
Key management in wireless sensor
networks
Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
via G. Caruso 16, 56126 Pisa, Italy. E-mail: lanfranco.lopriore@unipi.it

Abstract — We refer to a distributed architecture consisting of sensor nodes connected
by wireless links and organized in a tree shaped hierarchy. We present a paradigm for the
management of the cryptographic keys used by nodes to communicate, and we consider the
problems connected with key generation, distribution, and replacement. In our paradigm,
names are assigned to nodes by using a uniform scheme, which is based on the position of
the given node in the node hierarchy. Each node holds a hierarchical key to communicate
with its ancestors, and a level key to communicate with its siblings. A single, publicly-
known parametric one-way function is used to assign hierarchical keys to nodes, in an
iterative procedure that starts from the key of the root of the node hierarchy, and proceeds
downwards to the lowest hierarchical levels. A similar procedure is used to generate the
level keys. The total memory requirements for key storage are extremely low. The number
of keys exchanged in a key replacement process is kept to a minimum. Dynamic access
control is fully supported, whereby new nodes can be added to the node hierarchy, and
existing nodes can be evicted from the hierarchy.

Keywords: cryptographic key; key replacement; parametric one-way function; tree shaped
hierarchy; wireless sensor network.

1 INTRODUCTION

We refer to a distributed architecture consisting of sensor nodes connected by wireless links.
In an architecture of this type, stringent limitations exist on the hardware complexity,
computational power and energy consumption of each sensor node [1], [2], [3]. Consequently,
the network design is largely different from that of a traditional wired-line or wireless
network. The number of messages exchanged between the network nodes must be kept to
a minimum, to save energy. Low hardware complexity implies the absence of any form of
memory management, and even of the traditional separation between the two processor
modes, a privileged mode and a user mode with memory access limitations [4], [5], [6].
This situation is unlikely to change in the near future. Rather than supporting the addition
of new sophisticated hardware functionalities, advances in integration technology are likely
to be used to reduce the system size and cost [7], [8], [9].

Thus, in the primary memory of a sensor node, no separation exists between the
address spaces of the different software components and the supervisor. Every piece of
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software has unlimited access to all memory resources. Consequently, it is impossible to
confine sensitive information items, such as cryptographic keys; every software routine can
read and possibly modify all these critical information items.

1.1 The protection model

In a classical protection system paradigm, a set of active entities, the subjects, generates
access attempts to a set of passive entities, the protected objects [10], [11], [12]. When a
subject issues an access to a given object, the access terminates successfully only if that
subject holds the corresponding access privileges. A protection domain is a set of access
privileges for the protected objects. A subject executed in a given protection domain can
access the objects included in that domain, with the corresponding access privileges. A
subject can switch domain; an action of this type produces a change in the access privileges
that the subject can exercise successfully. In a possible approach, a key is associated with
each domain. Possession of a given key implies possession of the access privileges included
in the corresponding domain.

We shall refer to an implementation of our protection paradigm based of symmetric
keys and conventional cryptography, superior to public key cryptography in both terms of
low computation requirements and low energy costs [13], [14], [15], [16]. We shall model a
wireless sensor network as a distributed protection system where each sensor node is a
subject, and each message exchanged between the nodes is a protected object. A protection
domain associated with a given key includes all the messages encrypted by using that key.
A node that owns a given key can generate new messages in the corresponding domain
and can read the messages in that domain. A node that holds two or more keys can use
these keys to read and write messages in the corresponding domains. The utilization of
different keys corresponds to a domain switch.

A cryptographic key has a name and a value. The name identifies the domain, the
value grants access permission to that domain. A message consists of a header and a body.
Besides the control information items that are necessary, for instance, for message routing,
the header contains the name of a cryptographic key. The message body is encrypted by
using the value of this key.

Two nodes, a sender node S and a receiver node R, can communicate by message
exchanges if they share a domain. This means that both nodes hold a key for that domain.
Node S will use the key to create a new message. The message header will contain the
key name, the body will be encrypted by using the key value. On receipt of the message,
node R reads the key name in the message header, and uses the key value to decrypt the
body. Let N1, N2, . . . be the nodes in the routing path from S to R. Suppose that these
intermediate nodes have no access privilege for the domain of the messages exchanged

— 2 —



by S and R, as they do not possess the key. They can read the message header, as is
necessary for message routing, for instance. However, they cannot decrypt the message
body, as they do not possess the key. In fact, the key creates a communication channel
between S and R through the intermediate nodes N1, N2, . . ..

