
Protected pointers to specify access privileges in
distributed systems

Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione, Università di Pisa,

via G. Caruso 16, 56126 Pisa, Italy. E-mail: lanfranco.lopriore@unipi.it

Antonella Santone
Dipartimento di Bioscienze e Territorio, Università del Molise,

Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy. Email: antonella.santone@unimol.it

Abstract—With reference to a distributed environment consisting of nodes connected
in an arbitrary network topology, we propose the organization of a protection system in
which a set of subjects, e.g. processes, generates access attempts to memory segments.
One or more primary passwords are associated with each node. An access to a given
segment can be accomplished successfully only if the subject attempting the access holds an
access privilege, certified by possession of a valid protected pointer (p-pointer) referencing
that segment. Each p-pointer includes a local password; the p-pointer is valid if the
local password descends from a primary password by application of a universally known,
parametric one-way generation function. A set of protection primitives makes it possible
to manage the primary passwords, to reduce p-pointers to include less access rights, to
allocate new segments, to delete existing segments, to read the segment contents and
to overwrite these contents. The resulting protection environment is evaluated from a
number of viewpoints, which include p-pointer forging and revocation, the network traffic
generated by the execution of the protection primitives, the memory requirements for
p-pointer storage, and the relation of our work to previous work. An indication of the
flexibility of the p-pointer concept is given by applying p-pointers to the solution of a
variety of protection problems.

Keywords: access privilege; distributed system; parametric one-way function; password;
protection; segment.

1 INTRODUCTION

Let us consider a protection system in which a set of active entities, the subjects S0, S1, . . .,
generates access attempts to a set of protected, passive entities, the objects B0, B1, . . . [23],
[26], [40]. A subject can be a scheduled computation (a process), or, in an event-driven
environment, a processing activity caused by the occurrence of an event, e.g. a hardware
interrupt [30]. The system associates a set of access rights with each object; each access
right makes it possible to access the object in a specific mode. Thus, a subject is a unit
of computation that may possess access rights, and an object is a unit to which specific
access rights may be applied [26]. In a classical model, the protection system takes the

— 1 —



form of an access matrix AM , featuring a row for each subject and a column for each
object [33], [36], [40]. Element AMi,j of the access matrix specifies the access privilege, i.e.
the set of access rights, held by subject Si on object Bj.

An important problem in the implementation of a protection system is how to represent
the access matrix in memory. A solution is to associate a set of passwords with each given
object. Each password corresponds to an access privilege for that object. A subject that
holds a given password can access the object to carry out the actions permitted by the
access rights in the access privilege associated with this password.

1.1 Password proliferation

Passwords tend to proliferate. For each given object, we have one password for each
significant access privilege. For instance, for two access rights, we may have up to three
passwords, corresponding to each access right separately, and the two access rights in
conjunction. These passwords will be stored as part of the internal representation of the
object; for small objects, the memory area reserved for password storage can be a significant
fraction of the total. Alternatively, we may define only two passwords, separately for the
two access rights. In this case, a subject that is granted both access rights owns the two
passwords, and an action requiring full access privileges will be permitted by presenting
both these passwords. This is an undue complication in access privilege management. Of
course, the problem is exacerbated for objects supporting more access rights.

1.2 Password reduction

A further important problem is that of access privilege reduction. Let us consider a subject
S0 that holds a password p corresponding to a given access privilege for object B. S0 can
grant this access privilege to a different subject S1 simply by transmitting p to S1. So
doing, S1 acquires all the access rights associated with p. Let us now suppose that S0 is
aimed at transmitting only a subset of these access rights. In this case, S0 sends p to a
component of object B, which we shall call the password manager PMB. The password
manager returns a password for the reduced access privilege to S0. If this password does
not exist, the entire procedure must be supported by an ad hoc ability of PMB to forge
new passwords. If this is indeed impossible, PMB returns a negative acknowledgement
to S0, and the access right reduction request fails. Of course, this procedure is an undue
complication of the whole password management process. In a distributed system, network
costs and delays are associated with the necessity to communicate between S0 and PMB,
if they reside in different nodes.

We may conclude that a mechanism is desirable, allowing a subject that holds a
password for a given object to forge passwords for reduced privileges autonomously,

— 2 —



without incurring the costs and complications connected with requests to a password
manager.

In a password-based system, the access rights held by a given subject are restricted
to the passwords it holds. Therefore, passwords are well suited to the support of the
principle of least privilege [7], [26], [32]: at any given time, each subject should be granted
the minimum privilege that is necessary for that subject at that time to carry out its
job. In a least privilege view of access control, each subject is granted access to least
possible objects, and we grant this access to least possible subjects [27]. In traditional
protection systems, protection is coarse-grained at the application level; different virtual
spaces correspond to different applications. In contrast, password systems can support
forms of fine-grained memory protection, which can be exercised at the level of a single
subject.

1.3 Password review and revocation

With reference to the access matrix model, revocation of an access privilege means to
eliminate this access privilege from one or more elements of the matrix. Revocation can
be carried out by column, i.e. it applies to all, or part of, the subjects that hold a privilege
for a given object, or by rows, i.e. we revoke the access privileges held by a given subject,
for all, or part of, the objects to which these access privileges apply. Revocation by row
is especially interesting in a distributed system, for instance, to limit revocation to the
access privileges held by a subject in a specific node.

A characteristic of password environments is the ease of access privilege distribution
[17], [21]. A subject that receives a copy of a password acquires the same access privilege
of the subject that grants this password; in fact, the copy is indistinguishable from the
original. The recipient subject is free to transmit the password further. This means that
copies of the same password tend to spread throughout the system, and it is hard, if not
impossible, to keep track of their position. Even worse, in a distributed environment, the
copies can be stored in different nodes. A related problem is that of password revocation
[10]. After a password has been revoked, it is no longer be possible to use that password
for successful object access.

If we modify the internal representation of an object to replace a given password with
a new password, we revoke the corresponding access privilege from all the subjects that
hold the old password. In a distributed system, revocation is independent of the network
location of these subjects. A revocation can be followed by the distribution of the new
password. Suppose that we are aimed at revoking an access privilege from a subset of the
subjects, e.g. the subjects being executed in a given node. We can change the password,
and distribute the new password to the subjects in the other nodes. An approach of

— 3 —



this type has high costs in terms of network traffic, it induces considerable delays due to
network propagation, and is an undesirable complication of the whole process of access
privilege management.

1.4 Protected pointers

In this paper, we present solutions to the problems, outlined above. We refer to a
distributed system consisting of nodes connected by a local area network. The network
topology is inessential. We make no hypothesis on the internal architecture of the nodes,
the only exception being the provision for the two traditional modes, a kernel mode,
and a user mode with memory access limitations. In each node, the primary memory is
partitioned into a private memory area, which hosts the protection system and can be
accessed only from within the node, and a shared memory area, which can also be accessed
from the other nodes, albeit in a strictly controlled fashion.

The shared memory is segmented. A segment is a contiguous memory area completely
defined by an identifier, a base and a limit. Identifiers are local to the given node. They
are assigned to segments in the order of their creation. The base of a given segment is
the address of the first storage unit of this segment. The limit expresses the segment size.
Segments can overlap, partially or totally. This means that a memory cell can be part of
two or more segments. Segments can have subsegments. A subsegment of a given segment
occupies a contiguous memory area, contained within the boundaries of that segment. The
subsegment is completely defined by an identifier, a base within the original segment, and
a limit that expresses the subsegment size. Subsegment identifers are relative to segments.
This means that, for every given segment, its first subsegment is identified by 1 (as will be
shown later, subsegment 0 is reserved).

