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Abstract— Haptic interfaces are special robots that interact
with people to convey touch-related information. In addition to
such a discriminative aspect, touch is also a highly emotion-
related sense. However, while a lot of effort has been spent to
investigate the perceptual mechanisms of discriminative touch
and to suitably replicate them through haptic systems in human
robot interaction (HRI), there is still a lot of work to do
in order to take into account also the emotional aspects of
tactual experience (i.e., the so-called affective haptics), for a
more naturalistic human-robot communication. In this paper,
we report evidences on how a haptic device designed to
convey caress-like stimuli can influence physiological measures
related to the autonomous nervous system (ANS), which is in-
timately connected to evoked emotions in humans. Specifically,
a discriminant role of electrodermal response and heart rate
variability can be associated to two different caressing velocities,
which can also be linked to two different levels of pleasantness.
Finally, we discuss how the results from this study could be
profitably employed and generalized to pave the path towards
a novel generation of robotic devices for HRI.

I. INTRODUCTION

Touch represents one of the primary sensory modalities
in humans, which drives cognitive developments from the
early phases of our infancy [1]. In addition to such a
discriminative role, which has been widely studied in the
literature [2], touch was also proven to provide affective
inputs to human brain [3], which are crucial for emotion-
related communication and social interactions [4]. Under this
regard, touch not only can communicate the hedonic tone of
emotions but also acts as an emotion-intensifier. Considering
pleasantness perception, different haptic properties seem to
play a crucial role, e.g. surface roughness, softness and
smoothness, among the others [5], and they can be related
to user’s gender, age as well to body site of stimulation
[6], [7]. These findings have hence driven the development
of artificial systems that are able to convey haptic stimuli
capable to influence the emotional state of users [8]–[10].

In [11], we presented an affective device able to admin-
ister caress-like (thus emotional) stimuli. The system allows
controlling both the velocity of the caress-like movement and
the strength of the caress. We then performed a preliminary
psycho-physiological test involving 6 participants to deter-
mine the device capability of eliciting tactually emotional
states in humans. To categorize emotions, we used the
Circumplex Model of Affect (CMA) [12], [13], which allows
taking into account two main dimensions conceptualized
by the terms of valence and arousal, the first related to
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pleasure/displeasure and the other to alertness. Moreover, we
evaluated the activation of the Autonomic Nervous System
(ANS), which is intimately connected to evoked emotions
in humans [14], through the analysis of the electrodermal
response (EDR). We found a statistically significant corre-
lation between the perceived arousal level and the strength
of the caress and between the perceived valence level and
the velocity of the caress. Moreover, we found that phasic
EDR was able to discern between pleasant and unpleasant
stimuli. The main conclusions that can be drawn from these
preliminary results are that it is possible to use physiological
ANS-related quantities to distinguish between pleasant and
unpleasant haptic stimulation.

In this paper, we push forward the investigation of ANS
elicitation through caress-like haptic stimuli in [11]. More
specifically, to get an exhaustive characterization of ANS
response, we performed a completely new set of acquisitions
and analyses with a large number of participants (32, 16
females), taking into account both EDR and cardiovascu-
lar dynamics, the latter one estimated through Heart Rate
Variability (HRV) series. These series are representative of
sympathetic and parasympathetic functions of ANS, respec-
tively. More specifically, HRV refers to the variability of the
time interval between two heartbeats, identified by R-waves
from the Electro-CardioGraphy (ECG) signals, and has been
extensively used in studies related to affective computing
[15]. For example, after massage, changes in the parasym-
pathetic activity estimated through spectral HRV analysis
were observed [16]. We will here provide a comprehensive
assessment of ANS, considering HRV linear and nonlinear
dynamics during caress-like stimuli on the forearm, along
with EDR measures obtained after applying a deconvolutive
method to separate tonic and phasic components [17]. We
will show how such ANS related quantities can be associated
to different emotional states described through CMA and
used to discriminate different physical quantities for the con-
veyed stimuli. More specifically, we will focus on different
values of the velocity of the simulated caress at a given level
of the conveyed force. We will also discuss how these results
could be profitably applied for the design of a novel category
of haptic interfaces and robotic systems, with special focus
on rehabilitation robotics and assistive devices. These new
interfaces will be able to integrate affective physiology
within the control loop, thus modifying the control inputs
according to the emotional state of the user.