An application is the result of the joint actions of two or more sensor nodes, the
application members, which cooperate in the same task by message exchange. In our
protection model, an application consists of sensor nodes that hold access privileges for the
same protection domain in the form of a key, the application key. They will use this key
to create messages in this domain, and to read the messages in this domain. If the routing
path between nodes S and R includes a node N which is part of the same application,
then N is in the position of decrypting the messages, as it holds the necessary access
permission (i.e. the application key). This is not a protection violation, as the nodes of
the same application are considered mutually trustworthy.

Each node can host only a single application. This is a consequence of the lack of
address space separation between the software components running in a given node. In
fact, a software routine that is executed in a node supporting two applications would be
in the position of using the cryptographic keys of both these applications. Consequently,
the messages exchanged by the members of one application will be known to the members
of the other application; this is a security violation we are aimed at avoiding.

1.2 Tree shaped node hierarchy

The protection model based on nodes (subjects), messages (protected objects) and keys
(protection domains) allows us to make the physical topology of the sensor network
independent of the logic topology, expressed in terms of relationships between the nodes.
At the physical level, we shall not hypothesize any specific network configuration. In fact,
the network configuration is subject to change dynamically, e.g. new wireless links can be
generated between the network nodes, and existing links can disappear, as a consequence
of node mobility, or variations of the wireless transmission strength of the nodes [17].

In contrast, at the logical level, we shall hypothesize that the nodes are structured in
a tree shaped hierarchy, whereby each node has only one parent node [18], [19]. In an
example of an organization of this type, the sensor nodes at the lowest hierarchical level
are partitioned into applications. In each application, a node acts as an application server,
which can be more resource rich than a traditional sensor node, and is responsible for
collecting data from all the other sensor nodes of that application. The applications are
grouped to form application categories. In each category, a category server is aimed at
transforming the collected data into a compact form suitable for transmission to the base
station. In turn, the base station is responsible for the final presentation and delivery of
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the results of the environmental observations of the entire network. Thus, we have a tree
shaped hierarchy of four levels. At level 0, the base station embodies the root. At level 1,
we have a node for each application category, which is the server of that category. Level 2
includes all application servers. Finally, at level 3, the sensor nodes are in contact with the
external environment. Messages flow across the hierarchical levels. An application server
receives messages from the sensor nodes of its application, a category server communicates
with all the application servers in its category, and finally, the base station communicates
with all the category servers.

In a previous paper [20], a protection system paradigm based on subjects, objects, and
access authorizations was considered with reference to security classes organized into a
tree shaped hierarchy. A key derivation mechanism was proposed, which allows a subject
that holds the key of a given class to transform this key into the keys of the descendent
classes. In this paper, with reference to tree shaped wireless sensor networks, we consider
the protection problems connected with the generation, distribution, and replacement of
the cryptographic keys. In our model, each node is assigned a key to communicate with
its ancestors. This key is called the hierarchical key, or h-key for short. Furthermore, each
node shares a level key, or v-key, with all its siblings; the v-key is used to communicate with
the siblings (at the lowest hierarchical level, the v-key used for communication between
the sensor nodes of a given application is called the application key). The root is assigned
a key, called the base key and denoted by hbase. This key is never distributed to other
nodes, and is never used for message transmission. It is aimed at generation of all the
other keys.

The rest of this paper is organized as follows. Section 2 illustrates our key model
with special reference to key generation. A uniform scheme to assign names to nodes
is introduced, based on the position of the given node in the node hierarchy. A single,
publicly-known parametric one way function, the key generation function, is used to assign
an h-key to each node in an iterative procedure that starts at the base key. A similar
procedure is used to generate the v-keys. Section 3 considers the problems inherent in
dynamic key management, i.e. the process of replacing the keys of all the nodes of the
network, or of a subset of these nodes. Section 4 deals with dynamic access control, i.e.
the ability to add new nodes to the node hierarchy, and to remove existing nodes from the
hierarchy. Related problems are access privilege distribution and revocation. Section 5
discusses our approach to key management in tree shaped wireless sensor networks from a
number of viewpoints, which include cryptographic key forging, the network traffic caused
by a rekey, the memory requirements for key storage, and the relation of our work to
previous work. Section 6 gives concluding remarks.
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Figure 1: A four-level node hierarchy. The size of a node name is 12 bits, which are partitioned
into three subnames, i.e. q = 3. The size of a subname is four bits, i.e. p = 4, and each node
can have up to 15 children. In the hierarchy, the names of the nodes are shown in hexadecimal
notation.

2 THE KEY MODEL

2.1 Node names

In our hierarchical model, each node can have up to 2p − 1 children, where quantity
p is network specific. The children are numbered starting from 1. We partition the
name N of a given node into q subnames, and the size of each subname is p bits. Thus,
N = (nq−1, nq−2, . . . , n0), where ni denotes a subname, and the size of N is p · q bits. The
subnames indicate the path from the root of the hierarchy to the given node, starting from
subname n0 that identifies a child of the root. The path terminates at the first subname
which is cleared (i.e. all 0’s).