Segments are the basic unit of information protection and sharing between the nodes.
Four access rights are defined for a segment, the read access right that makes it possible
to read the segment contents, the write access right that makes it possible to overwrite
these contents, the new access right that makes it possible to create subsegments within
the segment, and the delete access right that makes it possible to delete the segment.

An access privilege can be expressed in terms of any combination of the four access
rights. A subject can access a given segment only if it owns an access privilege certified by
possession of a protected pointer for this segment (p-pointer from now on, for short). A
p-pointer for a segment in the shared memory of a given node includes the node name, the
segment identifier, an optional specification of an access privilege, and a local password.
The p-pointer is valid if the local password is valid. If this is the case, the p-pointer
grants the specified access privilege for that segment. If the access privilege specification
is lacking, the p-pointer grants a full access privilege, i.e. all the four access rights.

— 4 —



Of course, if we associate a password with each existing segment and each access
privilege, the number of passwords grows unacceptably. This is a undesirable flaw that
we are aimed at avoiding. Instead, we maintain a small number of passwords in each
node, in the private memory area reserved in that node for the protection system. These
passwords are called the primary passwords. Each primary password has an identifier
(order number) and a value. Each p-pointer includes the identifier of a primary password.
The p-pointer is valid if the local password results from the application of a password
generation mechanism to that primary password. This mechanism is based on application
of a universally-known generation function. The number of primary passwords in each
given node is related to the possibility to revoke access privileges selectively. If a form of
selective revocation is not required, a single primary password is sufficient.

The rest of this paper is organized as follows. Section 2 introduces our protection
model, with special reference to p-pointer generation, validation, and revocation. Section
3 presents a set of primitives, the protection primitives, which form the subject interface
of the protection system. The actions involved in the execution of each primitive are
described. Primary password management, segment allocation and deletion, and remote
segment access are considered in special depth. Section 4 presents a few examples of
practical applications of p-pointers to the solution of a variety of protection problems. This
section is especially aimed at giving an indication of the flexibility of the p-pointer concept.
Section 5 discusses the proposed protection system from a number of viewpoints, which
include p-pointer forging and revocation, the network traffic generated by the execution of
the protection primitives, the memory requirements for p-pointer storage, and the relation
of our work to previous work. Section 6 gives concluding remarks.

2 THE PROTECTION MODEL

2.1 Protected pointers

Function f is one-way if, given a value x, it is easy to compute f(x), but given a value y,
it is computationally unfeasible to find a value x such that y = f(x) [2], [18]. One-way
functions can be constructed starting from a good cryptosystem, to minimize the design
and implementation efforts [25], [31]. In a common approach, a publicly know constant
c is encrypted using x as the key, i.e. f(x) = Ex(c) [34]. Function fc(x) is a parametric
one-way function if, given a value y and a parameter c, it is computationally unfeasible to
find a value x such that y = fc(x) [37]. Thus, a parametric one-way function is a family of
one-way functions, one for each value of the parameter. It can be implemented starting
from f(x) = Ex(c), using c as a parameter [34].

As anticipated in Section 1.4, our mechanism for p-pointer generation takes advantage

— 5 —



Table 1: Protected pointers.

Simple pointer P = (D, pid, s0, p0)
D: node name
pid: identifier of a primary password
s0: a segment in the shared memory of D
p0 = fs0(p), where p is the value of pid

access privilege: full
Reduced pointer RP = (D, pid, s0, a0, p′

0)
p′

0 = fa0(p0) = fa0(fs0(p))
access privilege: a0

Subpointer SP = (D, pid, s0, a0, s1, p1)
s1: a subsegment of s0
p1 = fs1(p′

0) = fs1(fa0(fs0(p)))
access privilege: a0

Reduced subpointer RSP = (D, pid, s0, a0, s1, a1, p′
1)

p′
1 = fa1(p1) = fa1(fs1(fa0(fs0(p))))

access privilege: a1 ∧ a0

of a parametric one-way function, the generation function, which we shall denote by f . A
p-pointer that references a segment is called a simple pointer (Table 1). Let s0 : (b0, t0)
denote a segment in the shared memory of node D, where s0 is the segment identifier,
b0 is the base, and t0 is the limit. A simple pointer P that references s0 has the form
P = (D, pid, s0, p0), where pid is the identifier (order number) of a primary password of
node D, and p0 is the local password. We have p0 = fs0(p), where argument p is the value
of pid (Figure 1a). P references s0 with a full access privilege.

Let us now consider a subject S0 that holds simple pointer P . S0 is in the position to
grant a full access privilege for segment s0 to another subject S1, being possibly executed
in a different node, simply by transmitting a copy of P to S1. Now suppose that S0 is
aimed at granting subject S1 only a subset of the access rights for s0. To this aim, S0

preventively transforms P into a reduced pointer RP . We have RP = (D, pid, s0, a0, p′
0),

Figure 1: Generation of: (a) the local password p0 of a simple pointer referencing segment s0,
with a full access privilege; (b) the local password p′

0 of a reduced pointer referencing segment s0,
with access privilege a0; (c) the local password p1 of a subpointer referencing subsegment s1 of
s0, with access privilege a0; and (d) the local password p′

1 of a reduced subpointer referencing
subsegment s1, with access privilege a1 ∧ a0.

— 6 —



where a0 specifies the effective access privilege granted by RP , and password p′
0 is given

by relation p′
0 = fa0(p0) (Figure 1b). Quantity a0 is called the access privilege specifier. It

consists of four bits, corresponding to the four access rights, in the order new, delete, read,
and write; an asserted bit includes the corresponding access right. In the following, we
shall use an abbreviated notation to specify access privileges enclosed in square brackets,
e.g. a0 = [r] includes a single access right, read, and stands for the binary 0010, and
a0 = [ndrw] includes all the four access rights, and stands for the binary 1111.

As anticipated in Section 1.4, in our protection model a segment can have subsegments.
A subsegment of s0 : (b0, t0) is denoted by s1 : (b1, t1), where s1 is the subsegment identifier,
b1 is the base of s1 within s0, and t1 is the limit of s1. Thus, the absolute addresses of the
first and the last storage units of s1 are given by b0 + b1 and b0 + b1 + t1 − 1, respectively.
The subsegment must be completely included within the boundaries of s0, thus we have the
inclusion condition b1 + t1 ≤ t0. Reduced pointer RP can be transformed into a subpointer
SP that references s1. We have SP = (D, pid, s0, a0, s1, p1), where password p1 is given by
relation p1 = fs1(p′

0) (Figure 1c). The effective access privilege granted by SP is a0.
In turn, subpointer SP can be transformed into a reduced subpointer RSP that specifies

less access rights for the same subsegment s1. We have RSP = (D, pid, s0, a0, s1, a1, p′
1),

where a1 is an access privilege specifier, password p′
1 is given by relation p′

1 = fa1(p1), and
the effective access privilege granted by RSP is a1 ∧ a0, i.e. the access rights in a1 that
are also included in a0.

Now suppose that a subject received a reduced pointer RP for segment s0, and is
aimed at transmitting this pointer with less access rights. This is indeed possible by taking
advantage of the fact that, in a subpointer, subsegment 0, called the null subsegment,
indicates the original segment. Thus, both reduced pointer RP and reduced subpointer
RSP = (D, pid, s0, a0, 0, a1, p′′

1) reference s0, but the access privilege in RSP is restricted
by access privilege specifier a1. We have p′′

1 = fa1(f0(fa0(p0))), where f0 corresponds to
the null subsegment, and the effective access privilege is a1 ∧ a0.

We wish to point out that p-pointers granting the same access privilege may have
different passwords. For instance, consider subpointers RSPA = (D, pid, s0, aA, s1, aB, p′

1,A)
and RSPB = (D, pid, s0, aB, s1, aA, p′

1,B). These subpointers reference the same subsegment,
s1, and the access privilege is aA ∧ aB in both cases, but the passwords are different. We
have p1,A = faB

(fs1(faA
(fs0(p)))) and p1,B = faA

(fs1(faB
(fs0(p)))).

