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Abstract—In this letter, we focus on the design of linear and
non-linear architectures in amplify-and-forward multipl e-input
multiple-output orthogonal frequency-division multiplexing relay
networks in which different types of services are supported.
The goal is to jointly optimize the processing matrices so as
to minimize the total power consumption while satisfying the
quality-of-service requirements of each service specifiedas Schur-
convex functions of the mean square errors over all assigned
subcarriers. It turns out that the optimal solution leads to the
diagonalization of the source-relay-destination channelup to a
unitary matrix depending on the specific Schur-convex function.

Index Terms—MIMO, OFDM, non-regenerative relay, quality-
of-service requirements, transceiver design, Schur-convex func-
tions, power minimization, amplify-and-forward.

I. I NTRODUCTION

Over the last years, the ever-increasing demand for high-
speed ubiquitous wireless communications has motivated an
intense research activity towards the development of transmis-
sion technologies characterized by high spectral efficiency and
high reliability. The most promising solutions in this direction
rely on orthogonal-frequency division-multiplexing (OFDM)
techniques, multiple-input multiple-output (MIMO) schemes,
and relay-assisted communications [1] – [2]. This is witnessed
by the adoption of all these technologies in recent standards
such as 3GPPs LTE [3] and IEEE 802.16j [4].

In this context, the optimization of linear as well as
non-linear architectures for MIMO or MIMO-OFDM non-
regenerative relay networks has received much attention re-
cently (see for example [5] – [16] and references therein).
Most of the existing works can be largely categorized into
two different classes. The first one is focused on the minimiza-
tion/maximization of a global objective function subject to av-
erage power constraints at the source and relay nodes (see for
example [8] – [9]) while the second aims at minimizing the to-
tal power consumption under specific quality-of-service (QoS)
requirements (see for example [11] and references therein). In
particular, in [11] the authors make use of majorization theory
and propose a unifying framework for minimizing the total
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power consumption in linear and non-linear multi-hop MIMO
relay systems while meeting specific QoS requirements given
in terms of the mean-square-errors (MSEs) over the different
streams. Denoting byK the number of streams, the above
optimization problem can be mathematically formulated as
[11]

min PT s.t. MSEk ≤ γk ∀k ∈ K (1)

where K = {1, 2, . . . , K}, PT denotes the total power
consumption,MSEk is the MSE of thekth stream and the
quantities{γk} are design parameters that specify the different
stream requirements. The minimization is performed with
respect to the processing matrices at the source, relay and
destination nodes. Similar to [5] – [9], in [11] it is shown that
the solution of (1) leads to the diagonalization of the source-
relay-destination channel. The extension of the above problem
to MIMO-OFDM relay systems is discussed in [14] (see also
[11] and [15]) in which the following problem is considered

min PT s.t. MSEk(n) ≤ γk(n) ∀k ∈ K ∀n ∈ N (2)

where N = {1, 2, . . . , N} with N being the number of
subcarriers whereasMSEk(n) denotes the MSE of thekth
stream over thenth subcarrier andγk(n) its corresponding
QoS requirement. As discussed in [14], the solution of (2)
can be computed following the same steps illustrated in [11]
since the formulation in (2) is substantially equivalent tothe
one given in (1) with the only difference that each stream
is required to satisfy individual QoS constraints over each
subcarrier.

A. Motivation

Although reasonable, the formulation in (2) may prevent its
applicability to practical OFDM applications. To see how this
comes about, observe that in OFDM systems the information
bits associated to each service are first fed to an encoder (in
order to exploit the frequency selectivity of the channel) and
then mapped onto complex-valued symbols taken fromL-ary
constellations. The obtained symbols are eventually passed to
an OFDM modulator and launched over the multipath channel.
At the destination, the received signal is fed to an OFDM
demodulator where the different streams are first separatedand
then passed to a decoder. From the above discussion, it easily
follows that the reliability of each service depends on a global
performance metric measured over the assigned subcarriers
rather than on individual constraints over each subcarrier.
Since many different optimization criteria driving the design
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of wireless communication systems arise in connection with
Schur-convex functions (see [17] for a detailed discussionon
the subject), in this work we aim at solving the following
problem