Figure 1 shows an example of a four-level node hierarchy. In this example, we have
p = 4, that is, each node can have at most 15 children. The size of a node name is 12 bits,
which are partitioned into three subnames of four bits, so we have q = 3. A node name is
denoted by three hexadecimal digits, one digit for each subname. The root is denoted by
000. The root has three direct children, namely 001, 002 and 003. The second child 002,
labelled A in the figure, has three children, and their names are 012, 022, and 032. Thus,
for instance, node 032, labelled B, is the third child of the second child of the root. This
node has four children. The first child is labelled C; its name 132 indicates the path from
the root to the second child, then to the third child, and finally, to the first subsequent
child.

Thus, the most significant non-zero subname of the name of a given node indicates the
position of this node between its sibling. Furthermore, the node name indicates the names
of the direct ancestors, e.g. the name of the parent node can be obtained by clearing the
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Table 1: Cryptographic keys.

Key name: (c, v, N)
where c identifies a class, v identifies a version, and N is a node name
Hierarchical key (h-key)
v = 0 denotes an h-key. N is the name of the node for which the h-key was generated.
The h-key of a given node is used by that node to communicate with its ancestors.
Level key (v-key)
v > 0 denotes a v-key. N is the name of the parent node.
Each node shares a v-key with its siblings to communicate with the siblings.

most significant non-zero subname. In the example of Figure 1, node 132 is the first child
of node 032, for instance.

2.2 Cryptographic keys

As seen in Section 1, each key has a name and a value. A key name consists of a triple
(c, v, N), where the c and v fields denote the class and the version of the key, and N

denotes a node (Table 1). When the system is generated, the class is 0 for all keys. The
class is incremented by 1 at each total rekey. The total rekey causes the replacement of
base key hbase (the key of the root). Consequently, all h-keys and v-keys are replaced, as
they descend from the base key; this issue will be analysed in depth shortly.

In an h-key name, the node name identifies the node for which the h-key was generated.
The version number is always 0. In the v-key of the children of a given node, the node
name is that of the parent node. The version number is set to 1 when the system is
generated, and is incremented by 1 at each subsequent replacement of the v-key value.

For simplicity, we shall hypothesize that the size of the class and version fields of a
key name is equal to the size of a subname, i.e. p bits. In the representation of a key
name, the class and the version precede the node name. For instance, if a node name
consists of three subnames (q = 3) and the size of a subname is four bits (p = 4), then
the size of a key name is 20 bits, where the four most significant bits specify the class,
and the four subsequent bits specify the version. Thus, 10032 is the h-key in class 1 of
node 032 (labeled B in the node hierarchy of Figure 1), where the most significant digit
indicates the class, and the subsequent digit indicates the version (equal to 0 for an h-key).
Furthermore, 12032 is the second version of the v-key in class 1 of the children of node
032.

2.3 Hierarchical keys

All keys, both h-keys and v-keys, descend from base key hbase by an iterative procedure,
which is based on application of a parametric one way function, the key generation function.
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Figure 2: Utilization of the key generation function to derive the h-keys of the nodes A to C of
Figure 1 from base key hbase.

Function f is one way if, given a value x, it is computationally easy to evaluate f(x),
but given a value y, it is computationally unfeasible to find a value x so that y = f(x)
[21], [22]. Function fn(x) is a parametric one way function if, given a parameter n and
a value y, it is computationally unfeasible to find a value x so that y = fn(x) [23]. The
effort connected with the design and implementation of an effective parametric one way
function can be minimized by using a good cryptosystem as a base [24], [25]. For instance,
we can encrypt parameter n using value x as the key, i.e. fn(x) = Ex(n) [26].

The key generation function is a parametric one way function having the form fn(h),
where argument h is an h-key, and parameter n is a subname. Let N = (nq−1, nq−2, . . . , n0)
be a node name expressed in terms of its subnames. H-key hN of node N derives from
base key hbase. We have hr+1 = fnr(hr), r = 0, 1, . . . , c − 1, where c is the index of the
least significant subname of N which is cleared, h0 = hbase, and hN = hc. If no subname
of N is cleared, then c = q.

