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Abstract: Three new secondary metabolites (named erythro- 

lactones A2, B2 and C2), that are characterized by a central 4- 

hydroxy-unsaturated δ lactone ring bearing an alkyl saturated 

chain at C(2) and a butyl-benzenoid group at C(5), together 

with their respective sulfate esters (erythrolactones A1, B1 and 

C1), have been isolated from cell cultures of Pseudokeronopsis 

erythrina, clone TL-1. The structures are assigned on the basis 

of extensive spectroscopic measurements (1D and 2D NMR, UV, 

 
 
 

Introduction 

Freshwater and marine protozoa are known for their ability to 

produce a vast and chemically diverse array of secondary 

metabolites that are involved in different ecological functions. 

Among those, low molecular weight bioactive compounds, 

which are stored in specialized ejectable membrane-bound or- 

ganelles generally called extrusomes,[1,2] can inhibit cell divi- 

sion, kill a prey or can be used as a chemical defence.[3,4–7] The 

ciliated protozoan Blepharisma japonicum produces blepharis- 

mins, a mixture of five similar red compounds that act as UV 

radiation screens and photosensors,[4] and are also involved in 

defence against predators.[8–12] Similarly, Stentor coeruleus pro- 

duces stentorins, blue UV-screen compounds that also exert de- 

fensive functions against other ciliates.[13,14] Blepharismins and 

stentorins are both characterized by a hypericin-like skeleton. 

Similar compounds have been recently isolated, including mar- 

istentorin from the marine ciliate Maristentor dinoferus[15] and 

amethystin from the freshwater ciliate Stentor amethystinus.[16]
 

Differently from Blepharisma and Stentor, Climacostomum vir- 

ens and Spirostomum teres produce, respectively, the major rep- 

 
 

[a] Department of Physics, University of Trento, 

Via Sommarive 14, 38123, Povo (TN), Italy 

E-mail: andrea.anesi@unitn.it 

www.unitn.it 

[b] Laboratory of Protistology and Biology Education, University of Macerata, 

P.le L. Bertelli 1, 62100, Macerata, Italy 

www.unimc.it 

[c] Department of Biology, University of Pisa, 

Via A. Volta 4, 56126, Pisa, Italy 

www.unipi.it 

[d] Biophysical Institute, CNR, 

Via alla Cascata 56/C, 38123, Povo (TN), Italy 

 

IR and HR-MALDI-TOF). A plausible biogenetic route for their 

formation is also suggested. Cold-shock treatment was per- 

formed in order to induce the discharge of the metabolites con- 

tained in pigment granules lying on the ciliary organelles of this 

microorganism. HPLC-ESI-MS analysis of this granule discharge 

reveals that erythrolactones A2–C2 are actually therein con- 

tained, strongly suggesting a possible role for these metabolites 

in the chemical defence strategy of P. erythrina. 

 
 

 
resented colourless compounds climacostol and spirostomin, 

which appear to be exclusively related to predator–prey interac- 

tions.[17–19] In addition, Spirostomum ambiguum and Coleps hir- 

tus, have been, respectively, demonstrated to produce the de- 

fensive molecule mono-prenyl hydroquinone and a cocktail of 

free fatty acids that assist in carnivorous feeding.[7,20] Two of 

these compounds, spirostomin and climacostol, have been 

chemically synthesized[18,19,21,22] and synthetic climacostol has 

also been studied for its antibiotic, cytotoxic and proapoptotic 

effects on pathogen prokaryotes, protists and human cancer 

cell lines. Experiments performed with this compound and plas- 

mid DNA indicate that the mechanism of action of climacostol 

involves CuII-mediated oxidative DNA damage.[23–27]
 

Among marine ciliates, morphospecies belonging to the ge- 

nus Euplotes have been extensively studied for their ability to 

produce chemically diverse secondary metabolites. Interest- 

ingly, it was found that strains belonging to the same genetic 

clade were characterized by a different profile of bioactive com- 

pounds.[6] For example, the morphospecies E. vannus is charac- 

terized by great biodiversity on genetic scale, which is reflected, 

from a metabolic point of view, by the production of different 

secondary metabolites. Tropical strains are known to produce 

vannusal A and B, whereas other strains produce the sesquiter- 

penoids prevannusadial A and B and hemivannusal. E. crassus 

has been widely investigated for its ability to produce euplotin 

A, B and C. Euplotin C, in particular, has shown powerful cyto- 

toxic effects against other Euplotes morphospecies and tumour 

cells in addition to antimicrobial activities.[28–31]
 

Keronopsins are another group of pigments and defensive 

molecules, characterized by a ß-bromide-substituted pyrrole 

linked to a sulfate pyrrole through a conjugated acyl chain, that 

were isolated from Pseudokeronopsis rubra in 1994.[32] Recently, 
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a third group of pigments called keronopsamides has been iso- 

lated from the marine ciliate Pseudokeronopsis riccii.[5]
 

Pseudokeronopsis erythrina (Ciliophora, Hypotricha) belongs 

to the family of Pseudokeronopsidae and was recently de- 

scribed as an estuarine ciliate species.[33] The strain used in this 

study was collected from a freshwater environment (Lake Tra- 

simeno, Italy) and perfectly adapted to be cultured in the labo- 

ratory using the same conditions established for other freshwa- 

ter species. For this reason, we propose to classify this organism 

as an euryhaline ciliate. P. erythrina displays an elliptical shape 

and an elongated body (120–200 × 20–50 μm), and is equipped 

with spherical, dark-reddish, brown or brick red coloured pig- 

ment granules (about 1 μm in diameter) that are mainly ar- 

ranged around ciliary organelles.[33]
 