min PT s.t. fk (MSEk(n); ∀n ∈ N ) ≤ γk ∀k ∈ K (3)

where fk is a generic additively or multiplicatively Schur-
convex function [18]. The only difference between (2) and (3)
is represented by the QoS constraints that are in (3) specified
as Schur-convex functions of the MSEs for thekth stream over
all used subcarriers. This makes (3) not only mathematically
different from (2) but also more interesting from a practical
point of view. Our formulation allows to embrace most of
the QoS requirements that can be imposed in the design of
MIMO-OFDM systems. As shown later (see also [17] for more
details), they can be interpreted as the reliability constraints
that in multimedia MIMO-OFDM applications are imposed
on a global performance metric of the MSEs, signal-to-noise
ratios (SINRs) or bit-error-rates (BERs) over all the subcarriers
assigned to each service. This is surely more practical and
meaningful than requiring to fulfill individual QoS constraints
over each subcarrier as it is required in (2).

B. Contribution

To the best of our knowledge, this is the first time that
the optimization of MIMO-OFDM relay systems with QoS
constraints given as Schur-convex functions of the MSEs is
studied. In addition, the solution of (3) cannot be obtainedus-
ing the mathematical arguments illustrated in [11] and we are
not aware of any existing work in which the solution of (3) is
provided. The major contribution of this work is to rigorously
prove that the solution of (3) leads to the diagonalization of
the source-relay-destination channel up to a unitary matrix.
Differently from [11] and [15], the latter is found to be such
that the individual MSEs are all equal to a quantity depending
on the specific Schur-convex function1. Once the solution
of (3) is proven to be such that the source-relay-destination
channel is diagonalized up to an unitary matrix, the power
minimization problem in (3) reduces to properly allocating
the available power over the established links. Solving such a
problem is out of the scope of the submitted letter since its
solution can be found with affordable complexity resortingfor
example to the power allocation algorithm developed in [15].
For simplicity, we focus only on a two-hop system in which
a single relay is employed. However, all the provided results
can be easily extended to a multi-hop scenario and clearly to
conventional single-hop MIMO-OFDM systems [19].

II. SYSTEM DESCRIPTION

We consider a MIMO-OFDM relay network in whichN
subcarriers out of the total numberNT are used to support

1It is important to remark that the results of this work are valid only
for Schur-convex functions. For example, they do not hold true for Schur-
concave functions (see [17] for more details). Although finite, the set of
Schur-convex functions is still of much importance as it embraces most of
the QoS requirements that can be imposed in the design of MIMO-OFDM
applications.

K different classes of services2. The source and destination
are equipped withNS antennas while the relay hasNR

antennas. Thekth symbol over thenth subcarrier is denoted
by sk(n) and is taken from anL−ary quadrature amplitude
modulation constellation with average power normalized to
unity for convenience.

The input data stream is divided into adjacent blocks of
NK ≤ min(NNR, NNS) symbols, which are transmitted
in parallel using theN assigned subcarriers with indices
{in; n = 1, 2, . . . , N}. The vectors = [sT

1 , sT
2 , . . . , sT

K ]T with
sk = [sk(1), sk(2), . . . , sk(N)]T is first linearly processed by
a matrix U ∈ C

NNS×KN and then launched over the the
source-relay MIMO channel usingNS OFDM modulators.
At the relay, the received signal is processed by a matrix
F ∈ C