Figure 2 shows the evaluation of the h-keys of nodes A to C in the node hierarchy of
Figure 1. In this example, each node can have up to 15 children (p = 4). A node name is
partitioned into three subnames (q = 3), so we have N = (n2, n1, n0), and each subname
corresponds to a hexadecimal digit. The hexadecimal name of node C is 132. In our
iterative procedure to generate h-key hC of node C, we have h0 = hbase. Subname n0 is 2,
so we have h1 = f2(h0). Subname n1 is 3, and consequently h2 = f3(h1). Subname n2 is 1,
thus h3 = f1(h2). This terminates the procedure, and hC = h3. It is important to note
that the intermediate h-keys correspond to the nodes in the path from the root to node C.
Thus we have hA = h1 = f2(hbase), hB = h2 = f3(hA) and hC = h3 = f1(hB).

A node at a given level in the hierarchy can use its own h-key to generate the h-keys of
all its descendants. To this aim, the node executes the iterative key derivation procedure,
described above. This means, for instance, that node A in Figure 1 can generate the h-key
hB = f3(hA) of node B (its third child), and the h-key hC = f1(hB) = f1(f3(hA)) of node
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C (the first child of B).

2.4 Level keys

Let hN be the h-key of a given node N . Version 1 of the v-key shared by the children
of N is given by f2p(hN), and version v of this v-key is given by f2p+v−1(hN). Thus,
quantities f0(hN ) to f2p−1(hN ) are the h-keys of the children of N , and quantities f2p(hN )
to f2p+1−2(hN) are the versions of the v-key of these children.

With reference to the node hierarchy of Figure 1, where p = 4, version 1 of the v-key
of the children of the root is given by f16(hbase), and version 2 by f17(hbase), for instance.
Version 1 of the v-key of the children of node A is given by f16(hA), that is, f16(f2(hbase)),
and version 2 is given by f17(f2(hbase)).

Each given node N is in the position to evaluate the v-key of its own children. To this
aim, N maintains a v-key version counter whose contents indicate the next version. This
counter is set to 1 at system initialization, and is incremented by 1 at each subsequent
change of the v-key version. Let v be the value of this counter at a given time. The
corresponding v-key at that time is given by f2p+v−1(hN), where hN denotes the h-key of
node N .

It is worth noting that node N may be unable to evaluate the v-keys of the nodes
that are not its direct children, as N not necessarily knows the versions. This fact poses
no restriction on the ability of N to communicate with its descendants, as it can use the
h-keys. In fact, the v-keys are only aimed at communication between siblings, e.g., within
the boundaries of a given application, between the sensor nodes that are members of that
application.

3 DYNAMIC KEY MANAGEMENT

Dynamic key management is the process of replacing the keys of all the nodes of the
network, or of a subset of these nodes, periodically or on demand, according to variations
of the network state [27]. This is a peculiar aspect of wireless sensor networks. Periodic
rekeying can be useful to safeguard secrecy and resilience to attacks or failures, for instance
[28], [29], [30].

When the hierarchical system is generated, the class is 0 for all keys. The class is
incremented by 1 at each total rekey. The root chooses base key hbase at random. For each
child node, the root uses the key generation function f to produce its h-key, which, for the
i-th child, is given by fi(hbase). The h-key is delivered to the child. Furthermore, the root
generates the first version of the v-key of its children, given by f2p(hbase), and distributes
this v-key to the children. In turn, each child of the root generates the h-keys of its own
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Figure 3: Partial rekey of the node hierarchy shown in Figure 1, obtained by renaming node A.

children, and the first version of their v-key. These keys are delivered to the children. This
iterative key generation process propagates down to the lowest level of the hierarchy.

3.1 Partial rekey

Our system supports a form of partial rekey, whereby new keys are assigned to the nodes
in a subtree of the node hierarchy. This functionality takes advantage of the fact that,
for a given base key, the name of a node determines both the h-key of that node and the
v-key of its children. The partial rekey is obtained by changing the name of the node that
is the root of the subtree to be rekeyed (the subroot). The subroot is moved to the first
position after its siblings: its previous position is discarded. Consequently, all the nodes
in the subtree are renamed.

Figure 3 shows an example of a subtree renaming with reference to the node hierarchy
of Figure 1. Node A is moved to the first position after its siblings, and its previous
position is discarded. The name of A was 002; in the new position, it is 004. All the
descendants of A are renamed accordingly. The parent of node A, i.e. the root, generates
a new h-key for A, given by f4(hbase). In turn, A uses this h-key to generate the h-keys of
its children, and their v-key. These keys are distributed to the children. The process is
iterated down to the lowest level of the hierarchy.

As seen in Section 2.1, a node can have no more than 2p − 1 children, where quantity p

is network specific. Our partial rekey mechanism tends to exhaust available child numbers.
In a situation of this type, a solution is a total network rekey.
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Figure 4: The node hierarchy of Figure 3 after a total rekey. The discarded position in the
second hierarchical level has been eliminated. The subsequent nodes and their subtrees have
been renamed.