In this work we report on the characterization of new pig- 

ments produced by cell cultures of P. erythrina using different 

analytical approaches such as Nuclear Magnetic Resonance 

(NMR), High Resolution-Matrix Assisted Laser Desorption Ioniza- 

1–3 should simply be the sulfonated analogues of 4–6 metabo- 

lites. ESI(–) MS2 and MS3 analyses confirmed this hypothesis. In 

fact, isolation and fragmentation (Figure 2, A) of the parent ion 

[M – H]– for peak 2 (m/z 451.3, eluting at 7.8 min) led to a 

daughter ion at m/z = 371.3 (through the loss of an 80 Da 

neutral fragment), the same mass value observed for the parent 

ion of peak 5, eluting at 16.3 min. Even more convincingly, the 

further isolation and fragmentation of this ion at m/z = 371.3 

(MS3 spectrum of 2 in Figure 2, B) is almost superimposable 

with the MS2 spectrum of the parent ion of peak 5, (MS2 of 5 

in Figure 2, C). Similar MSn measurements carried out on the 

parent ions of peaks 1 and 3 confirmed their structural relation- 

ship with peaks 4 and 6, respectively. Molecular formulas of the 

parent ions for peaks 1–6 were established by high resolution 

MALDI-TOF mass measurements carried out by using the TOF 

analyser in reflectron mode. Thus, for instance, the parent ion 

of compound 2 was found to have a molecular formula of 

C22H27O8S
– (accurate mass 451.1450 Da) and that of compound 

tion-Time of Flight-Mass Spectrometry (HR-MALDI-TOF-MS) and 5 was found to be C H O – at (371.1838 Da). Hence, HR- 

High Performance Liquid Chromatography-Electrospray Ioniza- 

tion-Ion Trap-Mass Spectrometry coupled to a Diode Array De- 

tector (HPLC-ESI-IT-MS/DAD). Cold-shock treatments of the pro- 

ducing organism induced metabolite discharge from pigment 

granules and the contents of this discharge were characterized 

using the same analytical procedures noted above. 

 

Results and Discussion 

To investigate the chemical composition of compounds pro- 

duced by massive cell cultures of Pseudokeronopsis erythrina, we 

analyzed the first fraction eluted from RP18 cartridges loaded 

with crude ethanol extracts using methanol/water (9:1). When 

subjected to HPLC-ESI-IT-MS/DAD analysis, the chromatogram 

of this fraction showed the presence of six major peaks, all with 

a strong UV absorption around 305 nm (Figure 1). 
 

 
Figure 1. Chromatogram of P. erythrina crude extract obtained from cell cul- 

tures with UV detection at 305 nm. 

 

The nominal masses of the [M – H]– pseudo-molecular ions 

of metabolites 1–3 differed from each other by 14 Da (m/z 437, 

451 and 465, respectively); the same mass difference was also 

found among metabolites 4–6 (357, 371 and 385, respectively). 

More strikingly, the molecular weights of the most polar metab- 

olites 1–3 were found to be 80 Da mass-shifted with respect to 

the  less  polar  metabolites  4–6,  thus  defining  two  classes  of 

homologous metabolites with different polarities. We hypothe- 

sized that this mass shift could be attributable to a –SO3 group; 

MALDI-MS measurements established that this +80 Da mass 

shift was actually due to the SO3 group; metabolites 1–3 being 

the sulfate esters of 4–6, a finding also in agreement with their 

observed higher polarity (shorter retention time on reversed- 

phase chromatography). 
 

 
 

Figure 2. A) ESI(–) MS2 spectrum of m/z 451 (parent ion of peak 2); B) ESI(–) 

MS3 spectrum of m/z 451→371 of peak 2; C) ESI(–) MS2 spectrum of the 
parent ion of peak 5 (m/z 371). 

 

Another striking difference observed in the spectroscopic 

properties of the 1–3 series (sulfate esters) with respect to the 

4–6 (hydroxyl) series of metabolites was found in their corre- 

sponding UV spectra taken on-line during the chromatographic 

runs. Although all compounds shared the same absorption 

band at 250 nm, the UV spectra of compound 1–3 showed a 

bathochromic shift of the absorption maximum around 300 nm 

(λ = 307±1 nm in 1–3 and λ = 301±1 nm in 4–6). This finding 

27 
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strongly suggests that the sulfonic group must be somehow 

conjugated to the main chromophoric system of these com- 

pounds. 

In positive ion mode, MS spectra of sulfate esters 1–3 

showed intense signals mainly attributable to i) mono- and di- 

sodiated adducts of the parent ion, and ii) their corresponding 

de-sulfonated ion fragments. ESI(+) MS spectra of 4–6, instead, 

showed intense signals only for their protonated and mono- 

sodiated adducts. Since the sulfonic group exists in aqueous 

solution as an anionic –SO – group, we can consider the molec- 

ular formula of neutral 1 (M) to be C21H25NaO8S, corresponding 

to the mono-sodiated salt. Thus, in positive ion-mode ESI meas- 

urements of compounds 1–3, only one sodium ion is required 

to give an overall positive charge to the parent ion adduct M, 

which, however, already contains a sodium ion. Following this 

definition, we have to consider [M + Na]+ parent ions which 

eventually lose a neutral SO3 molecule leading to other abun- 

dant fragments ions [i.e. M + Na – SO3]+. Noteworthy is that, as 

soon as the SO3 moiety is lost, compounds 1–3 become 4–6 

and the same expected ESI (+) adduct ions are observed. 

The structural elucidation of these compounds was per- 

formed through extensive 1D and 2D NMR analysis. We de- 

scribe here NMR details only for compound 5 (erythrolactone 

B2) and its analogue 2 (erythrolactone B1) since they are com- 

prehensive of all the NMR features of these metabolites. As out- 

lined above, the high resolution measurement (371.1838 Da) 

determined by TOF analyser on the monoisotopic peak of the 
[M – H]– parent ion revealed the formula of 5 to be C  H  O – 

23.86 ppm) were 3J (H,C) hetero-correlated with carbon singlets 

at δC = 168.84 ppm [C(15)] and 167.70 ppm [C(13)] and 2J 

(H,C) hetero-correlated with the carbon atom singlet at δC = 

104.06 ppm [C(14)]. 