2.2 Access validation

Let us now consider a subject B that holds simple pointer P = (D, pid, s0, p0) referencing
segment s0 : (b0, t0). When B issues an access attempt to s0 by using P , e.g. to read the
contents of this segment, or to overwrite these contents, the access terminates successfully

— 7 —



only if P is valid, that is, password pid exists, and p0 = fs0(p). For a reduced pointer
RP = (D, pid, s0, a0, p′

0), an access attempt to s0 terminates successfully only if a0 includes
the access right that is necessary to accomplish the access, and RP is valid, that is, pid

exists, and p′
0 = fa0(fs0(p)).

For a subpointer SP = (D, pid, s0, a0, s1, p1) referencing subsegment s1 : (b1, t1), an
access attempt to s1 terminates successfully only if a0 includes the access right that
is necessary to accomplish the access, and SP is valid, that is, pid exists, and p1 =
fs1(fa0(fs0(p))). For a reduced subpointer RSP = (D, pid, s0, a0, s1, a1, p′

1), an access
attempt to s1 terminates successfully only if quantity a1 ∧ a0 includes the access right
that is necessary to accomplish the access, and RSP is valid, that is, pid exists, and
p′

1 = fa1(fs1(fa0(fs0(p)))).
Finally, for a reduced subpointer RSP = (D, pid, s0, a0, 0, a1, p′′

1) defined in terms of the
null subsegment, an access attempt to segment s0 terminates successfully only if quantity
a1 ∧ a0 includes the access right that is necessary to accomplish the access, and RSP is
valid, that is, pid exists, and p′′

1 = fa1(f0(fa0(fs0(p)))).

2.3 Access privilege revocation

If we delete a segment, all the p-pointers referencing this segment are revoked; it will be
no longer possible to use these p-pointers to access memory. As seen in Section 1.4, two or
more segments can overlap in memory. If we delete one of these segments, the validity
of the p-pointers referencing the other segments is unaffected by the deletion. Similar
considerations can be made for subsegments. If we delete a subsegment of a given segment,
all the subpointers referencing this subsegment are revoked, but the validity of all the
subpointers referencing any overlapped subsegment is unaffected by the deletion.

P-pointers can also be revoked by replacing the value of a primary password with a
new value, or by deleting a primary password. Let pid denote a primary password of node
D. If we change the value of pid, we revoke all the p-pointers defined in terms of the old
value, independently of the node where these p-pointers are stored. In fact, the validation
of these p-pointers is destined to fail (see Section 2.2).

Consider two p-pointers referencing the same segment s0, and defined in terms of
different primary passwords, e.g. PA = (D, pid,A, s0, pA), and PB = (D, pid,B, s0, pB), where
pA = fs0(pA), pA is the value of pid,A, pB = fs0(pB), and pB is the value of pid,B. In a
situation of this type, if we replace the value of pid,A with a new value, we revoke PA,
which is defined in terms of pid,A; however, the validity of PB, defined in terms of pid,B, is
not affected by the replacement. After revocation, it will be possible to access segment s0

by using PB, but this is no longer true for PA.

— 8 —



3 THE PROTECTION SYSTEM

3.1 Protection tables

Each given node D contains a password table PTD in the private memory region reserved for
the protection system. This table features an entry for each primary password generated in
that node. The entry for a given primary password contains the identifier of that password
and the password value. A simple method for the generation of primary password identifiers
is a sequential generation. Each node maintains a password counter, which is initialized
to 0 when the node becomes part of the system, and is incremented by 1 when a new
primary password is generated. The identifier of the new primary password is given by the
contents of the password counter. Primary password values will be generated at random.
They will be sparse and large, according to the security requirements of the system.

As will be shown shortly, when a new segment is allocated, a primary password is used
to generate a simple pointer for that segment. We say that the segment is linked to this
primary password. In node D, a segment table STD features an entry for each segment in
the shared memory of that node. The entry for a given segment contains the identifier
s0, the base b0, and the limit t0 of that segment, together with the identifier pid of the
primary password to which that segment is linked. For each segment, a subsegment table
is reserved to contain the identifier s1, the base b1, and the limit t1 of each subsegment of
that segment.

3.2 Access rights

When a node D is added to the system, a primary password, the root password pid,R, a
segment, the root segment sR, and a simple pointer, the root pointer PR, are created in that
node as part of the node initialization procedure. The identifier, the base and the limit of
sR are all equal to 0. Memory space is not reserved for sR. The root pointer PR references
sR with full access privileges. It has the form PR = (D, pid,R, 0, pR), where pR denotes
quantity f0(pR), and pR is the value of pid,R. Of course, PR can be transformed into a
reduced root pointer to contain less access rights; a result of this type will be obtained by
taking advantage of the usual procedure for simple pointer reduction (see Section 2.1).

Access right read for the root segment sR of a given node D allows us to create new
primary passwords in D (Table 2). Access right write allows us to replace the value of
the primary passwords with new values. Access right delete is necessary to delete the
primary passwords. Access right new makes it possible to create new segments in D. For a
segment, access right new makes it possible to create subsegments in that segment. Access
right delete allows us to delete the segment. Access rights read and write make it possible
to access the segment to read its contents, and to overwrite these contents, respectively.
For subsegments, access right new is undefined.

— 9 —



Table 2: Access rights.

Root segment sR:
new: to create new segments
delete: to delete the primary passwords
read: to create new primary passwords
write: to change the values of the primary passwords

Segment s0:
new: to create new subsegments
delete: to delete the segment
read: to read the segment contents
write: to overwrite the segment contents

Subsegment s1:
new: <undefined>
delete: to delete the subsegment
read: to read the subsegment contents
write: to overwrite the subsegment contents

3.3 Protection primitives

The subject interface of the protection system consists of a set of primitives, the protection
primitives. Table 3 summarizes the actions involved in the execution of each primitive;
the rest of this section describes these actions in more detail. The protection primitives
are intended to be executed in the kernel mode. This is required to access the protection
tables, which are stored in the primary memory region reserved for the protection system.

To simplify the presentation, we shall omit details concerning the communication
protocols between the network nodes, e.g. message routing and message encryption.
Furthermore, we shall not consider the security issues that are relevant to these communi-
cations, e.g. the prevention of forms of replay attack. In the presentation, node D is the
current node, i.e. the node where the given protection primitive is executed.

3.3.1 Primary password management

Protection primitive pid ← newPrimaryPassword(GR) generates a new primary password
in the current node D, and returns the identifier pid of this primary password. Execution
is as follows:

1. Argument GR is validated; it should be a root pointer, or a reduced root pointer
specifying access right read. If the validation is unsuccessful, execution fails.

2. The identifier pid and the value p of a new primary password are generated, and
are inserted into a free entry of the password table PTD of node D. Quantity pid is
returned to the caller.

In step 1, the local password in GR is compared with quantity f0(pR), or, if GR is a reduced
root pointer and a0 is the access privilege specifier, with quantity fa0(f0(pR)), where 0 is

— 10 —



Table 3: The protection primitives.

pid ← newPrimaryPassword(GR)
In the current node, generates a new primary password, and returns the identifier pid of this primary
password. Argument GR should be a root pointer, or a reduced root pointer specifying access right
read.

changePrimaryPassword(GR, pid)
In the current node, replaces the value of primary password pid with a new value. Argument GR

should be a root pointer, or a reduced root pointer specifying access right write.
deletePrimaryPassword(GR, pid)

In the current node, deletes primary password pid, and all the segments linked to this password.
Argument GR should be a root pointer, or a reduced root pointer specifying access right delete.