3.2 Total rekey

A total rekey is a form of key replacement that involves all h-keys and v-keys. It is similar to
the key derivation and distribution process, which takes place when the system is generated.
The rekey implies a change of the class, which is incremented by 1. Consequently, a new
base key hbase is chosen at random. All v-key version counters are set to 1, so that, for
a node whose h-key is h, the v-key of its children is given by f2p(h). Furthermore, the
nodes in every given level of the hierarchy are renumbered consecutively, superseding any
previous action of node renaming, generated, for instance, by a partial rekey. In this way,
a total rekey prevents exhaustion of available node names and v-key versions.

Figure 4 shows the effects of a total rekey on node names in the node hierarchy of
Figure 3. The discarded position in the second hierarchical level has been eliminated, and
consequently, all the subsequent nodes and their descendants have been renamed.

A total rekey starts at the root, which uses the new base key to generate the h-keys
of its children, and their v-key. In the name of each new key, the class field contains the
new class number. The keys are sent to the children, which propagate the key derivation
process down to the lowest level of the hierarchy. On termination, all keys belong to the
new class.

3.3 V-key replacement

Suppose that a sensor node is evicted from a given application. We must revoke all the
access privileges held by that node, to prevent it from taking advantage of these access
privileges any longer. In particular, we must revoke the v-key shared by the evicted node
and its siblings, and we must distribute a new v-key to the siblings. So doing, we prevent
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the evicted node from decrypting the new message traffic, for instance, if it is in a routing
path connecting the siblings (forward secrecy). A similar v-key replacement action is
also necessary when a new node is added to an application, to prevent that node from
decrypting the old message traffic, if it has recorded this traffic (backward secrecy) [31],
[32].

The replacement of a v-key is accomplished by the parent node, e.g., in the example of
Figure 1, by node 032 for the v-key of its children nodes, 132 to 432. The parent node uses
its own h-key h and v-key version counter v to generate the new v-key, given by f2p+v−1(h)
(see Section 2.4). Then, the v-key version counter is incremented by 1, and the new v-key
is transmitted to all the children, or part of them, according to the specific implications of
the event that caused the v-key replacement (e.g., when a given node is deleted, this node
will be excluded from the v-key redistribution).

It is worth noting that a v-key replacement has no consequence on the h-keys. In fact,
the h-keys descend from the node names, and these are not affected by the replacement.

3.4 Rekey messages

Let us suppose that node S holds h-key hS and encrypts a message M by using this key.
Then, S sends the message to node R, which holds an h-key hR for the same node (i.e. it
specifies the same node name). Let chS

denote the class of hS, and chR
denote the class

of hR. If chS
= chR

, then these two keys are identical, R can decrypt the message, and
the message transmission and delivery are successful. If chS

< chR
, then hS is outdated.

This means that either node S encrypted the message before updating the key, or a rekey
message was lost, or S is no longer part of the network and it does not participate in the
rekey. Node R cannot discriminate between these situations, so it discards the message
and sends a negative acknowledgement to S.

If chS
> chR

, then hR is outdated. In this case, node R sends quantity chR
to its parent

node P asking for an updated key. P compares chR
with the class of its own h-key, chP

. If
chR

< chP
, then P uses hP , the position of R between its siblings, and the key generation

function to derive a new h-key for R, as has been illustrated in Section 2.3. The new h-key
is finally transmitted to R. If chR

≥ chP
, P propagates the key update request to its own

parent. Propagation proceeds upwards in the class hierarchy, in the direction of the root,
until a node is reached (possibly the root), which holds a key of a class newer than chR

.
The rekey starts in this node and proceeds downwards, involving all intermediate nodes
until the original node R is reached.

The considerations outlined above can be extended to the case that the original message
M has been encrypted by using a v-key. In this case, the classes are compared first, and
then (in the case of a class match) the versions, to determine whether the v-keys of the
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two communicating nodes are both updated, or a rekey is needed. The rekey is obtained
by transmitting a request to the parent node, which uses its own h-key and v-key version
counter to generate the v-key of its children. This new v-key is delivered to the children.

We may conclude that our rekey mechanism is able to cope with losses of rekey messages.
A node that receives a message encrypted by using a given key is in the position to detect
whether it holds an outdated key, by comparing the classes, and possibly the versions.
The rekey process involves the ancestor nodes at higher hierarchical levels. This feature is
especially important for a reliable application rekeying in an unreliable network [28].

4 DYNAMIC ACCESS CONTROL

Dynamic access control is the ability to add new nodes to the node hierarchy, and to
delete existing nodes from the node hierarchy [33]. Related problems are access privilege
distribution and revocation.