The NMR spectra of compound 4 (erythrolactone A2) and 6 

(erythrolactone C2) were almost superimposable with those of 

5 (erythrolactone B2); the only difference pertained to the rela- 

tive integration area of the multiplet at δH = 1.29 ppm. The 

high resolution mass measurements on these metabolites 

showed that they possessed one methylene group (–CH2–) 

greater (4) or less (6) than heptyl-bearing 5 whereas the NMR 

data indicated that 4 was the n-hexyl analogue of 5 and that 6 

was the n-octyl analogue of 5. 

On the other hand, a few but characteristic differences were 

displayed by compounds 1–3 with respect to 4–6. In particular, 

in compound 2, H–C(12) was found to be more than 0.8 ppm 

deshielded (δH = 6.87 ppm) relative to the same moiety in 5 

and almost all the 13C resonances (but only these) of the pyran- 

one ring system were significantly affected. Since the high reso- 

lution measurement (451.150 Da) of the monoisotopic peak of 

the [M – Na]– parent ion revealed the molecular composition 

of 2 as C22H27O8S
– (i.e. 5 + SO3), it became evident not only 

that we were dealing with the sulfate analogue of 5, but also 

that the sulfonylated hydroxyl group is linked at C(13). Follow- 

ing similar lines of reasoning as discussed above, it was straight- 

forward to assign structures 1 (erythrolactone A1) and 3 (eryth- 

rolactone C1) as, respectively, the n-hexyl and n-octyl analogues 
of 2 (Figure 3). 

22   27   5 

implying nine degrees of unsaturation. Analysis of 1D and 2D 

NMR spectra revealed the presence of i) a substituted 1,4-hy- 

droquinone ring conjugated to a disubstituted carbon–carbon 

double bond, ii) a trisubstituted pyranone ring and iii) a short 

linear alkyl chain. The presence of one 1,4-hydroquinone moi- 

ety (arbitrary numbering as defined in Scheme 1) was estab- 

lished by the δH values of aromatic protons, their characteristic 

J coupling pattern and, mainly, by their correlation with the 

corresponding δC values obtained by HSQC experiments. The 

HMBC spectrum not only confirmed this partial structure, but 

also allowed us to ascertain the substituent at position 6 as a 

disubstituted C(7)=C(8) double bond with E stereochemistry 

(J7,8 = 15.9 Hz). Notably, the C(7) at δC = 127.71 ppm showed 
3J hetero-correlations only with H–C(5) at δH = 6.79 ppm, 

whereas the C(6) at δC = 126.38 ppm showed 3J hetero-correla- 

tions with H–C(2) at δH = 6.59 ppm. 

The analysis of homonuclear correlations (COSY) spectra al- 

lowed us to easily extend the atom connectivity of this alkenyl 

chain as far as C(10). The 3J hetero-correlation of C(10) at δC = 

34.42 ppm with the proton singlet at δH = 6.03 ppm and of the 

latter with the characteristic singlets at δC = 167.70, 164.31 and 

104.06 ppm allowed us to assign the remaining 4 points of 

unsaturation to a 2,6-dialkyl-substituted, 4-hydroxy-2H-pyran- 

one ring. Whereas HSQC and HMBC measurements clearly indi- 

cated C(10) to be linked at position 11, the linear heptyl chain 

must be located at position 14 of the pyranone moiety as noted 

in Scheme 1. In fact, NMR spectra enabled full assignment of 

the protons and carbons of this chain indicating that desh- 

ielded  triplet  protons  2H-(C1′)  at  δH  =  2.37  ppm  (δC  = 

 

 
 

Figure 3. Structures of eythrolactones 1–6 isolated from massive cell cultures 

of Pseudokeronopsis erythrina. 

 
 

 
Chemical Characterization of Erythrolactones from Cold- 

Shock Treatment 

Cold-shock treatment proved to be an efficient method of trig- 

gering release of extrusomal contents.[17,20,34,39] We performed 

a quick extraction from a small portion of the lyophilized frac- 

tion by adding a few drops of ethanol and subjecting this mi- 

cro-extract to prompt HR-MALDI-TOF analysis. The remaining 

part of the same lyophilized fraction was then subjected to an 

extended ethanol/acetone extraction followed by HPLC-ESI-IT- 

MS/DAD and NMR measurements. Comparisons of experimen- 

tal data obtained by these two different procedures allowed us 

to clearly establish that no significant differences were apparent 

in the metabolite distributions of both extracts; we therefore 

felt confident to that the “native” profile was unaffected by ex- 
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tractive work-up. As can be appreciated in the chromatogram 

shown in Figure 4, this extract contains significant amounts of 

erythrolactones  4–6.  Some  minor  metabolites  were  also  de- 

tected by LC-MS, (also present in the crude extract obtained 

from cell cultures) but the material in our hands was insufficient 

for chemical characterization of these minor constituents. How- 

ever, a careful comparison of MS spectra of minor metabolites 

isolated from cell culture with those present in the cold-shock 

treatment revealed that the latter contained merely de-sulfo- 

nated molecules. 
 