P ← newSegment(GR, pid, b0, t0)
In the current node, allocates a segment having base b0 and limit t0. An identifier s0 is assigned
to the new segment. The segment is linked to primary password pid. Returns a simple pointer P
referencing s0. Argument GR should be a root pointer, or a reduced root pointer specifying access
right new.

RP ← reduceSimplePointer(P, a0)
Returns a reduced pointer RP derived from simple pointer P by using access privilege specifier a0.

SP ← newSubsegment(G, b1, t1)
In the current node, allocates a subsegment having base b1 and limit t1 in the segment s0 referenced
by p-pointer G, which should be a simple pointer, or a reduced pointer specifying access right new.
An identifier s1 is assigned to the new subsegment. Returns a subpointer SP referencing s1 and
including all the access rights in G.

RSP ← reduceSubpointer(SP, a1)
Returns a reduced subpointer RSP derived from subpointer SP by using access privilege specifier
a1.

deleteSegment(G)
In the current node, deletes the segment referenced by p-pointer G, which should be a simple pointer,
or a reduced pointer specifying access right delete.

deleteSubsegment(G)
In the current node, deletes the subsegment referenced by p-pointer G, which should be a subpointer,
or a reduced subpointer specifying access right delete.

readSegment(G, addr)
Copies the contents of the segment or subsegment referenced by p-pointer G into an area starting at
address addr of the private memory of the current node. G should specify access right read.

writeSegment(G, addr)
Replaces the contents of the segment or subsegment referenced by p-pointer G with quantities taken
from an area starting at address addr of the private memory of the current node. G should specify
access right write.

the identifer of the root segment. The actions involved in this validation process have
been illustrated in Section 2.2. To simplify the presentation, from now on these actions
will be simply referred to as a p-pointer validation.

Protection primitive changePrimaryPassword(GR, pid) changes the value of primary
password pid in the current node D. Execution is as follows:

1. Argument GR is validated; it should be a root pointer, or a reduced root pointer
specifying access right write. If the validation is unsuccessful, execution fails.

— 11 —



2. A new primary password value is generated, and is inserted into the entry reserved
for primary password pid in the password table PTD of node D.

Execution in node D of protection primitive deletePrimaryPassword(GR, pid) deletes
both the primary password whose identifier is pid, and all the segments linked to pid.
Execution is as follows:

1. Argument GR is validated; it should be a root pointer, or a reduced root pointer
specifying access right delete. If the validation is unsuccessful, execution fails.

2. Segment table STD is accessed to delete the table entries reserved for the segments
linked to primary password pid.

3. Password table PTD is accessed to delete the table entry reserved for pid.

3.3.2 Allocating new segments

Execution in node D of primitive P ← newSegment(GR, pid, b0, t0) allocates a new segment
in D, and returns a simple pointer P referencing this segment. Arguments b0 and t0 are
the base and the limit of the new segment. An identifier s0 is assigned to the new segment,
and the segment is linked to primary password pid. Execution is as follows:

1. P-pointer GR is validated; it should be a root pointer, or a reduced root pointer
specifying access right new. If the validation is unsuccessful, execution fails.

2. Quantities b0 and t0 are considered. If the new segment cannot be completely
contained in the shared memory of node D, execution fails.

3. The entry reserved for primary password pid in the password table PTD of node D

is accessed to extract the value p of this primary password. If no such entry exists,
execution fails.

4. The identifier s0 of the new segment is generated, and quantities s0, b0, t0, and pid

are inserted into a free entry of segment table STD.
5. Quantity p and relation p0 = fs0(p) are used to forge simple pointer P = (D, pid, s0, p0)

referencing the new segment. P is returned to the caller.

In step 4, a simple strategy for the generation of segment identifiers is a sequential
generation, supported by a segment counter in each node. When node D is initialized, its
segment counter is set to 1 (as seen in Section 2.1, segment identifier 0 is reserved). When
a new segment is generated, the segment identifier is taken from the segment counter, and
then the value of the counter is incremented by 1.

The RP ← reduceSimplePointer(P, a0) primitive returns a reduced pointer RP =
(D, pid, s0, a0, p′

0) derived from simple pointer P = (D, pid, s0, p0) by using access privilege

— 12 —



specifier a0. Execution of this primitive uses generation function f to evaluate quantity
p′

0 = fa0(p0) (see Section 2.1).
A subsegment of a given segment s0 can be allocated by using primitive SP ←

newSubsegment(G, b1, t1). Arguments b1 and t1 are the base and the limit of the new
subsegment. An identifier s1 is assigned to the new subsegment. The primitive returns a
subpointer SP referencing s1. Execution is as follows:

1. Argument G is validated; it should be a simple pointer referencing segment s0, or a
reduced pointer referencing s0 with access right new. If the validation is unsuccessful,
execution fails.

2. Quantities b1 and t1 are considered. The new subsegment should be completely
contained within the memory area reserved for s0, i.e. the inclusion condition
b1 + t1 ≤ t0 should be satisfied. If this is not the case, execution fails.

3. The identifier s1 of the new subsegment is generated, and quantities s1, b1, and t1

are inserted into a free entry of the subsegment table of s0.
4. If G is a reduced pointer RP = (D, pid, s0, a0, p′

0), subpointer SP = (D, pid, s0, a0, s1, p1)
referencing the new subsegment is generated by using relation p1 = fs1(p′

0). If G is a
simple pointer P = (D, pid, s0, p0), then we have a0 = [ndrw], and p1 = fs1(fa0(p0)).
In both cases, SP is returned to the caller.

In step 3, a simple strategy for the generation of the subsegment identifiers is a sequential
generation, supported by a subsegment counter for each existing segment.

The RSP ← reduceSubpointer(SP, a1) primitive returns a reduced subpointer derived
from subpointer SP by using access privilege specifier a1. Let SP = (D, pid, s0, a0, s1, p1)
and RSP = (D, pid, s0, a0, s1, a1, p′

1). Execution of this primitive uses generation function
f to evaluate quantity p′

1 = fa1(p1).
Protection primitives newSegment and newSubsegment need to access the protection

table, and can only be used to allocate memory locally, in the current node. This is not the
case for primitives reduceSimplePointer and reduceSubpointer. In fact, a subject is always
in the position to carry out a p-pointer reduction autonomously. No assistance is needed
of the node where the referenced segment is stored, and the p-pointer transformation
generates no network traffic. This important result has been obtained by taking advantage
of generation function f , which is universally known.

3.3.3 Deleting segments

The deleteSegment(G) primitive allows a subject running in node D to delete the segment
s0 referenced by p-pointer G in D, and all the subsegments of this segment. Execution
accesses segment table STD to eliminate the table entry reserved for s0. The subsegment

— 13 —



table associated with s0 is deleted. Execution terminates successfully only if G is valid,
and is a simple pointer, or a reduced pointer including access right delete.

Similarly, the deleteSubsegment(G) primitive makes it possible to delete the subseg-
ment s1 of segment s0, which is referenced by p-pointer G in D. Execution accesses the
subsegment table of s0 to eliminate the table entry reserved for s1. Execution terminates
successfully only if G is valid, and is a subpointer, or a reduced subpointer including access
right delete.

When a new segment is allocated, or an existing segment is deleted, the contents of
the corresponding memory area are not modified. This means, for instance, that if two or
more segments are defined for the same memory area, and we delete one of them, the other
segments are not affected by the deletion. Segment creation and deletion are restricted to
the current node; the protection primitives do not allow us to create or delete segments in
the shared memory of a remote node. Thus, memory management activities are confined
within the node boundaries. Remote memory accesses are only permitted to read the
contents of a remote segment, or to overwrite these contents.