4.1 Adding a node

Let us refer again to the node hierarchy introduced in Section 1, featuring a base station,
category servers, application servers, and sensor nodes grouped into applications. When
a new category is generated, subname n0 of the name of the category server identifies
its position among the category servers. Similarly, when a new application is added to
an application category, subname n1 of the name of the application server identifies its
position among the application servers in that category. Finally, when a new sensor node
joins an application, subname n2 identifies its position among the sensor nodes of that
application.

Figure 5 shows the addition of new nodes to the node hierarchy of Figure 1. In this
example, a new application category is introduced; its category server is named 004, where
n0 = 4 denotes the position assumed by this node after the existing application servers.
Furthermore, a new application is added to the hierarchy; its server is named 042, where
n1 = 4 denotes the position of this application in its category. Finally, a new sensor node
is added to the application whose server is node 032. The new node is assigned name 532,
where n2 = 5 denotes the position of the new node in the application.

When a node is added to the network, it is necessary to grant this node access privileges
congruent with the position it assumes in the hierarchy. These access privileges include
the ability to communicate with its siblings and ancestors. To this aim, the parent node
uses its own h-key and the name of the new node to generate the h-key of the new node.
Furthermore, as seen in Section 3.3, the v-key of the siblings of the new node are replaced,
for backward secrecy. The parent node uses the contents of its own v-key version counter
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Figure 5: Modification of the node hierarchy shown in Figure 1, by the addition of a category
server (004), an application server (042), and a sensor node (532).

Figure 6: Modification of the node hierarchy shown in Figure 1, by elimination of the application
category whose server is 001, the application whose server is 022, and sensor node 232.

to generate a new version of the v-key, which is distributed to the children, including the
new node.

4.2 Deleting a node

When a node is deleted, the corresponding node name is discarded. Figure 6 shows the
deletion of the application category whose server is node 001, of the application whose
server is node 022, and of sensor node 232 at the lowest hierarchical level. Consequently,
node names 001, 022, and 232 are discarded.

Node names cannot be reused. In fact, the iterative procedure for key derivation uses
the name of a given node to generate the h-key of that node. It follows that, if a node
name is reused for a different node, the new node is assigned the h-key of the previous
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node. Consequently, the new node is allowed to access old messages exchanged by the
previous node, if it has recorded these messages. This is a security hole we are aimed at
avoiding. In the example of Figure 6, the names 001, 022, and 232 of the deleted nodes
cannot be used to identify new nodes. Of course, a solution is a total network rekey,
causing all network nodes to be renamed (see Section 3.2). In this case, any previous
action of node deletion is superseded. The rekey generates all keys from scratch, and these
keys are in a new class. The class discriminates the old keys, which become useless.

A related problem is connected with the fact that, as seen in Section 2.1, a node cannot
have more than 2p − 1 children, where quantity p is network specific. Repeated actions of
node replacement (the deletion of a child of a given node followed by the addition of a
new child to that node) may lead to exhaustion of available node numbers. For adequate
values of p, this will be rarely the case. A solution is a total network rekey, which removes
all discarded positions and restores the ability of the node numbering procedure to add
new nodes to the hierarchy.

Let us first consider the elimination of a leaf node, e.g. an application member at the
lowest hierarchical level. In Figure 6, this is the case for node 232. This node possesses
an h-key, which it received from its parent node. Utilization of this h-key is restricted to
messages exchanges with the ancestor nodes, i.e. application server 032, category server
002, and the root. Revocation of the h-key will be simply obtained by instructing the
ancestors to discard any message encrypted by using this h-key. The leaf node also holds
a v-key, which it shares with the other nodes of the same application. It is necessary to
switch these nodes to a new v-key, for forward secrecy. This v-key replacement action will
be accomplished as has been illustrated in Section 3.3.

Let us now consider the deletion of a node at an intermediate hierarchical level. In
Figure 6, this is the case for nodes 001 and 022. The ancestors of the deleted node will
be instructed to discard any message encoded by using the h-key of that node. A v-key
replacement action will take place involving the siblings of the deleted node, for forward
secrecy. The nodes in the subtree of the deleted node will be redistributed in the network.
For each of them, the actions involved in a node addition will be carried out.

5 DISCUSSION

5.1 Cryptographic keys

Hierarchical keys are used for secure communications between a node and its server, so
that another node in the routing path between that node and the server cannot read the
messages. Examples are the communications between a sensor node member of a given
application and the application server, between an application server in a given category
and the category server, or between a category server and the base station.
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An important h-key functionality is related to key distribution. Let us consider the
case that a sensor node has been evicted from a given application, for instance. As seen
in Section 3.3, the v-key (application key) must be replaced, for forward secrecy. The
application server generates a new v-key using its own v-key version counter and the key
generation function (see Section 2.4). The new v-key is transmitted to each application
member in a message encrypted by using the h-hey of that member. Of course, the new
v-key cannot be transmitted by using the old v-key. In fact, if the evicted node is in the
routing path between the application server and an application member, it can capture the
message. It possesses the old v-key, and can decrypt the message to read the new v-key.