 
 

Figure 4. UV chromatogram of fraction obtained by cold-shock treatment of 

P. erythrina cells (detection at 305 nm). 

 

The genus Pseudokeronopsis is known for the production of 

secondary metabolites that exist both as free or as esterified 

(sulfonic) forms. For example, keronopsamides B and C isolated 

from Pseudokeronopsis riccii have been found as sulfate esters 

whereas keronopsamide A is the non-sulfonated analogue of 

keronopsamide B. Similarly, P. rubra is known to produce ker- 

onopsins A1 and A2, which are the sulfate esters of keronopsins 

B1 and B2 respectively. The question of why the toxin-enriched 

fraction (TES) contains only not-sulfonated molecules has not 

yet been definitively answered. The sulfation of endogenous 

molecules is important, especially in eukaryotes;[35] the addition 

of highly charged sulfate groups increases water solubility and 

can influence conformational changes as well as downstream 

biotransformations of low molecular weight compounds.[35]
 

 

Biogenetic Considerations 

The biosynthesis of erythrolactones may be supposed 

(Scheme 1) to occur from the Claisen condensation of two inter- 

mediates, an extended 2,5-dihydroxycinnamoyl-CoA (A) and 

nonanoyl-CoA, affording the key intermediate C. 2,5-Dihydroxy- 

cinnamoyl-CoA can be elongated via classical fatty acid syn- 

thetic machinery (using 2 equiv. acetyl CoA) whereas the nona- 

noyl-CoA can arise from oxidative scission of the C9=C10 dou- 

ble bond of oleic acid (18:1, ω = 9). That the saturated alkyl 

chains can derive from this C–C bond breaking easily explains 

the structural composition of erythrolactones A2–C2 (as well as 

erythrolactone sulfates A1–C1); the C6, C7 and C8 alkyl chains 

are derived, respectively, from the oxidative breaking of the 

very common 16:1, 18:1 and 20:1 acyl chains. Lactonization fol- 

lowed by tautomerization of intermediate C eventually provides 

the erythrins themselves. 

 
Conclusions 

Three new molecules, erythrolactones A2, B2 and C2, and their 

respective sulfate esters (A1, B1, C1), were isolated from cell 

cultures of Pseudokeronopsis erythrina. Their structures were de- 

termined by NMR spectroscopy and MS data generated using 

HR-MALDI-TOF and ESI-MS. Very interestingly, cold-shock treat- 

ments provided evidence that only non-sulfonated molecules 

are stored in the pigment granules. 

 

 
 

Scheme 1. Proposed biogenetic path for the biosynthesis of erythrolactone B2 isolated from marine ciliates of the genus P. erythrina. 
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Consistent with our suggestions,[5,6] these new findings un- 

derscore i) the high skeletal diversity found in the secondary 

metabolites of this phylum, and ii) the high biodiversity and 

adaptive ability of ciliates. To date, the only investigated spe- 

cies, P. rubra, P. riccii and P. erythrina produce significantly differ- 

ent metabolites by exploiting different metabolic pathways. 

Further studies, currently in progress, will highlight the biologi- 

cal and ecological roles of the erythrolactones. 

 
Experimental Section 

General Methods: HPLC grade acetone, chloroform, ethanol, ethyl 

acetate, methanol, n-hexane and LC-MS grade methanol were pur- 

chased from VWR (VWR International PBI, Milan, Italy); deionized 

water filtered at 0.2 μm was obtained from Elix Water Purification 

System  (Merck  Millipore,  Billerica,  MA,  USA).  LC-MS  grade  formic 
acid was purchased from Fisher Scientific (Fisher Scientific, Illkirch, 

France). [D4]Methanol for NMR spectroscopy was purchased from 

Merck and had a degree of deuteration of min 99.8 %. 9-Aminoacri- 

dine hydrochloride hydrate (9AA) for MALDI was purchased from 
Alfa Aesar (Alfa Aesar GmbH & Co KG, Karlsruhe, Germany). Kuroma- 

nin chloride and myrtillin chloride were purchased from Extrasyn- 

these (Extrasynthese, Lyon, France). 

Infrared spectra (IR) were recorded using a FT-IR Equinox 55 Bruker 

spectrometer (ATR configuration) at 1 cm–1 resolution in the absorp- 

tion region Δν̃  4000–1000 cm–1. A thin solid layer is obtained by 
evaporation of a methanol solution of erythrolactone B1 (2) and 
erythrolactone B2 (5). The instrument was purged with a constant 
dry air flux and clean ATR crystal as background was used. Spectral 
processing was accomplished using Opus software. 

1H NMR (400 MHz) and 13C NMR (100 MHz) analyses were con- 
ducted with a Bruker-Avance 400 MHz NMR spectrometer by using 
a 5 mm BBI probe equipped with pulsed-gradient field utility; the 

system was controlled by TopSpin software 2.1. The 1H-90° proton 
pulse length was 9.3 μs with a transmission power of 0 dB. Spectra 
were acquired at 300 K. The chemical shift scale (δ, ppm) was cali- 

brated: i) for 1H-spectra on the residual proton signal of methanol 

at δH = 3.310 ppm, and ii) for 13C-spectra on the 13C-NMR resonance 
of [D4]MeOH at δC = 49.00 ppm. Proton–proton scalar correlation 

(1H-1H DQCOSY), proton–carbon single bond correlation (1H-13C 

HSQC), and proton–carbon multiple bond correlation (1H-13C 
HMBC) were also recorded. NMR spectra were processed also by 
using MestreNova 9.1 software (MestreLab Research S.L., Escondido, 
CA). 

HR-MALDI-TOF-MS analyses were performed with a Bruker Daltonics 
Ultraflex II instrument operated by FlexControl 3.0 software (Bruker- 

Daltonik GmbH, Leipzig, Germany). Spectra were acquired in reflec- 
tron negative mode at a laser frequency of 20 Hz in the mass range 

from 0–1000 Da. Ion source 1 (IS1) voltage was set at 20.0 kV, IS2 

at 17.5 kV, lens at 7.0 kV, reflectron 1 at 21.0 kV, reflectron 2 at 

11.0 kV. Laser power level was adjusted to ensure high signal-to- 
noise ratios and low fragmentation. Detector gain was 10.2 ×, 

pulsed ion extraction was 50 ns and electronic gain 100 mV. For 

each sample spot, one spectrum was recorded after accumulation 

of 500 measurements on different spot locations. The matrix was 
9AA 4 mg/mL in acetonitrile/water (1:1). MALDI was internally cali- 

brated at each measurement on the mono-isotopic peak of the [M 

– H]– signals of 9AA (m/z: 193.0765 Da), kuromanin aglycon (m/z: 
285.0399 Da), kuromanin (m/z: 447.0927 Da), myrtillin aglycon (m/z: 

301.0399 Da), myrtillin (m/z: 463.0876 Da) and daphnoretin (m/z: 

351.0504 Da). Aliquots (0.5 μL) of isolated metabolites were spotted 

onto MALDI plates (BrukerDaltonik GmbH, Leipzig, Germany), al- 

lowed to air dry, covered with an equal amount of standard solu- 

tion, dried and then covered with 0.5 μL of 9AA. 