3.3.4 Accessing segments

Every given segment can be accessed, to read or to write, only by presenting a p-pointer
specifying the corresponding access right, read or write. To this aim, the protection system
includes two communication primitives, called readSegment and writeSegment. If used
to access a segment in a remote node, both these primitives cause the exchange of messages
with that node. A message can be a request message, a reply message, or a data message. A
request message specifies actions to be accomplished in the remote node, a reply message is
used to return the results of these actions, a data message is used to transmit the contents
of a segment.

In the rest of this section, we shall describe the actions involved in the execution of
the communication primitives. We shall refer to the case of an access to a remote segment.
The activities resulting from an access to a segment in the local shared memory can be
easily imagined, and will not be described in detail.

The readSegment(G, addr) communication primitive copies the contents of the segment
or subsegment s referenced by p-pointer G into an area starting at address addr of the
private memory of the current node D. Let R denote the remote node where s is stored.
Execution is as follows:

1. Node D validates p-pointer G; it should specify access right read. If this is not the
case, execution fails.

2. Node D sends a request message to node R. On receipt of this message, R accesses
segment table STR or, if s is a subsegment, the subsegment table of the segment

— 14 —



including s, as specified by p-pointer G, to find the table entry reserved for s and
extract the base b and the limit t of s. If no such entry exists, s has been deleted; a
negative reply message is sent to D, and execution of readSegment fails. Otherwise,

3. Node R uses quantities b and t to assemble a data message d including t and the
contents of s. This data message is returned to D.

4. Node D copies the contents of s from data message d into a local private memory
area of size t, which starts at address addr.

The writeSegment(G, addr) communication primitive copies the contents of an area
starting at address addr of the private memory of the current node D into the segment or
subsegment s referenced by p-pointer G. Let R denote the remote node where s is stored.
Execution is as follows:

1. Node D validates p-pointer G; it should specify access right write. If this is not the
case, execution fails.

2. Node D sends a request message to node R. On receipt of this message, R accesses
segment table STR or, if s is a subsegment, the subsegment table of the segment
including s, as specified by p-pointer G, to find the table entry reserved for s and
extract the limit t of s. If no such entry exists, s has been deleted; a negative reply
message is sent to D, and execution of writeSegment fails. Otherwise,

3. Node R assembles a reply message including quantity t. This message is returned to
D.

4. Node D assembles a data message d including the contents of an area of size t, which
starts at address addr of the local private memory. This data message is sent to R.

5. Node R copies the contents of data message d into s.

4 EXAMPLES OF APPLICATIONS

This section presents a few examples of practical applications of p-pointers to the solution
of a variety of protection problems. In the first example, segments are used to form
containers aimed storing of both p-pointers and ordinary information items. Then, we
consider the implementation of hierarchical organizations of security classes. Finally, we
take advantage of subsegments to support a protection paradigm based on access control
lists. These examples are by no means exhaustive; they are only aimed at giving an
indication of the flexibility of the p-pointer concept.

4.1 Containers

A container is a segment partitioned into two subsegments, which we shall call the p-
pointer subsegment (p-subsegment, for short) and the data subsegment (d-subsegment).

— 15 —



The p-subsegment is aimed at storing p-pointers, the d-subsegment contains ordinary
information items. The p-pointers in the p-subsegment may reference other containers,
which can even be stored remotely, in different nodes. In this way, containers can be
organized into arbitrary structures, according to the specific requirements of the intended
application. An example is given below.

We wish to point out that possession of a p-pointer for a given container may grant
access privileges stronger than that included in the p-pointer itself. For instance, let us
consider a container C whose p-subsegment contains simple pointers. A subject S that
owns a reduced subpointer RSP referencing the p-subsegment of C with access right read
can acquire these simple pointers to access the segments they reference, both to read and
to write. In contrast, if the access right in RSP is write, S can access the p-subsegment to
overwrite the existing p-pointers, and to delete these p-pointers. However, S is not allowed
to read these p-pointers and take advantage of them to access the corresponding segments.

4.2 Hierarchical classes

Let us consider a hierarchical tree structure defined in terms of security classes. Each
class can have only one parent, and many children. Each subject is assigned to a class. A
subject in a given class can access this class, and all the classes that descend from this
class, hierarchically. Thus, a subject in the class that is the root of the hierarchy can
access all the classes, and a subject in a leaf class, at the lowest hierarchical level, can
access only this leaf class.

A hierarchical structure of this type can be implemented by reserving a container for
each class. The p-subsegment of the container associated with a given class stores reduced
pointers with access right read, referencing the containers associated with the children of
that class. The d-subsegment will store the information items relevant to the class. No
container is reserved for a leaf class, at the lowest hierarchical level, whereas the container
for the class which is the parent of one or more leaf classes will include a d-subsegment for
each of these leaf classes.

In this implementation, a subject S in a given class C owns a reduced pointer for the
container associated with C, with access right read. This reduced pointer allows S to access
the d-subsegment in this container, to read the information items for C. Furthermore, S

is in the position to access the p-subsegment, to acquire the p-pointers it contains. S can
use these p-pointers to access the containers reserved for the direct and indirect children
of C, recursively. If S is in a class at the penultimate hierarchical level, it can use the
reduced pointer for the container of this class to access the d-subsegment for this class,
and also the d-subsegments for the children of this class. Finally, if S is in a leaf class, at
the lowest hierarchical level, it owns a reduced subpointer, with access right read, for the

— 16 —



d-subsegment reserved for this class in the container of the parent class.
Thus, a subject in a given class holds a single p-pointer. This approach has significant

advantages over the alternative, multiple p-pointer approach, whereby each class corre-
sponds to a data segment. In this case, a subject in a given class possesses a simple pointer
for the data segment associated with this class, and a simple pointer for the data segment
of each descendant class. The multiple p-pointer approach penalizes the subjects in the
most privileged classes, which have to handle more p-pointers [8]. Significant complications
follow, for instance, in a dynamic access control, i.e. the ability to add new classes to
the class hierarchy, and to eliminate existing classes from the hierarchy [6]. For instance,
the addition of a new class implies a new p-pointer distribution, which involves all the
subjects in the ancestor classes, whereas, in the single p-pointer approach, we simply add
a new p-pointer to the p-subsegment in the container of the parent class.

4.3 Access control lists

The access matrix, introduced in Section 1, can be represented in memory by columns.
To this aim, in a classical implementation, an access control list ACLj is associated with
each given object Bj [24], [32]. ACLj consists of pairs (Si, ar), where ar specifies the set
of access rights owned by subject Si for Bj.

In our p-pointer system, ACLj can be simply implemented by a data segment dj . This
data segment is partitioned into subsegments, a subsegment for each subject. The i-th
subsegment, corresponding to subject Si, consists of a single memory cell, which encodes
the access rights owned by Si for Bj. If the k-th bit of this cell is asserted, then Si owns
the k-th access right, ark.

In this approach, subject Si holds a reduced subpointer for the i-th subsegment of
dj, with access right read. The internal representation of object Bj includes a simple
pointer for dj. This simple pointer is used to manage the access rights of each subject, by
modifying the corresponding subsegment, to add new access rights, or to eliminate the
existing access rights. When Si attempts to access Bj to execute a given operation, it
presents the subpointer it owns for dj. The operation will use this subpointer to read the
contents of the memory cell that forms the corresponding subsegment to check whether the
bits encoding the required access rights are asserted. If this is not the case, the operation
terminates with failure.