V-keys make communications possible between members of the same application,
between application servers in the same application category, and between category servers.
For instance, let us consider two nodes A1 and A2 that are members of the same application
A. When A1 sends a message to A2, a node in the same application, which is in the routing
path between A1 and A2, can capture the message and decrypt its contents, as this node
holds the v-key. This is not a security hole, as we hypothesized that the members of the
same application are mutually trustworthy. On the other hand, a node which is not a
member of application A will not be able to decrypt the message, as it does not hold the
v-key.

A node cannot be granted more than a single v-key, e.g. the v-keys of two different
applications, as this would allow this node to forward the messages exchanged between
the members of one application to the members of the other application. This is a security
hole we are aimed at avoiding. Consequently, v-keys cannot be used for communications
between the members of two different applications, as this would imply that a node
possesses the v-keys of both of them. Instead, inter-application interactions are obtained
via the application servers, which can communicate by taking advantage of the v-key of
their application category. If the applications are in different categories, category servers
will be used.

5.2 Network traffic

As seen in Section 1, in a sensor network the amount of message traffic is a significant
parameter, which must be kept low to comply with the stringent requirement to save
energy. In our approach, the number of messages exchanged in a key replacement process
is kept to a minimum. In a total rekey, each node sends only two keys to each child, the
h-key of this child and the v-key shared by this child and its siblings. The process is
initiated by the root, and propagates down to the lowest hierarchical level. In a partial
rekey, the propagation initiates at the parent of the subroot involved in the rekey, which
sends the new h-key and v-key to the subroot.
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5.3 Memory requirements

As anticipated in Section 1, in a sensor node stringent limitations exist on the amount of
available memory. It follows that the memory space for cryptographic key storage is a
significant issue.

A key has a name and a value. The size of a key value descends from the overall security
requirements of the system, e.g. 128 bits. A key name consists of a class field, a version
field and a node name. If the size of the class and version fields is 8 bits, we can have up
to 256 classes, and up to 256 versions for each class. The node name is partitioned into
subnames. For instance, in a hierarchical organization featuring a base station, category
servers, application servers and sensor nodes, the node name is partitioned into three
subnames, namely n0 that designates a category, n1 that identifies an application in the
category, and n2 that identifies a sensor node within the application. The three subnames
can have different sizes, e.g. if the size of n0 and n1 is 4 bits and the size of n2 is 8 bits, we
can have up to 15 categories each consisting of up to 15 applications, and each application
can include up to 255 members. In a large network of this type, the size of a key is 20
bytes, 4 bytes for the key name and 16 bytes for the key value.

In our approach, an application member holds two keys, that is, an h-key to commu-
nicate with its ancestors, and a v-key to communicate with the other members of the
same application. An application server needs a v-key to communicate with the other
application servers in the same category, and an h-key to communicate with the ancestors.
A further requirement would be an h-key for each application member, to communicate
with that member. In the server of a large application with many members, the resulting
memory requirements for h-key storage would result prohibitive. In fact, in our approach,
the application server keeps a single h-key in memory, i.e. its own h-key. When it needs
to communicate with a given application member, it generates the h-key of this member
from its own h-key h by using key generation function f . As seen in Section 2.3, the h-key
of the n-th application member is given by fn(h). Similar considerations can be made for
the nodes at higher hierarchical levels, up to the base station that has to store a single
key, the base key hbase. All the h-keys and the v-keys can be generated starting from hbase

by iterated applications of the key generation function.
We may conclude that the memory requirements for key storage are extremely low,

and represent a negligible fraction of the total memory resources of each network node.

5.4 Key forging

The root is assigned a first base key at system generation; this base key is in class 0. The
base key changes at each variation of the class, e.g. a total rekey. Base keys must be large
and sparse. In this way, if a malevolent node tries to use a key chosen at random for the
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base key, or for a key derived from the base key, the probability of success is vanishingly
low.

Each node can take advantage of its own h-key and the key generation function to
derive the h-keys of its descendants. Let us now consider the case of a node N that tries
to amplify its own h-key hN by transforming it into the h-key hM of a node M at a higher
hierarchical level (that is, M is an ancestor of N). This means that hM precedes hN in
the key generation procedure that uses the key generation function to derive hN from the
base key. But the key generation function is one way. It follows that it is impossible to
invert this function, and the h-key amplification attempt is destined to fail.

