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Abstract—In this letter, we focus on the design of linear and power consumption in linear and non-linear multi-hop MIMO
non-linear architectures in amplify-and-forward multipl e-input  relay systems while meeting specific QoS requirements given
multiple-output orthogonal frequency-division multiplexing relay in terms of the mean-square-errors (MSEs) over the difteren

networks in which different types of services are supported .
The goal is to jointly optimize the processing matrices so as streams. Denoting bys" the number of streams, the above

to minimize the total power consumption while satisfying tle Optimization problem can be mathematically formulated as

quality-of-service requirements of each service specifieals Schur-  [11]
convex functions of the mean square errors over all assigned

subcarriers. It turns out that the optimal solution leads to the min Pr s.t. MSE; <y Vkek (1)
diagonalization of the source-relay-destination channelip to a
unitary matrix depending on the specific Schur-convex fundon. Where £ = {1,2,..., K}, Pr denotes the total power

consumption MSEy, is the MSE of thekth stream and the

Index Terms—MIMO, OFDM, non-regenerative relay, quality- ~ duantities{~ } are design parameters that specify the different
of-service requirements, transceiver design, Schur-coex func- Stream requirements. The minimization is performed with

tions, power minimization, amplify-and-forward. respect to the processing matrices at the source, relay and
destination nodes. Similar to [5] — [9], in [11] it is showrath
. INTRODUCTION the solution of (1) leads to the diagonalization of the seurc

Over the last years, the ever-increasing demand for hig:ﬁ_lay-destination channel. The ?XteT‘SiO” of the abovelenob
- L S . 0 MIMO-OFDM relay systems is discussed in [14] (see also
speed ubiquitous wireless communications has motivated
intense research activity towards the development of tnisis
sion technologies characterized by high spectral effigiemd min Pr S.t. MSEg(n) <qx(n) Vke K Yne N (2)
high reliability. The most promising solutions in this diten ) i
rely on orthogonal-frequency division-multiplexing (OFp Where V' = {1,2,..., N} with N being the number of
techniques, multiple-input multiple-output (MIMO) sches) subcarriers whereaBISE,(n) denotes the MSE of théth

and relay-assisted communications [1] — [2]. This is wigees Stréam over theith subcarrier andy;,(n) its corresponding
by the adoption of all these technologies in recent stardafd0S requirement. As discussed in [14], the solution of (2)
such as 3GPPs LTE [3] and IEEE 802.16j [4]. can be computed following the same steps illustrated in [11]
In this context, the optimization of linear as well a$ince the formulation in (2) is substantially equivalenttie
non-linear architectures for MIMO or MIMO-OFDM non-©N€ given in (1) with the only difference that each stream

regenerative relay networks has received much attention & "€quired to satisfy individual QoS constraints over each

cently (see for example [5] — [16] and references thereirjuPcarrier.
Most of the existing works can be largely categorized into
two different classes. The first one is focused on the miramizA. Motivation

tion/maximization of a global objective function subjeatav- Although reasonable, the formulation in (2) may prevent its
erage power constraints at the source and relay nodes (se&yff|icapility to practical OFDM applications. To see housth
example [8] - [9]) while the second aims at minimizing the t0;omes ahout, observe that in OFDM systems the information
tal power consumption under specific quality-of-service®R s associated to each service are first fed to an encoder (in
requirements (see for example [11] and references theilein) o ey to exploit the frequency selectivity of the channelil a
particular, in [11] the guthors make use of .m_ajc_)r!zatloroﬂye then mapped onto complex-valued symbols taken fio@ry
and propose a unifying framework for minimizing the totalongtellations. The obtained symbols are eventually pagse
an OFDM modulator and launched over the multipath channel.

Copyright (c) 2012 IEEE. Personal use of this material isniged. At the destination, the received signal is fed to an OFDM
However, permission to use this material for any other psepomust be gemodulator where the different streams are first sepasated
obtained from the IEEE by sending a request to pubs-peronis@ieee.org. th dt d d = th b di . . i

L. Sanguinetti and Antonio A. D’Amico are with the Departrheof én passed 1o a _eC_O_ er. From ea_- ove discussion, ¥ easi
Information Engineering, University of Pisa, Via Carusol6 Pisa, Italy follows that the reliability of each service depends on @glo
(e-mail: {luca.sanguinetti, a.dami¢@iet.unipi.it). , performance metric measured over the assigned subcarriers