5 DISCUSSION

As seen in Section 1, in a classical password-based solution of the memory protection
problem, one or more passwords are associated with each object, and each password
corresponds to an access privilege. In contrast, in our system, the primary passwords

— 17 —



are intended to be associated with subjects. In a possible organization, when a node is
initialized, a root subject SR is created. This subject receives a root pointer PR referencing
the root segment sR of that node. When a new subject S is created in the same node, e.g.
a new process, the root subject takes advantage of the newPrimaryPassword protection
primitive to generate one or more primary passwords for S. Then, the primary passwords
and the newSegment primitive are used to create the segments that are necessary for S,
for instance, to communicate with the other subjects of the system across the network. S

will distribute p-pointers for these segments to these remote subjects. S will preventively
reduce these p-pointers to eliminate the unnecessary access rights, e.g. only access right
read is required by a remote subject using a given segment to receive data. Alternatively,
subject S can create subsegments, and then transmit subpointers for these subsegments.

5.1 Access privilege revocation

As seen in Section 1.3, in a password-based protection system, a simple method to revoke
an access privilege for a given object is to replace the password associated with this
access privilege. An action of this type affects all the subjects that own this password,
independently of the nodes where these subjects are running. In the access matrix model,
a revocation approach of this type is by columns: the revocation involves all the matrix
elements in the column corresponding to the object with which the revoked password is
associated.

In contrast, in our protection system based on p-pointers, an access right revocation
corresponds to the replacement of the value of a primary password with a new value.
An action of this type revokes all the p-pointers defined in terms of the old value. If we
associate primary passwords with subjects, in the access matrix model this revocation
approach is by rows: the effect of a revocation is to eliminate access privileges from the
elements of the matrix in the row corresponding to the subject with which the revoked
password is associated. The elements involved are those of the objects referenced by the
p-pointers expressed in terms of that primary password. As seen in Section 1.3, revocation
by rows is especially interesting in a distributed system, to limit its effects to a specific
node. Consider a subject running in a given node, and aimed at communicating with a
few other nodes. For this subject, we associate a primary password with each of these
nodes. If the value of a primary password is changed, the revocation is restricted to the
corresponding node.

In a different approach, the access privileges for a given memory area are revoked by
deleting a segment defined in terms of that area. As seen in Section 1.4, we can allocate
overlapping segments corresponding to the same memory area, and deletion of one of these
segments has no effect on the others. This means that the revocation is limited to a subset

— 18 —



of all the subjects that hold access privileges for that memory area (independent revocation
[11]). A subsequent creation of a new segment in the same memory area has no effect on
the p-pointers referencing the deleted segment; these p-pointers will not be renewed. This
is a consequence of the mechanism for password creation, based on generation function f .
As seen in Section 2.1, this mechanism considers the segment name rather than its base
and limit. Segment names are never reused, so the p-pointer for the new segment will
have a different local password.

Several mechanisms for access privilege revocation have been proposed in the past, with
special reference to capability systems ([20]; see also subsequent Section 5.5). Examples are
a propagation graph associated with each access privilege, which records the propagation
of this access privilege throughout the system [11], [12]; a centralized reference monitor
that, for each given object, keeps track of all the subjects that hold access privileges
for that object [35]; and temporary access privileges, whose validity must be renewed
periodically to avoid implicit revocation [19]. In a distributed system, these mechanisms
are prone to significant network traffic: messages must be exchanged between the nodes,
to update the propagation graph, to interact with the centralized monitor, or to renew the
access privileges. In contrast, in our system, the activities connected with access privilege
revocation are confined within the boundaries of a single network node. This is true for
revocations based on the deletion of a primary password, as well as for revocations based
on the deletion of a segment.

5.2 Network costs

As seen in Section 1.2, in traditional password systems, a password reduction implies the
intervention of a password manager, which receives the original password and returns
the reduced password. An action of this type is prone to generate network traffic. For
instance, consider a subject that holds a password for an object stored in a remote node.
Messages will be exchanged with the remote node, to send the original password and
receive the reduced password. In contrast, in our system, a subject running in a given
node and owning a p-pointer for a remote object is in the position to reduce the p-pointer
autonomously. In fact, execution of the reduceSimplePointer and the reduceSubpointer
protection primitives generates no network traffic. We have obtained this important result
by taking advantage of the generation function, which is universally known. The generation
function can be used in a given node to reduce a p-pointer, independently of the node
storing the segment referenced by this p-pointer.

In fact, the actions involved in the execution of each protection primitive are confined
within the boundaries of the node where the call to this primitive has been issued; these
actions generate no network traffic. The only exceptions are the communication primitives

— 19 —



Table 4: Memory requirements for p-pointer storage (in bits).

simple reduced subpointer reduced
pointer pointer subpointer

Format specifier 2 2 2 2
Node name D 10 10 10 10
Primary password identifier pid 16 16 16 16
Segment identifier s0 28 28 28 28
Access privilege specifier a0 – 4 4 4
Subsegment identifier s1 – – 32 32
Access privilege specifier a1 – – – 4
Local password p 128 128 128 128

readSegment and writeSegment, which produce message exchanges if they are used to
access a remote segment.

It is worth to note that the primary passwords of a given node are confined within
the boundaries of that node. These passwords are never transmitted across the network;
instead, they are only used in the creation and the deletion of local segments.

5.3 Memory requirements and execution times

In a p-pointer, a 10-bit node name D supports a large network of up to 1024 nodes. If
we associate primary passwords with subjects, 16-bit primary password identifiers are
suitable for a large number of subjects, and can support repeated actions of access privilege
revocation obtained by primary password deletion (see Section 5.1). 28-bit segment
identifers permit iterated actions of segment creation and deletion, as is the case if access
privileges are revoked at segment level. Four-bits are required in the access privilege
specifier to encode the four access rights. Finally, the local password size is a function of
the overall security requirements, e.g. 128 bits.

As shown in Table 4, the resulting p-pointer size is in the range from the 182 bits of a
simple pointer to the 222 bits of a reduced subpointer. If a single, 28-byte size is used for
all p-pointers, a two-bit format specifier will select the actual p-pointer format.

We can now compare these results with the memory requirements for password storage
in a traditional, password-based protection system. Here, each password is associated with
the identifier of the corresponding segment, i.e. a node name and a local segment identifier.
For 10-bit node names, 28-bit local segment identifiers, and 128-bit passwords, we have a
total memory requirement of 166 bits. The size increase we pay in our system for p-pointer
storage is compensated by the necessity to store less passwords. In fact, in a traditional
password system we have several passwords for each object, one password for each access
privilege defined for that object. In contrast, in our system, only the primary passwords
need to be stored in each node. The local passwords, corresponding to a specific object
and a specific access permission, are generated dynamically, starting from the primary

— 20 —



passwords, taking advantage of the generation function.
As for execution times, the number of applications of the generation function required

to validate a given p-pointer varies, according to the p-pointer type, from the single
application that is sufficient for a simple pointer, up to the four applications that are
necessary for a reduced subpointer. In a given node, let us now consider a subject aimed
at distributing an access privilege for an area in the shared memory of that node. If the
subject holds a simple pointer for a segment that includes this memory area, a solution is
to use the newSubsegment protection primitive to generate a subsegment, and a subpointer
for this subsegment. If the subject is a root subject, an alternative is to reserve a segment
for the area; the validity of a simple pointer for this segment can be verified efficiently.

5.4 Forging p-pointers

Let us now consider a malevolent subject that holds a reduced pointer for a given memory
segment, and is aimed at amplifying the access rights in this reduced pointer, e.g. by
forging a simple pointer for the same segment. The subject can take advantage of node
name D, primary password pid, and segment identifier s0 in the reduced pointer to include
them into the simple pointer. The next step is to transform local password p′

0 in the
reduced pointer into local password p0 in the simple pointer. In fact, p0 precedes p′

0 in the
password conversion procedure, illustrated in Section 2.1, which starts from a primary
password to generate the password corresponding to the given p-pointer type (see Figure 1).
This procedure takes advantage of generation function f , which is one-way. It follows that
is computationally infeasible to invert f to evaluate p0 starting from p′

0. An alternative is
to use a password chosen at random. If passwords are large and sparse, the probability of
a casual match is virtually null, and the simple pointer forging attempt is destined to fail.