NNR×NNR and forwarded to the destination where
the vectorr ∈ C

NNS×1 at the output of theNS OFDM
demodulators takes the form

r = HUs + n (4)

where H = H2FH1 is the equivalent channel matrix. In
addition,H1 ∈ C

NNR×NNS and H2 ∈ C
NNS×NNR denote

the source-relay and relay-destinationblock diagonal channel
matrices given by

H1 = blkdiag{H1(i1),H1(i2), . . . ,H1(iN )} (5)

and

H2 = blkdiag{H2(i1),H2(i2), . . . ,H2(iN )} (6)

with H1(in) ∈ C
NR×NS and H2(in) ∈ C

NS×NR being the
channel matrices over thenth subcarrier of the corresponding
link. In addition,n ∈ C

NNS×1 is a Gaussian vector with zero
mean and covariance matrixRn = ρ1H2FFHHH

2 + ρ2INNS

with ρ1 > 0 and ρ2 > 0 being the noise variance over each
link. Henceforth, we denote by

H1 = ΩH1
Λ

1/2
H1

VH
H1

and H2 = ΩH2
Λ

1/2
H2

VH
H2

(7)

the singular value decompositions ofH1 andH2 and assume
that the entries of the diagonal matricesΛH1

andΛH2
are in

decreasing order.

III. O PTIMIZATION OF THE RELAY NETWORK

As mentioned previously, the goal of this work is to find
the processing matrices that solve (3) wherePT takes the form
[11]

PT = tr
{
UUH + F(H1UUHH1

H + ρ1INNR
)FH

}
(8)

while fk is either an additively or a multiplicatively Schur-
convex function.

2The following notation is used throughout the letter. Boldface upper and
lower-case letters denote matrices and vectors, respectively, while lower-
case letters denote scalars. We useA = diag{a1, a2, . . . , aK} to indicate
a K × K diagonal matrix with entriesak for k = 1, 2, . . . , K and
A = blkdiag{A1, A2, . . . ,AK} to denote a block diagonal matrix. The
notationsA

−1 and A
1/2 denote the inverse and square-root of a matrix

A. We use IK to denote the identity matrix of orderK while [·]k,ℓ
indicates the (k, ℓ)th entry of the enclosed matrix. In addition, we useE {·}
for expectation, the superscriptT and H respectively for transposition and
Hermitian transposition.
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TABLE I
L IST OF SCHUR CONVEX FUNCTIONS

The sum of the MSEs fk({[Ek ]n,n}N
n=1) =

PN
n=1 [Ek ]n,n

The geometric mean of the MSEs fk({[Ek ]n,n}N
n=1) =

QN
n=1 [Ek ]n,n

The maximum of the MSEs fk({[Ek ]n,n}N
n=1) = max1≤n≤N [Ek]n,n

The harmonic mean of the SINRs fk({[Ek ]n,n}N
n=1) =

PN
n=1

[Ek]n,n

1−[Ek]n,n
=

PN
n=1 SINR−1

k (n)

The negative of the minimum of the SINRs fk({[Ek ]n,n}N
n=1) = max1≤n≤N [Ek]n,n = −min1≤n≤N SINRk(n))

A. Linear Transceiver Design

When a linear receiver is employed, the vectorr is pro-
cessed by a matrixG to obtainy = GHUs+Gn. The MSE
matrix E = E{(y − s) (y − s)

H} turns out to be given by

E = IKN +G(HUUHHH + Rn)GH−GHU−UHHHGH

(9)
while the kth MSE over thenth subcarrier is obtained as
MSEk(n) = [E](k−1)N+n,(k−1)N+n. For notational conve-
nience, in all subsequent derivations we call

[Ek]n,n = [E](k−1)N+n,(k−1)N+n (10)

so that we may writeMSEk(n) = [Ek]n,n.
Finding the optimalG reduces to look for a matrix that

satisfies the QoS requirements for any givenU andF. Since
[Ek]n,n is a quadratic function ofG, the best we can do is
to chooseGopt so as to minimize each MSE. Indeed, if such
a matrix does not satisfy the QoS requirements no other one
will [17]. As is well known, this is achieved by choosingGopt

equal to the Wiener filter. In these circumstances, the MSE
matrix in (9) takes the form