Yue Rong is with the Department of Electrical and Computegifieer rather than on individual constraints over each subcarrier

ing, Curtin University of Technology, Bentley, WA 6102, Atalia (e-mail: ' : s =~ e )
y.rong@curtin.edu.au). Since many different optimization criteria driving the @gs

[?L'i] and [15]) in which the following problem is considered



of wireless communication systems arise in connection witki different classes of servicesThe source and destination
Schur-convex functions (see [17] for a detailed discussion are equipped withNg antennas while the relay ha¥r
the subject), in this work we aim at solving the followingantennas. Théth symbol over theath subcarrier is denoted
problem by si(n) and is taken from ar—ary quadrature amplitude

. modulation constellation with average power normalized to
min Pr s.t. fr (MSEg(n);Vn e N) <, Vke K (3) unity for convenience.

where f, is a generic additively or multiplicatively Schur- The input data stream is divided into adjacent blocks of

convex function [18]. The only difference between (2) ang (3VK < min(NNg, NNs) symbols, which are transmitted
g parallel using theN assigned subcarriers with indices

is represented by the QoS constraints that are in (3) specift e o
as Schur-convex functions of the MSEs for fith stream over 1137 = 1,2,.... N}. The vegrtqrs = [s1,82,...,sk]" with

all used subcarriers. This makes (3) not only mathemagicafix = [5#(1); Sk(Q)NN' ’XSKk](VN)] is first linearly processed by
different from (2) but also more interesting from a pradticg matixU € €= and then launched over the the
point of view. Our formulation allows to embrace most ofource-relay MIMO channel using/s OFDM modulators.
the QoS requirements that can be imposed in the design”fthe ]rVe]@’Xthr\‘,i received signal is processed by a matrix
MIMO-OFDM systems. As shown later (see also [17] for morE € C ,and forwarded to the destination where
details), they can be interpreted as the reliability caists € vectorr € C77°7" at the output of theNs OFDM
that in multimedia MIMO-OFDM applications are imposedi€émodulators takes the form

on a global performance metric of the MSEs, signaI-Fo-noise r=HUs+n (4)
ratios (SINRs) or bit-error-rates (BERS) over all the suhieas

assigned to each service. This is surely more practical awbere H = HoFH,; is the equivalent channel matrix. In
meaningful than requiring to fulfill individual QoS condties  addition, H; € CYV**"Ns and H, ¢ CV¥s*¥V& denote

over each subcarrier as it is required in (2). the source-relay and relay-destinatiolock diagonal channel
matrices given by
B. Contribution H; = blkdiag{H; (i1), Hi(i2),..., Hi(in)}  (5)

To the best of our knowledge, this is the first time thaﬁnd
the optimization of MIMO-OFDM relay systems with QoS
constraints given as Schur-convex functions of the MSEs is H, = blkdiag{Hs(i1), Ha(i2), ..., Ha(in)} (6)
studied. In addition, the solution of (3) cannot be obtained _ _ )
ing the mathematical arguments illustrated in [11] and vee apith Hi (in) < €™ and Ho(in) < CNs>Nn being th?
not aware of any existing work in which the solution of (3) i&ha””e' ma_lt_rlces over]\}]r\vggls_ubcarrler O_f the correspondlng
provided. The major contribution of this work is to rigorus "K- In addition,n € C IS a Gaussm}r} ve};:tor with zero
prove that the solution of (3) leads to the diagonalizatibn §'€an and covariance mati, = pi HoFF7Hy' + poly e
the source-relay-destination channel up to a unitary matrfVith p1 > 0 andp, > 0 being the noise variance over each
Differently from [11] and [15], the latter is found to be sucHink- Henceforth, we denote by
that the indivi_d_ual MSEs are all equal to a quantity depe_gldin H, — ﬂHlA}H/QVZ and H, — QHzA}LI/QVﬁ @)
on the specific Schur-convex functionOnce the solution ! ! o
of (3) is proven to be such that the source-relay-destinatithe singular value decompositions Hi; andH, and assume
channel is diagonalized up to an unitary matrix, the pow#hat the entries of the diagonal matricks;, and Ay, are in
minimization problem in (3) reduces to properly allocatinglecreasing order.
the available power over the established links. Solvindisac
problem is out of the scope of the submitted letter since its [1l. OPTIMIZATION OF THE RELAY NETWORK

solution can be found with affordable complexity resortiag As mentioned previously, the goal of this work is to find

example to the power allocation algorithm developed in '[15t}ne processing matrices that solve (3) whEjetakes the form
For simplicity, we focus only on a two-hop system in WhiChLll]
|