II. SYSTEM DESCRIPTION

The affective haptic display [11] used in this study exploits
the elasticity of a fabric to reproduce haptic stimuli that are



commonly conveyed through the human caress. More specif-
ically, the user places the forearm on the forearm support
under the fabric layer, whose extremities are connected to
two motors through two rollers. By controlling motor posi-
tions and rotation velocity, it is possible to vary the velocity
and the strength of the artificial caress on the user arm. The
system is also endowed with a load cell that measures the
normal force exerted by the fabric on the forearm. After
a Calibration Phase, where the offset due to the forearm
weight is removed, the exerted force (i.e. the strength of the
caress) can be varied by acting on the two motor positions,
which determine how much the fabric is wrapped around
the forearm and hence the force exerted on it (maximum
force 20 N). Once the desired level of force is achieved,
and both motors are in the reference position, the velocity
of the caress can be modulated by regulating the velocity of
the motors, exploiting a built-in motor position controller
and feeding the motors with a sinusoidal input reference
trajectory. By setting the frequency and amplitude of the
input, we can control the velocity and the amplitude of motor
rotation, respectively. The maximum angular displacement of
the motors from the reference positions is set to ±90◦, while
an entire control cycle lasts 1 ms. An overview of the system
is shown in Fig. 1, including the envisaged embedded front-
end to directly acquire and process physiological signals. For
further technical details on the device, the reader is invited
to refer to [11].

Fig. 1: The main components of the affective haptic device and the envisaged front
end for the acquisition of the physiological signals from the user.

III. MATERIALS AND METHODS
The goal of this study was twofold: (i) to assess a

discriminant role of HRV and EDR associated with two
simulated caressing velocities; (ii) to link such a role to
given evoked emotions categorized through stimulus self-
assessment. We chose to focus on the velocity parameter
since the inverse relationship between the velocity value and
pleasantness level was already demonstrated in literature [6],
[11]. To pursue objective (i), we extracted features from the
signal time series of HRV and EDR, to investigate their
sensitivity to changes in caressing velocity.

A. Subject Recruitment and Experimental protocol
Thirty-two healthy subjects aged 27± 2 (16 males, age

26 ± 2, and 16 females, age 27 ± 2) gave their informed
consent to take part in the study. The study was previously
approved by the local Ethical Committee. Throughout the

experiment, participants wore earplugs in order to prevent
any auditory cue. Prior to the experiment, the device load
cell was calibrated with respect to the forearm weight.

Keeping constant the level of force to 6 N, we used two
different caressing stimuli related to 2 levels of velocity
(V1=9.4 mm/s, V2=37 mm/s). Each stimulus consisted of
a back and forth caress-like movement of the fabric over
the participant’s forearm, which was obtained by giving a
reference position to the motors (to achieve the desired level
of force) and then feeding them with two different sinusoidal
input trajectories, at the frequencies of 0.1 Hz and 0.4 Hz,
respectively (for further details see [11]). These values were
chosen according to previous studies [11], [18]. Between
two consecutive stimuli, the motors were stopped and the
force was set to 0 N. In this case, the fabric was only
lightly in contact with the forearm. As the force increases,
the fabric is more closely wrapped around the forearm and
there is no more pure sliding (as with light forces) but also
skin torsion. This behavior was coherent with the goal to
reproduce as exhaustively as possible the behavior of the
human caress. Throughout the experiment, there were two
phases of resting sessions with a duration of two minutes:
the first at the beginning of the protocol, the second at the
end of the stimulation. Stimuli were randomized in time
among subjects, with an inter-stimulus interval of 35 seconds.
At the end of each stimulus, participants underwent with
the self-assessment procedures described in the following.
Participants were blindfolded and naive w.r.t experimental
goals.