E = IKN − UHHH(HUUHHH + Rn)−1HU. (11)

Now, we proceed with the design of the matricesU and F

that solve

(P1) : min
U,F

PT s.t. fk({[Ek]n,n}N
n=1) ≤ γk ∀k (12)

with E given by (11). As mentioned before, closed-form
solutions for(U,F) are now computed forfk being additively
Schur-convex. A short list of such functions is given in Table
I where we have used the fact that when the Wiener filter is
used at the destination the signal-to-interference noise ratio
(SINR) of thekth stream over thenth subcarrier is given by
SINRk(n) = 1/[Ek]n,n − 1.

Proposition 1: If each fk is additively Schur-convex, the
optimal matricesUopt andFopt in (12) are given by

Uopt = ṼH1
Λ

1/2
U SH and Fopt = ṼH2

Λ
1/2
F Ω̃H

H1
(13)

whereṼH1
, ṼH2

and Ω̃H1
correspond to theKN columns

of VH1
, VH2

, and ΩH1
associated to theKN largest

singular values of the corresponding channel matrix while
S ∈ C

KN×KN is a suitable unitary matrix such that

[Ek]n,n = ǫk ∀n ∈ N (14)

with ǫk obtained as

γk = fk(ǫk, ǫk, . . . , ǫk
︸ ︷︷ ︸

N times

). (15)

In addition,ΛU = diag{λU,1, λU,2, . . . , λU,KN} and ΛF =
diag{λF,1, λF,2, . . . , λF,KN} with elements in decreasing
order.

Proof: See Appendix.
The above result represents one of the major contributions

of this work and, to the best of our knowledge, cannot be
found in any other existing work. As in [11], it follows that
Uopt andFopt match the singular vectors of the corresponding
channel matrices. Then, the optimal structure of the overall
communication system turns out to be diagonal up to a unitary
matrix S that differently from [11] must be chosen so as to
guarantee that the diagonal elements ofEk for k = 1, 2, . . . , K
are all equal toǫk. The latter is always such that3 0 < ǫk < 1
and it is computed through (15) on the basis of the givenγk

andfk. Assume for example thatfk is the arithmetic mean of
the MSEs, thenǫk results given byǫk = γk/N . On the other
hand, ǫk = γk when fk takes the maximum of the MSEs
over all subcarriers. Once all the quantitiesǫk are computed,
the unitary matrixS can be determined using the iterative
procedure described in [20].

As shown in [11], the entries ofΛU andΛF are obtained
as the solutions of the following problem:

min
{λU,i≥0},{λF,i≥0}

KN∑

i=1

[λU,i + λF,i (λU,iλH1,i + ρ1)] (16)

s.t.
j

∑

i=1

λE,i ≤
j

∑

i=1

ηi for j = 1, 2, . . . , KN

where ηi is defined asηi = ǫν with ν ∈ {1, 2, . . . , K}
being the integer such that(ν − 1)N < i ≤ νN , while
λE,i denotes theith eigenvalue ofE. Finding the solution
of the above problem is hard since it is not in a convex form.
To overcome this problem, one may resort to the algorithms
developed in [11] in which the optimal solution of both
problems is upper- and lower-bounded using the geometric
programming approach and the dual decomposition technique,
respectively. Unfortunately, the computational complexity of
both algorithms is relatively high so as to make them unsuited
for practical implementation. For this reason, in [15] the
authors develop an alternative solution in which the non-
convex power allocation problems in (16) is approximated with
a convex one that can be solved exactly through a multi-step