a single relay is employed. However, all the provided resu
can be easily extended to a multi-hop scenario and clearly toPy = tr {UU” + F(H,UU"H," + p;Iyn,)F"} (8)

conventional single-hop MIMO-OFDM systems [19].
vent g P y [19] while f; is either an additively or a multiplicatively Schur-

convex function.
Il. SYSTEM DESCRIPTION

) ) ) 2 . N
We consider a MIMO-OFEDM relay network in which/ The following notation is use_d throughout the letter. Bgtﬁ upper and
lower-case letters denote matrices and vectors, respBgtiwhile lower-

subcarriers out of the total numbéfr are used to support case letters denote scalars. We use= diag{as, as, ...,ax} to indicate
a K x K diagonal matrix with entriesa;, for k¥ = 1,2,..., K and

Lt is important to remark that the results of this work areidabnly A = blkdiag{A1, As,..., Ax} to denote a block diagonal matrix. The
for Schur-convex functions. For example, they do not hole tfor Schur- notations A—! and A'/2 denote the inverse and square-root of a maitrix
concave functions (see [17] for more details). Althoughtdinithe set of A. We uselx to denote the identity matrix of ordek while [], ,
Schur-convex functions is still of much importance as it essbs most of indicates the X, £)th entry of the enclosed matrix. In addition, we Usq-}
the QoS requirements that can be imposed in the design of MDEDM  for expectation, the superscrigt and 7 respectively for transposition and
applications. Hermitian transposition.



TABLE |
LIST OF SCHUR CONVEX FUNCTIONS

The sum of the MSEs FelBrlnn}ny) = 30 Brly oy
The geometric mean of the MSEs e EBlnn ) =TIV, [Exl, .
The maximum of the MSEs Se({[Erln,n}h_)) = maxicnen [Bil, .,
The harmonic mean of the SINRs S Erlnn}h_y) =0, % =N | SINR, *(n)
The negative of the minimum of the SINR e ({Exln,n 1) = maxi<p<n[Egln,n = — ming <, < n SINR,(n))
A. Linear Transceiver Design In addition, Ay = diag{Av1, \v2,-.., A\v,xkn} and Ap =
When a linear receiver is employed, the vectois pro- diag{Ar1,Ar2, ..., Arxn} With elements in decreasing

cessed by a matri@ to obtainy = GHUs + Gn. The MSE  order.
matrix E = E{(y —s) (y —s)” } turns out to be given by Proof: See Appendix. u

The above result represents one of the major contributions
E = Len+GHUUTHY + R“)GH_GHU_UHHHC’E':) of this work and, to the best of our knowledge, cannot be
. L _ found in any other existing work. As in [11], it follows that
while the kth MSE over thenth subcarrier is obtained asUOpt andF,,, match the singular vectors of the corresponding
MSE’“(H.) N [E](kfl)NMy(k*l.)an' For notational conve- channel matrices. Then, the optimal structure of the oleral
hience, in all subsequent derivations we call communication system turns out to be diagonal up to a unitary
matrix S that differently from [11] must be chosen so as to

; guarantee that the diagonal element&egffor k = 1,2,..., K
so that we may writeISEy, (n) = [Ex],, ,,. are all equal ta;,. The latter is always such tifah < ¢, < 1
Finding the optimalG reduces to look for a matrix that 5 it is computed through (15) on the basis of the giyen
satisfies the QoS requirements for any giiérandF. Since and fi. Assume for example thal, is the arithmetic mean of
[Exlnn is @ quadratic function ofx, the best we can do is the MSEs, thenr;, results given by, = v/N. On the other
to chooseG,,; so as to minimize each MSE. Indeed, if suclp,and’% = ~, when f; takes the maximum of the MSEs
a matrix does not satisfy the QoS requirements no other ofgr all subcarriers. Once all the quantitigsare computed,

will [17]. As is well known, this is achieved by choosi®.,:  the unitary matrixS can be determined using the iterative
equal to the Wiener filter. In these circumstances, the MS3ffocedure described in [20].

matrix in (9) takes the form

[Ek]n,n = [E](k—l)N+n,(k—l)N+n (10)

As shown in [11], the entries oAy and A are obtained
E =Ixy - UTHf(HUUYH? + R,)"'HU. (11) as the solutions of the following problem:

Now, we proceed with the design of the matriddsand F KN
that solve Z Av,i + Ari (Avidm, i +p1)] (16)

{AU,iZ(I)?yl‘{Il)\F,iZO} =1
(P): min Prost. fi({[Bilnntn) < Vk (12) -

J J

with E given by (11). As mentioned before, closed-form st Z)‘Evi < Zm for j=1,2,.... KN
solutions for(U, F') are now computed fof,, being additively =t =t
Schur-convex. A short list of such functions is given in Eabl
| where we have used the fact that when the Wiener filter
used at the destination the signal-to-interference nase r
(SINR) of thekth stream over theith subcarrier is given by
SINRk(n) = 1/[Ek]n,n —1.