HPLC-ESI-MS/DAD analyses were conducted both in positive and 
negative ion mode using a Hewlett–Packard Model 1100 Series liq- 

uid chromatography (Hewlett–Packard Development Company, L.P., 
Palo Alto CA, USA) coupled both to a Bruker Esquire-LC quadrupole 

ion-trap mass spectrometer (IT-MS) equipped with an electrospray 

source (Bruker Optik GmbH, Ettlingen, Germany) and to a photo 

diode-array detector (Agilent Technologies, Milan, Italy, Agilent 
1100). Chromatographic separation was conducted on a Zorbax 

Eclipse XDB-C18 column (150 × 4.6 mm I.D., particle size: 3.5 μm) 

purchased by Agilent (Agilent Technologies, Santa Clara, CA); sol- 

vent A consisted of 0.1 % formic acid in water and B, 0.1 % formic 
acid in methanol. Elution program was: 40 %A/60 %B for 3 min, 

then %B was increased to 75 % in 20 min and then to 100 % B in 

5 min; operating flow was 1.0 mL/min. The following parameters 

were used: scan range: 100–1200 m/z at 13000 m/z s–1; high purity 
nitrogen was used at a pressure of 35 psi, a temperature of 300 °C 

and at a flow rate of 7 L min–1; high voltage capillary was set at 
4000 V for positive ionization mode and –4000 V for negative mode. 

Injection volumes were set at 10 μL. The same parameters were 

also used for MS2 and MS3 analyses. 

Cultures and Taxonomic Identification of P. erythrina: P. erythrina 

(clone TL-1) was isolated from Lake Trasimeno (Perugia, Italy). Cells 

were cultured in a balanced salt solution [SMB: (1.5 mM NaCl, 

0.05 mM KCl, 0.4 mM CaCl2, 0.05 mM MgCl2, 0.05 mM MgSO4, 2 mM 

Na-phosphate buffer pH 6.8, 2 9 10–3 mM EDTA)] (Miyake, 1981) and 
fed with the flagellate Chlorogonium elongatum, grown as described 

in ref.[36]
 

The taxonomic identification of P. erythrina was performed using 
both molecular and morphological data. DNA was extracted from 
cells which were re-suspended for at least one week without food 
in fresh culture medium, and pelleted by centrifugation. The extrac- 
tions were performed using the QIAamp® DNA Micro Kit (Qiagen, 
Milan, Italy) in accord with manufacturer instructions, and the DNA 
concentrations were measured with a DU 640 Spectrophotometer 
(Beckman Instruments Inc., Fullerton, CA, USA). The small subunit 
(SSU) rRNA nuclear gene was PCR amplified using the universal 

eukaryotic  forward  primer  18S  F9  5′-CTGGTTGATCCTGCCAG-3′[37] 

and the 18S R1513 Hypo reverse primer 5′-TGATCCTTCYGCAGGTTC- 

3′.[38] PCR amplifications were performed by adding DNA aliquots 
(100 ng) to 50 μL of reaction mixture containing 2 mM MgCl2, 
250 mM of dNTP, one unit of Taq DNA polymerase (Polymed, Flor- 
ence, Italy) and 0.2 mM of each primer. Amplifications were run in 
a GenAmp PCR system 2400 (Applied Biosystems, Foster City, CA, 
USA), following a standard program (30 cycles of 30 s at 94 °C, 30 s 
at 55 °C, and 120 s at 72 °C), with an initial denaturation step of 
5 min at 94 °C and a final extension step of 5 min at 72 °C. Amplified 
products were purified using Quantum Prep PCR Kleen Spin col- 
umns (Bio-Rad, Hercules, CA, USA) and sequenced in both direc- 
tions with an ABI Prism 310 automated DNA sequencer (Applied 
Biosystems). To minimize amplification errors, sequences of two dif- 
ferent amplicons were compared. The correct assignment of the 
species was further verified by means of a morphological analysis 
on in vivo and fixed specimens using previously described meth- 
ods.[33] 

Extraction, Isolation and Purification of Secondary Metabolites 

from P. erythrina Cell Cultures: P. erythrina lyophilized cell cultures 

(about 5.5 × 106 cells) were extracted three times with ethanol 

(50 mL), three times with acetone (50 mL) and three times with 
methanol/chloroform (50 mL, 1:2, v/v) in glass vials, until the cell 
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cultures appeared colourless. After solvent addition, cultures were 
sonicated 15 min in an ultrasonic bath (Sonorex Super, Bandelin 

electronics, Berlin, Germany) and centrifuged 10 min at 3000 × g 

at room temperature. Each fraction was concentrated in a rotary 

evaporator and then small aliquots were loaded onto TLC silica gel 
60 F254s plates (Merck KgaA, Darmstadt, Germany), developed with 

n-hexane/ethyl acetate (1:1, v/v), and TLC silica gel 60 RP18 F254s 

(Merck KgaA, Darmstadt, Germany), which were developed with 

methanol/water (9:1, v/v). Extracts (15.6 mg) were combined to- 
gether, dried in a rotary evaporator, dissolved in methanol (200 μL) 

and loaded to a 2 g RP18 SPE cartridge (Supelco Analytical, Belle- 

fonte, PA, USA) and eluted with mixtures of water and methanol. 