5.5 Relation to previous work

The problem of key generation in hierarchic organizations has been considered in depth in
the past. Objects can be grouped into security classes that are structured hierarchically.
Class hierarchies can be classified according to the number of direct ancestors (parents)
and direct descendants (children) [10]. In a directed acyclic graph, each class can have
many parents and many children. In a tree shaped hierarchy, each class can have a single
parent and many children. Finally, in a linear hierarchy each class can have a single parent
and a single child. In this paper, we have considered tree shaped hierarchies, for their
prominence in the ambit of wireless sensor networks.

Hassen et al. [34] classify the key management schemes into two broad categories,
independent-keys and dependent-keys. In an approach in the independent-keys category,
a subject in a given security class holds the key of that class and the keys of all the
descendant classes. This means that more keys must be maintained by a subject in a class
that is not a leaf class, and this is especially true for subjects in higher level classes, which
have to administer a large number of keys. A situation of this type is prone to severe
security issues [35]. High costs in terms of network traffic are connected with an action
of partial or total rekey, as the new key of each given class must be delivered to all its
ancestors. In wireless sensor networks, the number of messages exchanged between the
network nodes must be kept to a minimum to save energy. Memory is a scarce resource,
so the memory requirements for key storage are a significant issue.

In contrast, in the dependent-keys approach, a subject in a given class holds a single
key, the key of that class, and takes advantage of universally known functions and/or
parameters to derive the keys of the descendant classes. To this aim, complex theoretical
cryptographic techniques have been used, e.g. prime number fundamental properties [35],
[36], [37], [38].

Our proposal is in the dependent-keys category. A publicly-known parametric one way
function, the key generation function, allows each node that is not a leaf of the hierarchy
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to derive the h-keys of all its descendants. A seen in Section 2.3, the effort to design and
implement an effective parametric one-way function can be kept to a minimum, by using
a good symmetric cryptosystem as a base.

A peculiar aspect of wireless sensor networks is that every given node needs to commu-
nicate with other nodes at the same hierarchical level. In an application, this is the case
for the application members, for instance. We take advantage of different keys, h-keys and
v-keys, for different functionalities. Each node holds an h-key to communicate with its
ancestors, and a v-key to communicate with its siblings. In particular, h-keys are used in
v-key replacement. When a parent node sends the new v-key to a given child node, the
v-key transmission message is encrypted by using the h-key of that child node.

The idea of using different keys for different functionalities is certainly not new [14].
For instance, in [39] each node holds an individual key to communicate with the base
station, a pairwise key shared with each of its immediate neighbouring nodes, a cluster
key shared with all the neighbouring nodes, and a global key shared with all the network
nodes. It has been reputed that key differentiation can improve the overall system security,
and can facilitate key management [31].

6 CONCLUDING REMARKS

With reference a distributed architecture consisting of sensor nodes connected by wireless
links, we have presented a key management paradigm in the hypothesis that, at a logical
level, the nodes are organized in a tree shaped hierarchy. We have considered the protection
problems connected with the generation, distribution, and replacement of the cryptographic
keys. In our paradigm:

• Names are assigned to nodes by using a uniform scheme based on the position of
each given node in the node hierarchy.

• Each node possesses an h-key to communicate with its ancestors, and a v-key to
communicate with its siblings.

• A single, publicly-known parametric one way function, the key generation function,
is used to assign an h-key to each node, in an iterative procedure that starts from
the base key at the root of the node hierarchy, and proceeds downwards to the lowest
hierarchical levels. A similar procedure is used to generate the v-keys.

We have obtained the following results:

• Each node has to store only two keys, an h-key and a v-key. Thus, the total memory
requirements for key storage are extremely low, and represent a negligible fraction
of the memory resources of each node. This is true even for resource-scarce sensor
nodes, at the lowest hierarchical level.
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• Nodes are prevented from generating the keys of the ancestors by the one way
property of the key generation function.

• The number of keys exchanged in a key replacement process is kept to a minimum,
and is equal to two keys for each node (an h-key and a v-key). In fact, in the
dependent-keys approach [34], each node is able to generate the keys of its descendants
autonomously, starting from its own h-key, and taking advantage of the key generation
function.

• Each key name specifies a class to support total rekeys. If the key is a v-key, the
version supports v-key replacement. Forms of partial rekey, whereby new keys are
assigned to the nodes in a subtree of the node hierarchy, are implemented by changing
the name of the subroot, and consequently renaming all the nodes in the subtree.

• Dynamic access control is fully supported. When a node is added to the network, the
parent node uses its own h-key and the name of the new node to generate the h-key
of the new node. When a node is deleted, its h-key is discarded by the ancestors.
V-key replacements will be used to enforce forward secrecy, or, in the case of a node
deletion, backward secrecy.
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