Similar considerations can be made for the transformation of a subpointer into the
corresponding simple pointer. In this case, too, quantities D, pid, and s0 can be extracted
from the subpointer, but it will be computationally infeasible to evaluate local password
p0 in the simple pointer starting from local password p1 in the subpointer.

5.5 Related work

5.5.1 Capabilities

In a classical approach, the access privilege held by a subject for a given object is expressed
in terms of a capability [20]. This is pair (B, ar), where ar is a set of access rights for
object B. In this approach, an important problem is capability segregation: we should
prevent a subject that holds a given capability from modifying this capability, for instance,
to add new access rights, or to change the object identifier to forge a capability for a
different object.

— 21 —



Solutions to the capability segregation problem have been conceived, and actually
implemented in existing systems [9]. In a segmented memory environment, special segments,
which we shall call capability segments, can be reserved for capability storage [16]. In
this approach, the instruction set of the processor is augmented with a set of special
instructions, the capability instructions, aimed at capability processing. An access to a
capability segment terminates successfully only if it uses a capability instruction. This
approach is prone to segment proliferation, and is an undue complication to object
representation. Let us consider a simple data object consisting of two data segments, for
instance. A capability segment will be necessary to store the capabilities for the data
segments.

A different approach takes advantage of a tagged memory [3], [14], [39]. A 1-bit tag
associated with each memory cell specifies whether this cell contains a capability, or an
ordinary information item. A cell tagged to contain a capability can be accessed only
by using the capability instructions. If an ordinary instruction is used, execution fails.
This approach requires ad hoc memory devices aimed at containing the cell tags; this is
contrary to hardware standardization. Undue complications may follow in the management
of the large storage units, for instance, in the swap operations connected with memory
virtualization, owing to the necessity to save, and then to restore, the tags.

PSOS [29] is an example of a capability-based operating system using tags for capability
segregation. In PSOS, the processor includes two capability operations, to create a new
capability and to restrict the access rights in a given capability. The tagging system
prevents any other processor operation to be used successfully to alterate an existing
capability. Tags are preserved throughout the system, within the processor as well as in
the primary and the secondary memories.

The CHERI capability system [38], [39] extends the 64-bit MIPS IV architecture to
include a capability coprocessor. The coprocessor interacts with the processor pipeline
by receiving instructions, exchanging operands and sending exceptions. A capability is
partitioned into a base field and a limit field that describe a memory segment, and an
access right field that specifies access rights for this segment. Capabilities and ordinary
data items can safely coexist in the same data structure owing to a form of tagged memory
protection. A tag bit is associated with each 256-bit memory location. If asserted, the
tag bit specifies that the corresponding location contains a capability. Any non-capability
store clears the tag. The coprocessor includes a set of special registers, called capability
registers. A capability must be preventively loaded from memory into a capability register
to access the corresponding memory segment. To this aim, an ad hoc capability instruction
is provided.

— 22 —



5.5.2 Password capabilities

Passwords are a significant alternative to capabilities, which does not suffer from the
segregation problem. As seen in Section 1, in a password system, a set of passwords is
associated with each object, one password for each access privilege defined for that object.
If passwords are large, sparse and chosen at random, the probability that a malevolent
subject guesses a valid password to obtain illegitimate access privileges is vanishingly low.
A further requirement is that there should be no computable relation between the value of
a given password and the access privilege granted by that password, otherwise this relation
could be inverted to create new passwords corresponding to amplified access privileges.

Password capabilities are a practical implementation of the password paradigm that
received much attention in the past [1], [5], [13], [15]. A password capability is a pair
(B, p), where p is a password for object B. A subject that holds a password capability
referencing a given object is granted the access privileges for this object that are associated
with the password [22].

Walnut [4], [28] is an example of a tightly-coupled multiprocessor using password
capabilities for object protection. In Walnut, objects are stored in a virtual address
space partitioned into volumes. Each volume has an unique 32-bit identifier, which is
permanently associated with a specific fixed or removable storage device. Objects can only
exist within the boundaries of a single volume; objects splitted across different volumes are
not allowed. Each object is associated with a 32-bit serial number, which is combined with
the identifier of a volume to form the unique object identifier. A password capability is a
128-bit value including an object identifier and a 64-bit password. An arbitrary number of
capabilities can be associated with the same given object, corresponding to specific access
rights and different passwords. The association of passwords with access rights is recorded
in a capability table within the boundaries of the protection system. No computable
relation exists between a password and the access rights. When an object is created,
a master capability is associated with that object. A capability derivation mechanism
makes it possible to create new capabilities with restricted access rights. The resulting
capability structure takes the form of an inverted tree that describes the interdependencies
between the master capability and its derived capabilities. When a capability is destroyed,
all its derived capabilities are also destroyed. If we destroy the master capability, the
corresponding object is deleted, as it can no longer be referenced.

In the Annex system [12], [30], password capabilities can only reside within the kernel
boundaries, to limit undue propagation. Outside the kernel, a password capability can
only be referenced by using a handle, mapped to that password capability by the kernel. A
password capability consists of a 64-bit device name, a 48-bit object name that univocally
identifies an object on the target device, a 16-bit capability name that univocally identifies

— 23 —



the capability, and a 256-bit password, assigned at random to prevent forging. Capability
revocation is based on a propagation graph, associated with the given capability, and
similar to that proposed in [11]. The propagation graph is maintained by the kernel, and
records the propagation of the corresponding capability across the devices.

6 CONCLUDING REMARKS

With reference to a distributed environment consisting of nodes connected in an arbitrary
network topology, we have proposed the organization of a protection system in which
subjects generate access attempts to memory segments. In our approach:

• Segments are the basic unit of information protection and sharing between the nodes.
A subject can access a given segment only if it owns an access privilege certified by
possession of a p-pointer referencing this segment. Segments can have subsegments.

• One or more primary passwords are associated with each node. Each p-pointer
includes a local password, which is valid if it descends from a primary password by
application of a universally known, parametric one-way generation function. The
p-pointer may also include an optional access privilege specifier, corresponding to
less access rights.

• A set of protection primitives forms the subject interface of the protection system.
These primitives make it possible to generate new primary passwords, to delete
existing primary passwords, and to change their value. Furthermore, they allow
subjects to reduce p-pointers to include less access rights, to allocate new segments,
to delete the existing segments, and to access the segments to read their contents or
to overwrite these contents.

The following is a summary of the main results we have obtained:

• A subject that holds a simple pointer referencing a given segment is in the position
to reduce the access privilege specified by that simple pointer autonomously. An
action of this type can be completely accomplished locally, and generates no network
traffic, even if the segment is stored in a different node. We have obtained this
important result by taking advantage of the generation function, which is universally
known.

• Taking advantage of null subsegments, a reduced pointer can be reduced further, to
specify less access rights.

• A reduced pointer can be transformed into a subpointer referencing a subsegment of
the original segment. In this way, a subject that holds an access privilege for a given
memory area can distribute an access privilege for a fraction of this area.

— 24 —



• A single primary password is sufficient in each node for all the segments and
subsegments allocated in that node. Local passwords within p-pointers are evaluated
dynamically, taking advantage of the generation function. This is in sharp contrast
with the traditional view of several passwords associated with each protected object,
one password for each access privilege defined for that object.