Fractions (5 mL) were collected and tested on TLC as described 
above. Metabolites of interest were collected in fractions 1 and 2, 

eluting before chlorophylls. These fractions were purified by re- 

versed-phase   Agilent   Zorbax   Eclipse   XDB-C18   column 

(150 × 4.6 mm, 3.5 μm) eluting as described above for HPLC-ESI- 
MS/DAD and following the chromatogram as recorded with detec- 

tion at 305 nm. Purified compounds were collected, concentrated 

and analyzed by NMR and HPLC-ESI-MS. 

Erythrolactone A1 (1): Pale yellow, amorphous solid. UV (meth- 

anol): λmax = 250, 306 nm. 1H NMR (400 MHz, [D4]MeOH): δ = 6.86 
[s, 1 H, H-C(12)], 6.786 [d, J = 2.9 Hz, 1 H, H-C(5)], 6.684 [d, J = 

16.0 Hz, 1 H, H-C(7)], 6.593 [d, J = 8.6 Hz, 1 H, H-C(2)], 6.497 [dd, J = 
8.6, 2.9 Hz, 1 H, H-C(3)], 6.148 [dt, J = 15.9, 6.8 Hz, 1 H, H-C(8)], 

2.645 [t, J = 7.1 Hz, 2 H, H2-C(10)], 2.544 [q, J = 6.7 Hz, 2 H, H2-C(9)], 

2.375 [m, 2 H, H2-C(1′)], 1.453 [m, 2 H, H2-C(2′)], 1.297 [m, 6 H, H2- 
C(3′)- H2-C(5′)], 0.893 [t, J = 6.9 Hz,  3 H, H3-C(7 ′)] ppm. 13C NMR 

(100 MHz, [D4]MeOH): δ = 164.42 [s, C(15)], 162.80 [s, C(13)], 164.31 
[s, C(11)], 151.21 [s, C(4)], 148.67 [s, C(1)], 128.64 [d, C(8)], 127.71 [d, 

16.0 Hz, 1 H, H-C(7)], 6.593 [d, J = 8.6 Hz, 1 H, H-C(2)], 6.497 [dd, J = 

8.6, 2.9 Hz, 1 H, H-C(3)], 6.148 [dt, J = 15.9, 6.8 Hz, 1 H, H-C(8)], 

2.645 [t, J = 7.1 Hz, 2 H, H2-C(10)], 2.544 [q, J = 6.7 Hz, 2 H, H2-C(9)], 

2.375 [m, 2 H, H2-C(1′)], 1.453 [m, 2 H, H2-C(2′)], 1.297 [m, 10 H, H2- 

C(3′)- H2-C(7′)], 0.893 [t, J = 6.9 Hz,  3 H, H3-C(7 ′)] ppm. 13C NMR 
(100 MHz, [D4]methanol): δ = 164.42 [s, C(15)], 162.80 [s, C(13)], 

164.31 [s, C(11)], 151.21 [s, C(4)], 148.67 [s, C(1)], 128.64 [d, C(8)], 

127.71 [d, C(7)], 126.38 [s, C(6)], 117.37 [d, C(2)], 116.00 [d, C(3)], 

113.38 [d, C(5)], 99.78 [s, C(14)], 100.20 [d, C(12)], 34.42 [t, C(10)], 

33.02 [t, C(6′)], 31.61 [t, C(9)], 30.48 [t, 3 C, C(3′) + C(4′) + C(5′)], 
28.97 [t, C(2 ′)], 23.86 [t, C(1′)], 23.71 [t, C(7′)], 14.42 [q, C(8′)] ppm. 
HR-MALDI-TOF-MS: m/z 465.1502 [M – Na]– (calcd. for C23H29O8S–: 

465.1483 Δ: 4.08 ppm). ESI-MS (positive ion mode detection) m/z: 

387.3 [M + 2H – Na – SO3]+, 409.4 [M + H – SO3]+, 431.4 [M + Na – 
SO3]+, 511.3 [M + Na]+. ESI-MS (negative ion mode detection) m/z: 

465.5 [M – Na]–. tR: 11.3 min (2 mg). 

Erythrolactone A2 (4): Orange, red-brick amorphous solid. UV 

(methanol): λmax = 250, 302 nm. 1H NMR (400 MHz, [D4]MeOH): δ = 
6.86 [s, 1 H, H-C(12)], 6.786 [d, J = 2.9 Hz, 1 H, H-C(5)], 6.684 [d, J = 

16.0 Hz, 1 H, H-C(7)], 6.593 [d, J = 8.6 Hz, 1 H, H-C(2)], 6.497 [dd, J = 

8.6, 2.9 Hz, 1 H, H-C(3)], 6.148 [dt, J = 15.9, 6.8 Hz, 1 H, H-C(8)], 
2.645 [t, J = 7.1 Hz, 2 H, H2-C(10)], 2.544 [q, J = 6.7 Hz, 2 H, H2-C(9)], 

2.375 [m, 2 H, H2-C(1′)], 1.453 [m, 2 H, H2-C(2′)], 1.297 [m, 6 H, H2- 
C(3′)- H2-C(5′)], 0.893 [t, J = 6.9 Hz,  3 H, H3-C(7 ′)] ppm. 13C NMR 

(100 MHz, [D4]methanol): δ = 164.42 [s, C(15)], 162.80 [s, C(13)], 

164.31 [s, C(11)], 151.21 [s, C(4)], 148.67 [s, C(1)], 128.64 [d, C(8)], 

127.71 [d, C(7)], 126.38 [s, C(6)], 117.37 [d, C(2)], 116.00 [d, C(3)], 
113.38 [d, C(5)], 99.78 [s, C(14)], 100.20 [d, C(12)], 34.42 [t, C(10)], 