Proposition 1: If each f; is additively Schur-convex, the
optimal matricesU,,: andF,,; in (12) are given by

where n; is defined asp;, = ¢, with v € {1,2,... . K}
i!)seing the integer such thgy — 1)N < i < vN, while
Mg, denotes theth eigenvalue ofE. Finding the solution
of the above problem is hard since it is not in a convex form.
To overcome this problem, one may resort to the algorithms
developed in [11] in which the optimal solution of both
problems is upper- and lower-bounded using the geometric
Ugpt = {leAbMSH and Foy = VHgA}m/Qﬁgl (13) Programming approach and the dual decomposition technique
_ _ _ respectively. Unfortunately, the computational compgiexf
whereVg,, Vg, andQpy, correspond to thél N columns both algorithms is relatively high so as to make them unduite
of Vg,, Vp,, and Qp, associated to theK' N largest for practical implementation. For this reason, in [15] the
singular values of the corresponding channel matrix whikuthors develop an alternative solution in which the non-
S € C*V*" s a suitable unitary matrix such that convex power allocation problems in (16) is approximatetthwi
[Ek]n,n e VnenN (14) a convex one that can be solved exactly through a multi-step

with ¢, obtained as 30bserve thate;, must be larger than zero since a zero MSE can only

o 15 be achieved when the noise is absent. Viceversa, it must fadesnthan
Ve = Ji(€ns €hs - k) (15) 1 otherwise we could satisfy the QoS constraint simply negigcthe
———

N times transmission of theéth stream.



procedure of reduced complexity Proposition 2: If each fj, is multiplicatively Schur-convex,
In practical applications source and relay may be unabletteen the optimal matrice¥,,, andF,,; are given by
meet all the QoS requirements due to their limited power re- - 120 H - e
source or due to regulations specifying the maximum transmi Uopr = Vi, Ay "P7and Fop = Vi Ap™Qpy, - (21)
power. This calls for some countermeasures. A possible Wayarep ¢ CENXEN
out to this problem (not investigated yet) is representethiey
technique illustrated in [19] for single-hop MIMO systenms i Lyl = e forn=1,2,...,N (22)
which the QoS constraints that produce the largest incrieasqN-th erfork = 1,2,.. . K still given by (15). In addition, the
terms of transmit power are first identified and then relax‘?#atricesAU andi/xl’m ar(,e diagonal with elements in decréasing
using a perturbation analysis. An alternative approaclois Srder.
make use of an admission control algorithm such as the one Proof: See Appendix.
illustrated in [21] for multi-user single-antenna relays®ms
in which the power minimization problem is carried out jont
with the maximization of the number of users that can be Qo

is unitary and such that

[ ]

As for the linear case, it turns out that channel-diagoirajiz
tructure is optimal provided that the symbols are properly
tated by the unitary matriR. The latter must be now chosen

guaranteed. such that (22) is satisfied. This can be achieved resorting to
the algorithm illustrated in [17].
B. Non-linear Transceiver Design The entries of Ay and A are now solutions of the
When a non-linear receiver with a decision-feedback equé®/lowing power allocation problem
izer is employed at the destination, the vectat the input of KN
the decision device (assuming correct previous decisicas) min Aoi + Ari O\ \m 23
be written asz = (GHU — B) s+Gn whereB € C*V >V {(Av,i20}{Ar,: 20} ;[ v+ Aws Qosdms + ol (29)
is a strictly upper triangular matrix [9]. The MSE matrix &k J J
the form s.t. H/\EaiSH”i for j=1,2,..., KN
1=1 1=1

E = (GHU - C)(GHU - C)" + GR,G"  (17) o _ y . .
wheren); is defined as in Proposition 1. A close inspection of

where C = B + Ixy is a unit-diagonal upper triangular (16) and (23) reveal that the two power allocation problems
matrix. Using the same arguments adopted for the linear, cagifer for the inequality constraints. As before, the above
the optimalG is easily found to be such that eaddy],, ,, is problem is not in a convex form and its solution can be closely
minimized. This yields [9] approximated resorting to the power allocation algorithms

