methods. Besides majority
voting, a few Ordered Weighted Averaging operators were experimented: results suggest that the simple
unweighted average voting is a good choice for the considered case study.

As regards the ensemble design strategies, some conclusions can definitively be drawn: first and fore-
most, the random components of the network (shuffle of the dataset, dropout, data augmentation, initial
distribution of the weights) do not provide enough variability, thus limiting the ensemble performance. This
conclusion becomes particularly evident when increasing the number of base classifiers.

The Pretraining strategy and Preprocessing strategy yield similar results, considering both average ac-
curacy of the base classifiers and average accuracy of the ensemble. We have however to consider that the
Pretraining Strategy requires additional resources, i.e. additional datasets (SFEW and CK+ datasets in
this paper) and additional pre-training time, with no significant increment in performance. Bagging may
seem a simpler yet effective alternative, since the relative ensemble guarantees the highest gain respect to
the average accuracy of the base classifiers. However, the accuracy values of base classifiers are dramatically
affected by the inadequate size of the training set. Therefore, bagging is not an appropriate choice for this
kind of application: even increasing the number of base classifiers, the overall accuracy level is lower than
the one obtained by employing the other strategies.

We obtained the best absolute test accuracy of 72.249% by using an ensemble of nine networks with the
Pretraining strategy. We can conclude that this is the most effective way to build up the ensemble classifier
(at the cost of getting information from additional sources). It significantly outperforms the human accuracy,
getting to results that are comparable with those of other works evaluated on the same dataset. Some of the
related works outlined in Section 1 boosted further the FER2013 test accuracy, but they either considered
different settings, namely network trained on different datasets (Zhang et al., 2015b), or introduced other
image processing steps, namely face alignment (Kim et al., 2016a) and Scale-Invariant Feature Transform
(SIFT) (Connie et al., 2017).

It is worth underlining that our work, unlike other related studies mentioned in Section 1, does not
aim to propose completely novel approaches in the field of deep learning for Facial Expression Recognition.
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Conversely, the novelty of our contribution consists in assessing the performance of various simple ensemble
design strategies, shedding light on the factors that can be leveraged to generate diverse and accurate
ensembles of neural networks. Furthermore, our broad analysis of ensemble learning focused on aspects not
previously considered in the literature: the fusion scheme adopted to combine the output of base classifiers,
and the effect of increasing the ensemble size. We believe that such comprehensive analysis can both help
practitioners in choosing the ensemble and aggregation strategies, and guide researchers in developing more
efficient approaches to exploit ensembles of deep CNNs. The current analysis is restricted to the Facial
Expression Recognition task; however, we think that the presented results are quite general for Computer
Vision classification tasks that exploit neural networks, since the proposed model and techniques are not
specific for the considered task.

Despite the wide scope of the presented investigation on ensemble design strategies, our study obviously
has not covered all the possible techniques to introduce variability among base classifiers. In future research
we will focus on assessing the efficiency deriving from changes/perturbations of the network architecture
and from using bigger, albeit non domain-specific, datasets for network pre-training. A further interesting
development of this work would consist in introducing more complex image preprocessing steps and hand-
crafted features into the design of base classifiers, pursuing state-of-the-art performance on FER benchmark
datasets. A limitation for FER system development is represented by the lack of large datasets: leveraging
on newly published databases would allow researchers to further improve the performance of FER systems.
Finally, this work addressed only implicit (or direct) approaches to the design of ensembles of neural net-
works. By introducing other sources of variability, we would be able to rely on a higher number of base
classifiers, thus stimulating investigations on selection strategies in explicit approaches to properly limit the
ensemble size, possibly delivering even more accurate composite classifiers.
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