B. Stimulus Self-Assessment and Acquisition set-up

For the stimulus self-assessment procedure, we also asked
participants to report their emotional response to the stimuli
conveyed by the device. For this reason, we adopted the
Circumplex Model of Affect (CMA) [12], a common model
to categorize emotions using two main dimensions concep-
tualized by the terms of valence and arousal. According to
[12], in fact, affective states arise from two fundamental
neurophysiological systems: one related to valence (plea-
sure/displeasure) and the other to arousal, or alertness. The
connection between these two dimensions and ANS response
was previously demonstrated [19].

Specifically, after each stimulus, participants were invited
to indicate the level of arousal and valence through the
Self Assessment Manikin (SAM) [20]. SAM is a pictorial
assessment technique that directly measures the pleasure
(valence) and arousal associated with a person affective
reaction to stimuli. The SAM used for our experiments
contains 10 items, 5 levels of arousal (i.e. from 1 to 5, in an
increasing scale, ranging from neutral to emotionally strong)
and 5 levels for the valence (i.e. from -2 to 2, in a scale
from highly unpleasant stimuli to highly pleasant stimuli,
neutral level 0). During the elicitation, ECG and EDR signals
were acquired using the BIOPAC acquisition system, with a
sampling rate of 500 Hz.

C. HRV Signal Processing and Feature Extraction

Standard HRV analysis refers to the extraction of parame-
ters defined in the time and frequency domain [15], [21].



More specifically, time domain features include statistical
parameters and morphological indexes. We calculated the
following indexes:

- the first (meanRR) and second order moment (SDNN)
of the RR intervals, i.e. the intervals between two
consecutive R waves (so-called normal-to-normal, NN,
intervals);

- the square root of the mean of the sum of the
squares of differences between subsequent NN intervals
(RMSSD =

√
1

N−1 ∑
N−1
j=1 (NN j+1 −NN j)2, where N is

the total number of heartbeats under investigation);
- the number of consecutive intervals that differ by more

than 50 ms, NN50, expressed as a percentage of the total
number of heartbeats N analyzed (pNN50= NN50

N−1 100%)
We also estimated the triangular index (T INN), which is
defined as the base of the triangle that best approximates the
NN interval distribution (the minimum square difference is
used to find such a triangle).

We also calculated several features in the frequency
domain from the Power Spectral Density (PSD) analysis.
PSD was estimated with the Welch’s periodogram, which
relies on the FFT (Fast Fourier Transform) algorithm. Three
spectral bands can be defined as follows: V LF (very low
frequency) with spectral components below 0.04 Hz; LF
(low frequency), ranging from 0.04 to 0.15 Hz; HF (high fre-
quency), comprising frequencies between 0.15 to 0.4 Hz. For
each of these three frequency bands, we also evaluated: the
frequency having maximum magnitude (V LFpeak, LFpeak, and
HFpeak, respectively); the power – expressed as percentage
of the total power – (V LFpower%, LFpower%, and HFpower%,
respectively); the power normalized to the sum of the LF and
HF power. Moreover, we calculated the LF/HF power ratio.

Furthermore, we also considered nonlinear indices ex-
tracted from HRV series, relying on two methods: Symbolic
Analysis and the Lagged Poincaré Plot (LPP) [15], [22], [23].

• Symbolic analysis: it is based on the conversion of the
series into a sequence of symbols [23], [24]. According
to the specific literature [23], [24], each HRV series
was divided in six levels of amplitude and a numeric
symbol (from 0 to 5) was assigned to each data sample
according to the amplitude level of belonging. In this
way, data were converted in symbolic series and we
investigated on the trend of patterns constituted by three
consecutive symbols. The patterns of three symbols
were divided into five classes: 0V , patterns with no
variations, where all symbols were equal; 1Va, patterns
with one variation in the amplitude level of belonging,
where the variation was between the second and the
third symbol; 1V b, patterns with one variation, where
the variation was between the first and second symbol;
2Va, patterns with two variations and with a trend
strictly increasing or strictly decreasing; 2V b, all the
other patterns with two variations. We used as features
the count of patterns in each class and their percentage
values (%);

• Lagged Poincaré Plot (LPP): this method quantifies the
fluctuations of the dynamics of the time series through
the scatter plot of NN intervals, where each NNn interval

is mapped as a function of the successive NNn+M . In
this study, we chose 1 ≤ M ≤ 10 [22], [25], [26]. The
features that can be extracted with the Poincaré Plot are:

– SD1: the standard deviation related to the points
that are perpendicular to the line-of-identity
NNn+M = NNn. It describes the HRV short-term
variability.