G- C(UHHHR*1HU+IKN)*lUHHHRfl. (18) discussed in [11] and [15].
We substitute (18) into (17) to obtain IV. NUMERICAL RESULTS

E= C(UHHHR;1HU +Igy) tCH (19) Numerical results are now given to assess the performance
) . of the proposed solutions. The OFDM terminals employ

and look for the optimalC. As for G, the optimalC must iscrete Fourier transform units of si2é = 512 with a cyclic
be designed so as to minimize ead], ,. Following [9],  prefix composed 082 samples and transmit over a bandwidth
this is achieved whel© = DL whereL is the lower tri- of 99 MHz. Two different stream are supported over= 32
angular matrix obtained from the Cholesky decomposition gf,pcarriers. The number of antennasNg = Np — 3.
UH"R;'"HU + Iy while the KN x KN diagonal ma- The transmitted symbols belong to a 4-QAM constellation.
trix D is designed such th&C], ; = 1 fori=1,2,..., KN. The channel taps are generated as specified in the ITU IMT-
OnceC has been computed is obtained a3 = C—Ixn. 2000 Vehicular-A channel model. The transmit and receive

Using all the above results, it follows that [11] antennas are assumed to be adequately separated so as to
By, , = 1/[Lk]i . (20) makg the chgnnel reahz_at|ons statistically _mdependemhe_
’ spatial domain. Comparisons are made with SA (suboptimal
where([Li],, . = [L] 1) N, (hm1)Nn- approach) in which the unitary matric8sand P in (13) and

The design ofU andF requires to solve (12) withE,],,,, (21) are set equal to the identity matrix (see [11] — [14]).
given by (20). Closed-form solutions fdJ and F' are now  Fig. 1 illustrates the total power consumption as a function
computed for multiplicatively Schur-convex functions.®t0  of the QoS constraints when the noise variance over botk link
space limitations, we do not report a list of multiplicative is equal and given by or 0.01. For illustrative reasons, the
Schur-convex functions and limit to observe that every ilame QoS constraint is imposed for each class of service. Thi
creasing additively Schur-convex function is multiplieety amounts to saying that, = ~ for & = 1,2. Assume for
Schur-convex as well [18]. Consequently, the additiveljiBe example thatf; is the arithmetic mean of the MSEs then
convex functions reported in Table | can easily be accommg- — v/N for k = 1,2. On the other hand, iff, is the
dated in the following framework (see [17] for more detailShaximum MSE then;, = ~ for k = 1,2. The curves labelled

s , _ _ with RC-L and RC-NL refer respectively to a system in which

It is worth observing that the suboptimal procedure dewvedoip [15] must . . . . . . ..
be seen as a means to approximate the solution of the arieimgr@llocation a linear or a nonlinear receiver is employed n ConlunCtth
problem rather than an alternative to compare with. the reduced-complexity power allocation algorithm prambs
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Fig. 1. Total power consumption when equal QoS constraigg&en with Fig. 3. Total power consumption when different QoS constsaare given
N =32, Ng=Ngr =3, K=2andp=1or0.01. with N =32, Ng = Ngp =4, K =4 andp =1 or 0.01.
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and~; = v4 = /6. Compared to the results of Fig. 2, the
total power consumption increases due to the more stringent
requirements over some established links.

Equal QoS requirements
40

N=32,Ng=N, =4, K=4 _—

V. CONCLUSIONS

We have discussed the optimization of linear and non-
linear architectures for MIMO-OFDM relay networks to min-
— imize the total power consumption while satisfying QoS
requirements given as additively/multiplicatively Scloanvex
functions of the MSEs of each stream over all subcarriers.
Interestingly, it is found that for both classes of funcidhe

AL AN

VN O\

Total power consumption, dB

- SA diagonalizing structure is optimal provided that the traitted
—O— RC-L . .
o RCNL T data symbols are properly rotated before channel diaganali
—— GP-L tion.