33.02 [t, C(4′)], 31.61 [t, C(9)], 30.48 [t, C(3′)], 28.97 [t, C(2′)], 23.86 [t, 

C(1′)], 23.71 [t, C(5′)], 14.42 [q, C(6′)] ppm. HR-MALDI-TOF-MS: m/z 
C(7)], 126.38 [s, C(6)], 117.37 [d, C(2)], 116.00 [d, C(3)], 113.38 [d, 357.1685 [M – H]– (calcd. for C   H   O –: 357.1702 Δ: 4.76 ppm). ESI- 
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C(5)], 99.78 [s, C(14)], 100.20 [d, C(12)], 34.42 [t, C(10)], 33.02 [t, 

C(4′)], 31.61 [t, C(9)], 30.48 [t, C(3′)], 28.97 [t, C(2′)], 23.86 [t, C(1′)], 
23.71  [t,  C(5 ′)],  14.42  [q,  C(6′)]  ppm.  HR-MALDI-TOF-MS:  m/z 
437.1248 [M – Na]– (calcd. for C21H25O8S–: 437.1270; Δ: 5.03 ppm). 

ESI-MS (positive ion mode detection) m/z: 359.3 [M + 2H – Na – 
SO3]+, 381.3 [M + H – SO3]+, 403.3 [M + Na – SO3]+, 483.1 [M + Na]+. 

ESI-MS  (negative  ion  mode  detection)  m/z:  437.1  [M  –  Na]–.  tR: 

5.1 min (1 mg). 

Erythrolactone B1 (2): Pale yellow, amorphous solid. UV (meth- 

anol): λmax = 250, 308 nm. IR (thin solid layer): ν̃max = 2926, 2856, 

1690, 1572, 1437, 1255, 1050, 1014, 747 cm–1. 1H NMR (400 MHz, 

[D4]MeOH): δ = 6.86 [s, 1 H, H-C(12)], 6.786 [d, J = 2.9 Hz, 1 H, H- 
C(5)], 6.684 [d, J = 16.0 Hz, 1 H, H-C(7)], 6.593 [d, J = 8.6 Hz, 1 H, H- 

C(2)], 6.497 [dd, J = 8.6, 2.9 Hz, 1 H, H-C(3)], 6.148 [dt, J = 15.9, 

6.8 Hz, 1 H, H-C(8)], 2.645 [t, J = 7.1 Hz, 2 H, H2-C(10)], 2.544 [q, J = 

6.7  Hz,  2  H,  H2-C(9)],  2.375  [m,  2  H,  H2-C(1 ′)],  1.453  [m,  2  H, 

H2-C(2′)], 1.297 [m, 8 H, H2-C(3 ′)- H2-C(6′)], 0.893 [t, J = 6.9 Hz, 3 H, 

H3-C(7′)]  ppm. 13C  NMR  (100  MHz, [D4]methanol):  δ  = 164.42  [s, 
C(15)], 162.80 [s, C(13)], 164.31 [s, C(11)], 151.21 [s, C(4)], 148.67 [s, 

MS (positive ion mode detection) m/z: 359.3 [M + H]+, 381.3 [M + 
Na]+. ESI-MS (negative ion mode detection) m/z: 357.4 [M – H]–. tR: 

12.2 min (1 mg). 

Erythrolactone B2 (5): Pale yellow, amorphous solid. UV (meth- 
anol): λmax = 250, 300 nm. IR (thin solid layer): ν̃max = 2957, 2928, 

2855, 1667, 1585, 1501, 1447, 1409, 1359, 1257, 1206, 1127, 1027, 
971 cm–1. 1H NMR (400 MHz, [D4]MeOH): δ = 6.786 [d, J = 2.9 Hz, 1 

H, H-C(5)], 6.684 [d, J = 16.0 Hz, 1 H, H-C(7)], 6.593 [d, J = 8.6 Hz, 1 

H, H-C(2)], 6.497 [dd, J = 8.6, 2.9 Hz, 1 H, H-C(3)], 6.148 [dt, J = 15.9, 

6.8 Hz, 1 H, H-C(8)], 6.031 [s, 1 H, H-C(12)], 2.645 [t, J = 7.1 Hz, 2 H, 
H2-C(10)], 2.544 [q, J = 6.7 Hz, 2 H, H2-C(9)], 2.375 [m, 2 H, 

H2-C(1′)], 1.453 [m, 2 H, H2-C(2′)], 1.297 [m, 8 H, H2-C(3′)- H2-C(6′)], 
0.893  [t,  J  =  6.9  Hz,  3  H,  H3-C(7′)]  ppm.  13C  NMR  (100  MHz, 
[D4]MeOH): δ = 168.84 [s, C(15)], 167.70 [s, C(13)], 164.31 [s, C(11)], 
151.21 [s, C(4)], 148.67 [s, C(1)], 128.64 [d, C(8)], 127.71 [d, C(7)], 

126.38 [s, C(6)], 117.37 [d, C(2)], 116.00 [d, C(3)], 113.38 [d, C(5)], 

104.06 [s, C(14)], 101.42 [d, C(12)], 34.42 [t, C(10)], 33.02 [t, C(5′)], 
31.61 [t, C(9)], 30.48 [t, C(4′) or C(3′)], 30.29 [t, C(3′) or C(4′)], 28.97 

[t, C(2′)], 23.86 [t, C(1′)], 23.71 [t, C(6′)], 14.42 [q, C(7′)] ppm. HR- 
C(1)], 128.64 [d, C(8)], 127.71 [d, C(7)], 126.38 [s, C(6)], 117.37 [d, MALDI-TOF-MS:  m/z  371.1838  [M  –  H]–   (calcd.  for  C H   O –: 
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C(2)], 116.00 [d, C(3)], 113.38 [d, C(5)], 99.78 [s, C(14)], 100.20 [d, 
C(12)], 34.42 [t, C(10)], 33.02 [t, C(5′)], 31.61 [t, C(9)], 30.48 [t, C(4 ′) 
or C(3′)], 30.29 [t, C(3′) or C(4′)], 28.97 [t, C(2′)], 23.86 [t, C(1 ′)], 23.71 [t, 

C(6′)], 14.42 [q, C(7′)] ppm. HR-MALDI-TOF-MS: m/z 451.1450 [M 
– Na]– (calcd. for C22H27O8S–: 451.1427; Δ: 5.09 ppm). ESI-MS (posi- 

tive ion mode detection) m/z: 373.3 [M + 2H – Na – SO3]+, 395.3 [M 
+ H – SO3]+, 417.4 [M + Na – SO3]+, 497.1 [M + Na]+. ESI-MS (nega- 

tive ion mode detection) m/z: 451.1 [M – Na]–. tR: 7.8 min (4 mg). 