– SD2: the standard deviation that describes the long-
term dynamics and measures the dispersion of the
points along the identity line.

– S (S = π · SD1 · SD2): the area of an imaginary
ellipse with axes SD1 and SD2.

For each of the previous features, we built the graph in
function of M and calculated the area under the curve
(AUC) of the LPP:

– AUC value for lower values of M (AUClow, 1 ≤
M ≤ 5);

– AUC value for higher values of M (AUChigh, 5 ≤
M ≤ 10);

– the ratio between AUClow and AUChigh (AUC
low/high);

– the ratio between AUClow and the total AUC for
1 ≤ M ≤ 10 (AUC low/tot);

– the ratio between AUChigh and the total AUC for
1 ≤ M ≤ 10 (AUC high/tot).

D. EDR Signal Processing and Feature Extraction

Electrodermal response (EDR) is the general term used
to define autonomic changes in the electrical properties of
the skin. One of the most frequently used measures of
EDR is skin conductance (SC), which can be quantified
by applying an electrical constant potential between two
points of skin contact (usually the medial or distal phalanxes
of the non-dominant hand) and measuring the resulting
current between them. The EDR signal can be divided into
a slowly-varying component, the so-called tonic component
(i.e. skin conductance level (SCL)), and a superposed phasic
component, which is characterized by a shorter rise time and
a slower recovery time (i.e. skin conductance response, SCR)
[17], [27], [28]. Variations in the SCL are thought to reflect
general and slow changes in the ANS dynamics. The phasic
component, SCR, instead, is linked to exogenous stimuli such
as lights, sounds, smells, and is defined as a variation in the
SC signal arising within a predefined response window (1 - 5
s after stimulus onset), exceeding a minimum amplitude cri-
terion (0.05µS) [29]. Recent evidences suggest that these two
components rely on different neural mechanisms [30] and,
consequently, that both convey relevant and non-redundant
information about the ANS activity.

Sometimes, there are some innate responses in the SC-
curve, even without external stimuli. Those nonspecific skin
conductance responses (NsSCR) have the same character-
istics as stimulus-related SCRs, but are considered tonic
measures because they occur in the absence of external
stimuli. [31].

In this work, we processed the SC data by means of the
Continuous Deconvolution Analysis (CDA) [32]. The EDR is
modeled as a convolution of the ANS (i.e., sudomotor nerve



TABLE I: List of features extracted from EDR phasic and tonic components.

Phasic Feature Description
Npeak number of significant SCR wrw
AUC Area under the curve of phasic signal wrw (µSs)
peak maximum amplitude of significant SCRs wrw1(µS)

Tonic Feature Description
MeanTonic Mean value of the tonic component wrw (µS)

MeanTonic difference between
DiffTonic post/pre rest sessions (µS)

wrw= within response window (i.e., 5 sec after stimulus)

activity (SMNA)) and an impulse response function called
Bateman function, h(t), described in eq. 2

EDR(t) = SMNA(t)⊗h(t) (1)

where:

h(t) = (e−
t

τ1 − e−
t

τ2 ) u(t) (2)

with τ1 = 0.7 s and τ2 = 3 s ( u(t) is the unitary step
function and ⊗ is the convolutive operator). In the eq. 3,
SMNA is unknown and it is evaluated by deconvolving the
EDR signal with the impulse response function (h(t)), after
a preprocessing phase consisting of the visual detection and
removal of the movement artifacts, and a low pass zero-phase
filtering with a cutoff frequency of 2 Hz. The deconvoluted
driver signal SMNA is the sum of the two components, tonic
and phasic

SMNA = (DRIV ERtonic +DRIV ERphasic) (3)

The hypothesis underling SC component behavior is that
tonic activity is observable in the absence of any phasic
activity [17]. Therefore, the DRIV ERtonic component can be
obtained through the application of a smoothing Gaussian
window of 200 ms and a peak detection algorithm in order
to find the peaks under a fixed threshold. The DRIV ERphasic
component, instead, can be computed by subtracting the
previously estimated DRIV ERtonic from the SMNA. More
details can be found in [32]. Once the tonic and phasic
components are estimated from the CDA model, several
features can be extracted to investigate the sensitivity to
changes in caressing velocity. Referring to specific literature
[17], [32], we summarize the features used in this study in
Table I.