—<— GP-NL

O‘

APPENDIX

The proof of Proposition 1 relies on showing that if each
Fig. 2. Total power consumption when equal QoS constraitgaen with fk IS addltlvely Schur-convex the_n the original problef
N =32, Ns=Nr=4,K=4andp=1or0.01. in (12) is equivalent to the following oné>():

(Pa) : IIIJlllI?l Pr s.t. [Ek]l,l == [Ek]N,N < e, Vk

in [15]. On the other hand, GP-L and GP-NL refer to a o )
system in which the successive geometric programming (G{ghere Pr is given by (8) and; is such that
approach of [11] is employed in conjunction with a linear or a fe(Le,) = (24)
nonlinear receiver, respectively. The results of Fig. lidatk *
that the optimization leads to a remarkable gain with respesith 1., being the N—dimensional vector defined ds, =
to SA and that the non-linear architecture provides the bést, ey, ..., c;]”. The above problem is formally equivalent to
performance for all the investigated values of As seen, the one discussed in [11] meaning that the matrideand F
the total power consumption required by [15] is substalgtialsolving (P2) have the same form of those computed in [11]
the same as that obtained with the solution discussed in [1ahd are given by (13) in the text.
Similar conclusions can be drawn from the results of Fig. 2 For notational convenience, we denote By (U,F) the
in which Ng = Np =4 and K = 4. transmit power required by the matricé®J, F) and call

The results of Fig. 3 are obtained in the same operatifii,(U, F)], ,, the corresponding MSE of theth symbol over
conditions of Fig. 2 except that now; = v, 72 = /8 thenth subcarrier.



To establish the equivalence d?{) and (P2), it is enough
to show that for any paifU;, F;) in the feasible set of?;)
it is always possible to find a corresponding pdif., F5) in
the feasible set off;) for which the same transmit power is
required, i.e.,Pr(Uy,F,) = Pr(Usy, F2) and vice-versa. We
start assuming thdfU,, F,) is in the feasible set ofA;), i.e.,

F{EBe(ULF)nathy) < k. (25)

Using the results illustrated [20], it can be shown that ¢her
always exists a unitary matri® such that the MSEs become
all equal to their arithmetic mean, i.e.,

(1]
(2]

(3]

(4]

. 5
[Ex(U1S,F1)l,, ,, = N Zj:l [Ex(U, F1)l; ; = 0k (26)

To proceed further, denote by, (U;,F;) the vector col-
lecting the MSEs of thekth stream, i.e..ex(U1,Fq)
[Ex(Ui,F1)l1,1, [Ex(Ui,Fi)l2s,..., [Ex(U, F1)lyn] T
From [22], it is seen that thatly, =<, e;(U1,Fq)
where 1y, is the N—dimensional vector defined aky, =
[0k, 0r,...,0:)T. If f, is additively Schur-convex, then
fx(1e,) < fr(ex (U, Fy)) from which using (25) it follows
that f.(1¢,) < v or, equivalently,fr(1p,) < fr(1c,) where
we have used the definition in (24). Singg is a non- [10]
decreasing function of its arguments, frgin(1y, ) < fr(1c,)
it follows that[E, (U1 S, F4)],, ,, = 0, < e, which amounts to [11]
saying thf’vl(U1S, Fy)isin the feasible set of,). In addition, [12]
from (8) it easily follows thatPr(U,,F;) = Pr(U;S,Fy).
Then, we may conclude that for any feasiblg,, F,) in (P1)
there always exists a pailUs, F2) of the form (Uy, Fs) =
(U;S,F4), which is in the feasible set of%) and requires
the same amount of transmit power.

We now prove the reverse part. LéU,, Fs) be in the
feasible set of ®,), i.e.,

[Ex(Uz, Fa)ly =+ = [Ex(Uz, Fa)|y vy < €n

with  required transmit power Pr(U,, F3). Letting
[Er(Uz,F2)], 0, VYn and exploiting the fact that
fris a non-décreasing function of its arguments, using (2@y)
and (27) we may write

Sr{[Br(Us, Fo)lnntny) = fr(le,) < fr(le,) = (28)

from which it follows that (U,, F2) is in the feasible set
of (Py). Therefore, settinqU;,F;) = (Us,F2) yields the [ig]
desired result. This completes the proof of Proposition 1.
The proof of Proposition 2 is much similar to that of[20
Proposition 1. For this reason, in the sequel we report only
the major differences. The first part relies on the obsewmati
that it is always possible to find a unitary mati#x such that 21]
the MSEs given by (20) become all equal to their geometric
mean [17], i.e., [22]

[Ex(UP,Fy)], , = <H]-V

J=

[6

(7]
(8]

El

[13]
[14]

[15]
(27)
[16]

(18]

1 [Ek(Ul’Fl)]jJ’)W =0On.

In addition, if fi is multiplicatively Schur-convex then
fx(1e,) < fr(ex(Uy,Fy)) from which using the same ar-
guments of before it easily follows th§tJ, P, F;) is in the
feasible set of ;) and requires the same amount of power.
The reverse part is straightforward.
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