Erythrolactone C1 (3): Pale yellow, amorphous solid. UV (meth- 

anol): λmax = 250, 306 nm. 1H NMR (400 MHz, [D4]MeOH): δ = 6.86 
[s, 1 H, H-C(12)], 6.786 [d, J = 2.9 Hz, 1 H, H-C(5)], 6.684 [d, J = 

371.1858 Δ: 5.4 ppm). ESI-MS (positive ion mode detection) m/z: 
373.3 [M + H]+, 395.3 [M + Na]+. ESI-MS (negative ion mode detec- 

tion) m/z: 371.0 [M – H]–. tR: 16.3 min (3 mg). 

Erythrolactone C2 (6): Pale yellow, amorphous solid. UV (meth- 

anol): λmax = 250, 302 nm. 1H NMR (400 MHz, [D4]MeOH): δ = 6.86 
[s, 1 H, H-C(12)], 6.786 [d, J = 2.9 Hz, 1 H, H-C(5)], 6.684 [d, J = 

16.0 Hz, 1 H, H-C(7)], 6.593 [d, J = 8.6 Hz, 1 H, H-C(2)], 6.497 [dd, J = 
8.6, 2.9 Hz, 1 H, H-C(3)], 6.148 [dt, J = 15.9, 6.8 Hz, 1 H, H-C(8)], 

2.645 [t, J = 7.1 Hz, 2 H, H2-C(10)], 2.544 [q, J = 6.7 Hz, 2 H, H2-C(9)], 

2.375 [m, 2 H, H2-C(1′)], 1.453 [m, 2 H, H2-C(2′)], 1.297 [m, 10 H, H2- 

C(3′)- H2-C(7′)], 0.893 [t, J = 6.9 Hz,  3 H, H3-C(7 ′)] ppm. 13C NMR 
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(100 MHz, [D4]methanol): δ = 164.42 [s, C(15)], 162.80 [s, C(13)], 

164.31 [s, C(11)], 151.21 [s, C(4)], 148.67 [s, C(1)], 128.64 [d, C(8)], 

127.71 [d, C(7)], 126.38 [s, C(6)], 117.37 [d, C(2)], 116.00 [d, C(3)], 

113.38 [d, C(5)], 99.78 [s, C(14)], 100.20 [d, C(12)], 34.42 [t, C(10)], 

33.02 [t, C(6′)], 31.61 [t, C(9)], 30.48 [t, 3 C, C(3′) + C(4′) + C(5′)], 
30.29  [t,  C(3′)  or  C(4′)],  28.97  [t,  C(2′)],  23.86  [t,  C(1′)],  23.71  [t, 

C(7′)], 14.42 [q, C(8 ′)] ppm. HR-MALDI-TOF-MS: m/z 385.2030 [M – 
H]–  (calcd. for C   H   O –: 385.2015 Δ: 3.89 ppm). ESI-MS (positive 

[7] F. Buonanno, G. Guella, C. Strim, C. Ortenzi, Hydrobiologia 2012, 684, 97– 

107. 

[8] A. Miyake, T. Harumoto, B. Salvi, V. Rivola, Eur. J. Protistol. 1990, 25, 310– 

315. 

[9] M. Maeda, H. Naoki, T. Matsuoka, H. Kato, H. Kotsuki, K. Utsumi, T. Tanaka, 

Tetrahedron Lett. 1997, 38, 7411–7414. 

[10] G. Checcucci, R. S. Shoemaker, E. Bini, R. Cerny, N. Tao, J.-S. Hyon, D. 

Gioffre, F. Ghetti, F. Lenci, P.-S. Song, J. Am. Chem. Soc. 1997, 119, 5762– 

5763. 23 29 5 

ion mode detection) m/z: 387.3 [M + H]+, 409.3 [M + Na]+. ESI-MS 

(negative  ion  mode  detection)  m/z:  385.0  [M  –  H]–.  tR:  20.4  min 
(2 mg). 

Induction of Erythrolactone Discharge: The cold-shock treat- 

ment[39] was applied to P. erythrina to obtain the metabolite-con- 
taining discharge. Briefly, a dense suspension of ciliates (about 

400,000 cells/mL) were quickly mixed in a 1:5 ratio with ice-cooled 

SMB, at 0 °C for 30 or 5 s, and then centrifuged at about 50 g to 

separate the cells from the supernatant. Precipitated cells were 
washed twice, re-suspended in SMB at room temperature for 2 h, 

and then used in experiments. The pigment granule deficient cells 

obtained by this procedure (with 5 s of exposition) were as healthy 

as control cells (data not shown). The supernatant containing the 
metabolite-discharge was adsorbed onto a Sep-Pak C18 cartridge 

(Water, Milford, MA), which was then washed with distilled water 

and eluted with 60 % 2-propanol (2 mL) followed by 100 % 2-prop- 

anol (1 mL). The eluted fraction containing the discharge from the 
pigment granules was dried by vacuum centrifuge, weighed, and 

then stored at –20 °C until use. 

Supporting Information (see footnote on the first page of this 

article): 400 MHz NMR (CD3OD) spectra of erythrolactone B2. 1H 

NMR (Figure S1), COSY full spectrum (Figure S2), HSQC, HMBC, 13C 
NMR 
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