3Observe thatǫk must be larger than zero since a zero MSE can only
be achieved when the noise is absent. Viceversa, it must be smaller than
1 otherwise we could satisfy the QoS constraint simply neglecting the
transmission of thekth stream.
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procedure of reduced complexity4.
In practical applications source and relay may be unable to

meet all the QoS requirements due to their limited power re-
source or due to regulations specifying the maximum transmit
power. This calls for some countermeasures. A possible way
out to this problem (not investigated yet) is represented bythe
technique illustrated in [19] for single-hop MIMO systems in
which the QoS constraints that produce the largest increasein
terms of transmit power are first identified and then relaxed
using a perturbation analysis. An alternative approach is to
make use of an admission control algorithm such as the one
illustrated in [21] for multi-user single-antenna relay systems
in which the power minimization problem is carried out jointly
with the maximization of the number of users that can be QoS-
guaranteed.

B. Non-linear Transceiver Design

When a non-linear receiver with a decision-feedback equal-
izer is employed at the destination, the vectorz at the input of
the decision device (assuming correct previous decisions)can
be written asz = (GHU − B) s+Gn whereB ∈ C

KN×KN

is a strictly upper triangular matrix [9]. The MSE matrix takes
the form

E = (GHU − C) (GHU − C)
H

+ GRnG
H (17)

where C = B + IKN is a unit-diagonal upper triangular
matrix. Using the same arguments adopted for the linear case,
the optimalG is easily found to be such that each[Ek]n,n is
minimized. This yields [9]

G = C(UHHHR−1
n HU + IKN )−1UHHHR−1

n . (18)

We substitute (18) into (17) to obtain

E = C(UHHHR−1
n

HU + IKN )−1CH (19)

and look for the optimalC. As for G, the optimalC must
be designed so as to minimize each[Ek]n,n. Following [9],
this is achieved whenC = DLH whereL is the lower tri-
angular matrix obtained from the Cholesky decomposition of
UHHHR−1

n
HU + IKN while theKN × KN diagonal ma-

trix D is designed such that[C]i,i = 1 for i = 1, 2, . . . , KN .
OnceC has been computed,B is obtained asB = C− IKN .
Using all the above results, it follows that [11]

[Ek]n,n = 1/[Lk]
2
n,n (20)

where[Lk]n,n = [L](k−1)N+n,(k−1)N+n.
The design ofU andF requires to solve (12) with[Ek]n,n

given by (20). Closed-form solutions forU and F are now
computed for multiplicatively Schur-convex functions. Due to
space limitations, we do not report a list of multiplicatively
Schur-convex functions and limit to observe that every in-
creasing additively Schur-convex function is multiplicatively
Schur-convex as well [18]. Consequently, the additively Schur-
convex functions reported in Table I can easily be accommo-
dated in the following framework (see [17] for more details).

4It is worth observing that the suboptimal procedure developed in [15] must
be seen as a means to approximate the solution of the arising power allocation
problem rather than an alternative to compare with.

Proposition 2: If eachfk is multiplicatively Schur-convex,
then the optimal matricesUopt andFopt are given by

Uopt = ṼH1
Λ

1/2
U PH and Fopt = ṼH2

Λ
1/2
F Ω̃H

H1
(21)

whereP ∈ C
KN×KN is unitary and such that

[Lk]
−1
n,n =

√
ǫk for n = 1, 2, . . . , N (22)

with ǫk for k = 1, 2, . . . , K still given by (15). In addition, the
matricesΛU andΛF are diagonal with elements in decreasing
order.

Proof: See Appendix.
As for the linear case, it turns out that channel-diagonalizing

structure is optimal provided that the symbols are properly
rotated by the unitary matrixP. The latter must be now chosen
such that (22) is satisfied. This can be achieved resorting to
the algorithm illustrated in [17].

The entries ofΛU and ΛF are now solutions of the
following power allocation problem

min
{λU,i≥0},{λF,i≥0}

KN∑

i=1

[λU,i + λF,i (λU,iλH1,i + ρ1)] (23)

s.t.
j

∏

i=1

λE,i ≤
j

∏

i=1

ηi for j = 1, 2, . . . , KN

whereηi is defined as in Proposition 1. A close inspection of
(16) and (23) reveal that the two power allocation problems
differ for the inequality constraints. As before, the above
problem is not in a convex form and its solution can be closely
approximated resorting to the power allocation algorithms
discussed in [11] and [15].