The following analyses were performed:

• Event-related phasic analysis: we studied EDR within a
time response window of 5 s [17], [32] after the affective
stimulus;

• Tonic analysis: we considered the mean tonic value
during the caress-like stimulation and the mean tonic
value differences between the post- and pre-stimulus
sessions.

The differences between the two levels of velocity (i.e., V1
= 9.4 mm/s, V2 = 37 mm/s) were studied using a Wilcoxon
signed-rank test, due to the non-Gaussianity of the samples.
In particular, p-values from Wilcoxon non-parametric tests
were associated with the null hypothesis of equal median
values between two velocity levels.

IV. RESULTS

Exemplary EDR and HRV series from one representative
subject are shown in Fig. 2. Results from SAM scores, HRV
and EDR analyses follow below.
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Fig. 2: Exemplary EDR (top panel) and HRV (bottom panel) series from one
representative subject.

A. SAM Results

Results from the self-assessment-questionnaire [20] are
summarized in Fig. 3 as boxplots. Specifically, statistical
analyses revealed that we can associate the stimulus with
higher velocity (V2) to higher arousal and lower valence
(unpleasant) than the caressing stimuli with lower velocity
(V1), which is coherent with [6].
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Fig. 3: Comparison of Arousal (right) and Valence (left) values corresponding to two
levels of velocities (V1 = 9.4 mm/s and V2 = 37 mm/s).

B. HRV Results

TABLE II: Mean ± standard deviation intervals for HRV features. Values were
averaged among the subjects. Last column shows p-values from Wilcoxon non-
parametric tests, with null hypothesis of equal median values between two velocity
levels.

Parameter V1 V2 p-value
LFHFpw −1.064±3.857 0.294±2,098 0.031

1Va −0.677±2.948 1.323±2.535 0.010
1Vb −0.516±2.954 1.613±2.848 0.009

1Va % 1.201±6.144 2.597±5.208 0.015
1 Vb % −0.877±6.139 3.323±6.174 0.014

AUC low/tot of SD1 0.001±0.048 −0.024±0.047 0.048
AUC high/tot of SD1 −0.001±0.048 0.0241±0.047 0.048

Features from HRV series were defined considering differ-
ential values estimated within sessions of 35 seconds before
and after the stimulation. Statistical tests revealed significant
differences between the two velocities for seven parameters:



one defined in the frequency domain (LF/HF power ratio –
LFHFpw, p< 0.05), and the others defined through nonlinear
methods such as symbolic analysis (p < 0.03) and LPP
(p < 0.05) (see Table II and Fig. 4). We found no significant
differences for the other cases.
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Fig. 4: The dots mark the across-subject mean of the within-subject-rank for each
velocity level for each non-linear HRV feature. The wiskers indicate the standard error.
The Wilcoxon test revealed significant differences in the cases indicated by asterisks.
Legend: (∗)0.01 < y < 0.05 ; (∗∗)0.001 < y ≤ 0.01; (∗∗∗)y ≤ 0.001

C. EDR Results

According to the methodology described above, EDR dy-
namics was studied through its tonic and phasic components.
Concerning features of the tonic component, both MeanTonic
(p < 0.05) and DiffTonic (p < 0.001) showed significant
differences between the two caressing velocities. Higher
values were associated with caressing performed at higher
velocity (see Table III and Fig. 5(left)). Same trend was also
found studying features of the phasic component, where AUC
and the Npeak features revealed a significant difference in
relation to the two velocities (p < 0.001, see Table III and
Fig. 5). No significant differences were found for the other
cases.