• If passwords are large, sparse and chosen at random, it is impossible for a malevolent
subject to forge valid p-pointers. The non-invertibility property of the generation
function guarantees that any attempt to amplify a given p-pointer to include more
access rights is destined to fail. Similarly, it is impossible to convert a subpointer for
a subsegment of a given segment into a simple pointer referencing that segment.

• Two different mechanisms support the review and revocation of access privileges.
By replacing the value of a given primary password with a new value, we revoke all
the p-pointers defined in terms of the old value. If a primary password is associated
with a given subject, an action of this type revokes all the access privileges held by
the subject in terms of that primary password. Alternatively, two or more segments
can be defined for the same memory area. If we delete one of these segments, we
revoke all the access privileges for that memory area, which are expressed in terms
of that segment.

REFERENCES

[1] M. Anderson, R. D. Pose, and C. S. Wallace. A password-capability system. The Computer Journal,
29(1):1–8, February 1986.

[2] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: a survey. Technical
report, Centre for Computer Security Research, Department of Computer Science, University of
Wollongong, Australia, 1995.

[3] N. P. Carter, S. W. Keckler, and W. J. Dally. Hardware support for fast capability-based addressing.
ACM SIGPLAN Notices, 29(11):319–327, November 1994.

[4] M. D. Castro, R. D. Pose, and C. Kopp. Password-capabilities and the Walnut kernel. The Computer
Journal, 51(5):595–607, 2008.

[5] J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey. Lightweight shared objects in a
64-bit operating system. ACM SIGPLAN Notices, 27(10):397–413, October 1992.

[6] T.-S. Chen and J.-Y. Huang. A novel key management scheme for dynamic access control in a user
hierarchy. Applied Mathematics and Computation, 162(1):339–351, 2005.

[7] S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Access control: principles and solutions.
Software – Practice and Experience, 33(5):397–421, 2003.

[8] A. De Santis, A. L. Ferrara, and B. Masucci. Cryptographic key assignment schemes for any access
control policy. Information Processing Letters, 92(4):199–205, 2004.

[9] M. de Vivo, G. O. de Vivo, and L. Gonzalez. A brief essay on capabilities. ACM SIGPLAN Notices,
30(7):29–36, July 1995.

[10] G. Dini and L. Lopriore. Distributed storage protection in wireless sensor networks. Journal of
Systems Architecture, 61(5–6):256–266, May–June 2015.

— 25 —



[11] V. D. Gligor. Review and revocation of access privileges distributed through capabilities. IEEE
Transactions on Software Engineering, SE-5(6):575–586, November 1979.

[12] D. A. Grove, T. C. Murray, C. A. Owen, C. J. North, J. A. Jones, M. R. Beaumont, and B. D.
Hopkin. An overview of the Annex system. In Proceedings of the Twenty-Third Annual Computer
Security Applications Conference, pages 341–352, Miami Beach, Florida, USA, December 2007. IEEE.

[13] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The Mungi single-address-space
operating system. Software – Practice and Experience, 28(9):901–928, July 1998.

[14] M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM System/38 support for capability-based
addressing. In Proceedings of the 8th Annual Symposium on Computer Architecture, pages 341–348,
Minneapolis, Minnesota, USA, May 1981. IEEE Computer Society Press.

[15] J. King-Lacroix and A. Martin. BottleCap: a credential manager for capability systems. In Proceedings
of the Seventh ACM Workshop on Scalable Trusted Computing, pages 45–54, Raleigh, NC, USA,
October 2012. ACM.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. seL4: formal verification of an OS kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, pages 207–220, Big Sky, MT, USA, October 2009.
ACM.

[17] I. Kuz, G. Klein, C. Lewis, and A. Walker. capDL: a language for describing capability-based systems.
In Proceedings of the First ACM Asia-Pacific Workshop on Systems, pages 31–36, New Delhi, India,
August 2010. ACM.

[18] L. Lamport. Password authentication with insecure communication. Communications of the ACM,
24(11):770–772, November 1981.

[19] A. W. Leung, E. L. Miller, and S. Jones. Scalable security for petascale parallel file systems. In
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–12, Reno, NV, USA,
November 2007. IEEE.

[20] H. M. Levy. Capability-Based Computer Systems. Digital Press, Bedford, Mass., USA, 1984.

[21] L. Lopriore. Encrypted pointers in protection system design. The Computer Journal, 55(4):497–507,
April 2012.

[22] L. Lopriore. Password capabilities revisited. The Computer Journal, 58(4):782–791, April 2015.

[23] L. Lopriore. Password management: distribution, review and revocation. The Computer Journal,
58(10):2557–2566, October 2015.

[24] L. Lopriore. Access control lists in password capability environments. Computers & Security,
62:317–327, September 2016.

[25] R. C. Merkle. One way hash functions and DES. In Proceedings of the 9th Annual International
Cryptology Conference – Advances in Cryptology, pages 428–446, Santa Barbara, California, USA,
August 1989. Springer.

[26] M. S. Miller and J. S. Shapiro. Paradigm regained: abstraction mechanisms for access control.
In Proceedings of the 8th Asian Computing Science Conference, pages 224–242, Mumbai, India,
December 2003. Springer.

[27] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability myths demolished. Technical report, Systems
Research Laboratory, Johns Hopkins University. http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf, 2003.

[28] D. Mossop and R. Pose. Information leakage and capability forgery in a capability-based operating
system kernel. In Proceedings of the OTM Confederated International Conferences “On the Move to
Meaningful Internet Systems”, pages 517–526, Montpellier, France, October 2006. Springer.

[29] P. G. Neumann and R. J. Feiertag. PSOS revisited. In Proceedings of the 19th Annual Computer
Security Applications Conference, pages 208–216, Las Vegas, NV, USA, December 2003. IEEE.

— 26 —



[30] T. Newby, D. A. Grove, A. P. Murray, C. A. Owen, J. McCarthy, and C. J. North. Annex: a
middleware for constructing high-assurance software systems. In Proceedings of the 13th Australasian
Information Security Conference, pages 25–34, Sydney, Australia, January 2015. ACS.

[31] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: a synthetic
approach. In Proceedings of the 13th Annual International Cryptology Conference, pages 368–378,
Santa Barbara, California, USA, August 1993. Springer.

[32] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings
of the IEEE, 63(9):1278–1308, September 1975.

[33] P. Samarati and S. De Capitani Di Vimercati. Access control: policies, models, and mechanisms. In
R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, pages 137–196.
Springer, Berlin, Heidelberg, 2001.

[34] R. S. Sandhu. Cryptographic implementation of a tree hierarchy for access control. Information
Processing Letters, 27(2):95–98, 1988.

[35] J. S. Shapiro and S. Weber. Verifying the EROS confinement mechanism. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, pages 166–176, Berkeley, California, USA, May 2000.
IEEE.

[36] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative systems. ACM
Computing Surveys, 37(1):29–41, 2005.

[37] W. Trappe, J. Song, R. Poovendran, and K. J. Liu. Key management and distribution for secure
multimedia multicast. IEEE Transactions on Multimedia, 5(4):544–557, 2003.

[38] R. N. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann, J. Anderson, D. Chisnall,
B. Davis, B. Laurie, M. Roe, et al. Fast protection-domain crossing in the CHERI capability-system
architecture. IEEE Micro, 36(5):38–49, 2016.

[39] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, et al. CHERI:
a hybrid capability-system architecture for scalable software compartmentalization. In Proceedings of
the 36th IEEE Symposium on Security and Privacy, San Jose, California, USA, May 2015. IEEE.

[40] X. Zhang, Y. Li, and D. Nalla. An attribute-based access matrix model. In Proceedings of the 2005
ACM Symposium on Applied Computing, pages 359–363, Santa Fe, New Mexico, USA, March 2005.
ACM.

— 27 —