IV. N UMERICAL RESULTS

Numerical results are now given to assess the performance
of the proposed solutions. The OFDM terminals employ
discrete Fourier transform units of sizeNT = 512 with a cyclic
prefix composed of32 samples and transmit over a bandwidth
of 20 MHz. Two different stream are supported overN = 32
subcarriers. The number of antennas isNS = NR = 3.
The transmitted symbols belong to a 4-QAM constellation.
The channel taps are generated as specified in the ITU IMT-
2000 Vehicular-A channel model. The transmit and receive
antennas are assumed to be adequately separated so as to
make the channel realizations statistically independent in the
spatial domain. Comparisons are made with SA (suboptimal
approach) in which the unitary matricesS andP in (13) and
(21) are set equal to the identity matrix (see [11] – [14]).

Fig. 1 illustrates the total power consumption as a function
of the QoS constraints when the noise variance over both links
is equal and given by1 or 0.01. For illustrative reasons, the
same QoS constraint is imposed for each class of service. This
amounts to saying thatγk = γ for k = 1, 2. Assume for
example thatfk is the arithmetic mean of the MSEs then
ǫk = γ/N for k = 1, 2. On the other hand, iffk is the
maximum MSE thenǫk = γ for k = 1, 2. The curves labelled
with RC-L and RC-NL refer respectively to a system in which
a linear or a nonlinear receiver is employed in conjunction with
the reduced-complexity power allocation algorithm proposed
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Fig. 1. Total power consumption when equal QoS constraints are given with
N = 32, NS = NR = 3, K = 2 andρ = 1 or 0.01.
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Fig. 2. Total power consumption when equal QoS constraints are given with
N = 32, NS = NR = 4, K = 4 andρ = 1 or 0.01.

in [15]. On the other hand, GP-L and GP-NL refer to a
system in which the successive geometric programming (GP)
approach of [11] is employed in conjunction with a linear or a
nonlinear receiver, respectively. The results of Fig. 1 indicate
that the optimization leads to a remarkable gain with respect
to SA and that the non-linear architecture provides the best
performance for all the investigated values ofγ. As seen,
the total power consumption required by [15] is substantially
the same as that obtained with the solution discussed in [11].
Similar conclusions can be drawn from the results of Fig. 2
in which NS = NR = 4 andK = 4.

The results of Fig. 3 are obtained in the same operating
conditions of Fig. 2 except that nowγ1 = γ, γ2 = γ/8
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Fig. 3. Total power consumption when different QoS constraints are given
with N = 32, NS = NR = 4, K = 4 andρ = 1 or 0.01.

and γ3 = γ4 = γ/6. Compared to the results of Fig. 2, the
total power consumption increases due to the more stringent
requirements over some established links.

V. CONCLUSIONS

We have discussed the optimization of linear and non-
linear architectures for MIMO-OFDM relay networks to min-
imize the total power consumption while satisfying QoS
requirements given as additively/multiplicatively Schur-convex
functions of the MSEs of each stream over all subcarriers.
Interestingly, it is found that for both classes of functions the
diagonalizing structure is optimal provided that the transmitted
data symbols are properly rotated before channel diagonaliza-
tion.

APPENDIX

The proof of Proposition 1 relies on showing that if each
fk is additively Schur-convex then the original problem (P1)
in (12) is equivalent to the following one (P2):

(P2) : min
U,F

PT s.t. [Ek]1,1 = · · · = [Ek]N,N ≤ ǫk ∀k

wherePT is given by (8) andǫk is such that

fk(1ǫk
) = γk (24)

with 1ǫk
being theN−dimensional vector defined as1ǫk

=
[ǫk, ǫk, . . . , ǫk]T . The above problem is formally equivalent to
the one discussed in [11] meaning that the matricesU andF

solving (P2) have the same form of those computed in [11]
and are given by (13) in the text.