TABLE III: Mean ± standard deviation intervals for EDR features. Values were
averaged among the subjects. Last column shows p-values from Wilcoxon non-
parametric tests, with null hypothesis of equal median values between two velocity
levels.

Feature V1 V2 p-value
Npeak 0.375 ± 0.701 0.969 ± 1.112 0.00048
AUC 0.274 ± 0.397 0.783± 1.620 2.71e-07

MeanTonic 3.415 ± 5.459 3.495± 5.418 0.02
DiffTonic -0.120 ± 0.256 0.0397 ± 0.265 0.00057
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Fig. 5: The dots mark the across-subject mean of the within-subject-rank for each
velocity level for each EDR feature, while the wiskers indicate the standard error. The
Wilcoxon test revealed significant differences in the cases indicated by asterisks.
Legend: (∗)0.01 < y < 0.05 ; (∗∗)0.001 < y ≤ 0.01; (∗∗∗)y ≤ 0.001

V. DISCUSSIONS AND CONCLUSIONS

With this study, we have demonstrated that it is possible
to discriminate different caressing stimuli associated to two
levels of velocities, through the analysis of physiological
signals such as EDR and HRV series. Importantly, the study
of SAM scores has revealed that caressing performed at
different velocities were associated to two different arousing
and pleasantness levels. Particularly, caresses performed at
lower velocity were associated to low arousal and high
valence (pleasant) levels.

These outcomes confirm and further sustain the results
form our preliminary studies devoted to investigate ANS
activation through haptic stimulation [11], [33], [34]. Fur-
thermore, it is worth to note that HRV and EDR series are
complementary, since they refer to two different dynamics
underlying ANS activity. Indeed, while EDR signal is largely
dependent on sympathetic functions, HRV series is repre-
sentative of parasympathetic ones (through HRV HFpower%)
[15]. Therefore, our findings suggest that caress-like stimuli
can affect both these types of ANS functions, which can
be integrated in automatic machine learning systems for the
discrimination of physical and affective properties of haptic
stimuli. This point will be investigated as future work

At the same time, the here presented results open a fasci-
nating novel perspective for the design of haptic interfaces
that integrate affective physiology for HRI. In this envisioned
scenario, ANS-related measurements could be used to assess
user’s comfort and emotional state in interacting with a
given haptic device. Furthermore, relying on the emotional
characterization we performed and we will further develop,



we could devise design and control guidelines for a novel
generation of haptic systems, which can be commanded to
elicit a given emotional state, or in response to a given
emotional state of users. The main elements of this paradigm
are depicted in Fig. 6. During the administration of haptic
stimuli, physiological signals related to ANS dynamics (e.g.
the HRV series, respiration dynamics, electrodermal response
etc.) can be recorded and analyzed to infer information on
user’s emotional status and other parameters, e.g. stress,
fatigue, etc. (see e.g. [35]).

An interesting point is that these results are consistent
across subjects, and hence they can be generalized and
effectively employed for a large class of human-machine
systems. Of note, although these results were obtained with
haptic devices, conclusions from this study can be concretely
applied to other robotic devices for HRI, for example in the
field of rehabilitation robotics and prosthetics. In these cases,
the main goal is to estimate subtler but important aspects
such as stress, fatigue, and motivation in patients during
training and regular use of robotic aids, thus contributing to
correctly assess rehabilitative or assistive procedures, with
a high potential impact on acceptability and effectiveness.
A particular application case of these results could be the
field of shared-control for assistive architectures, where some
degree of robotic autonomy or automated help is available
to assist the user [36], [37]. What is challenging in this
type of HRI is to properly and easily switch from robot
to user’s control, based on user’s needs. In this envisioned
novel scenario, where the physiological counterpart will be
suitably integrated within the system architecture, it could
be easier to detect user’s comfort in HRI, thus enabling to
switch control in a more naturalistic manner.

Fig. 6: The main components of the novel paradigm for haptic interfaces, integrating
affective physiology within the control loop
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[4] M. T. Fairhurst, L. Löken, and T. Grossmann, “Physiological and
behavioral responses reveal 9-month-old infants sensitivity to pleasant
touch,” Psychological science, vol. 25, no. 5, pp. 1124–1131, 2014.
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