For notational convenience, we denote byPT (U,F) the
transmit power required by the matrices(U,F) and call
[Ek(U,F)]n,n the corresponding MSE of thekth symbol over
the nth subcarrier.
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To establish the equivalence of (P1) and (P2), it is enough
to show that for any pair(U1,F1) in the feasible set of (P1)
it is always possible to find a corresponding pair(U2,F2) in
the feasible set of (P2) for which the same transmit power is
required, i.e.,PT (U1,F1) = PT (U2,F2) and vice-versa. We
start assuming that(U1,F1) is in the feasible set of (P1), i.e.,

fk({[Ek(U1,F1)]n,n}N
n=1) ≤ γk. (25)

Using the results illustrated [20], it can be shown that there
always exists a unitary matrixS such that the MSEs become
all equal to their arithmetic mean, i.e.,

[Ek(U1S,F1)]n,n =
1

N

∑N

j=1
[Ek(U1,F1)]j,j = θk. (26)

To proceed further, denote byek(U1,F1) the vector col-
lecting the MSEs of thekth stream, i.e.,ek(U1,F1) =
[[Ek(U1,F1)]1,1, [Ek(U1,F1)]2,2, . . . , [Ek(U1,F1)]N,N ]T .
From [22], it is seen that that1θk

≺+ ek(U1,F1)
where 1θk

is the N−dimensional vector defined as1θk
=

[θk, θk, . . . , θk]T . If fk is additively Schur-convex, then
fk(1θk

) ≤ fk(ek(U1,F1)) from which using (25) it follows
that fk(1θk

) ≤ γk or, equivalently,fk(1θk
) ≤ fk(1ǫk

) where
we have used the definition in (24). Sincefk is a non-
decreasing function of its arguments, fromfk(1θk

) ≤ fk(1ǫk
)

it follows that [Ek(U1S,F1)]n,n = θk ≤ ǫk which amounts to
saying that(U1S,F1) is in the feasible set of (P2). In addition,
from (8) it easily follows thatPT (U1,F1) = PT (U1S,F1).
Then, we may conclude that for any feasible(U1,F1) in (P1)
there always exists a pair(U2,F2) of the form (U2,F2) =
(U1S,F1), which is in the feasible set of (P2) and requires
the same amount of transmit power.

We now prove the reverse part. Let(U2,F2) be in the
feasible set of (P2), i.e.,

[Ek(U2,F2)]1,1 = · · · = [Ek(U2,F2)]N,N ≤ ǫn (27)

with required transmit power PT (U2,F2). Letting
[Ek(U2,F2)]n,n = θk ∀n and exploiting the fact that
fk is a non-decreasing function of its arguments, using (24)
and (27) we may write

fk({[Ek(U2,F2)]n,n}N
n=1) = fk(1θk

) ≤ fk(1ǫk
) = γk (28)

from which it follows that (U2,F2) is in the feasible set
of (P1). Therefore, setting(U1,F1) = (U2,F2) yields the
desired result. This completes the proof of Proposition 1.

The proof of Proposition 2 is much similar to that of
Proposition 1. For this reason, in the sequel we report only
the major differences. The first part relies on the observation
that it is always possible to find a unitary matrixP such that
the MSEs given by (20) become all equal to their geometric
mean [17], i.e.,

[Ek(U1P,F1)]n,n = (
∏N

j=1
[Ek(U1,F1)]j,j)

1

N = θn.

In addition, if fk is multiplicatively Schur-convex then
fk(1θk

) ≤ fk(ek(U1,F1)) from which using the same ar-
guments of before it easily follows that(U1P,F1) is in the
feasible set of (P2) and requires the same amount of power.
The reverse part is straightforward.
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