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Abstract— This study reports on the development of a
gender-specific classification system able to discern between
two levels of velocity of a caress-like stimulus, through in-
formation gathered from Autonomic Nervous System (ANS)
linear and nonlinear dynamics. Specifically, caress-like stimuli
were administered to 32 healthy volunteers (16 males) while
monitoring electrocardiogram signal to extract Heart Rate
Variability (HRV) series. Caressing stimuli were administered to
the forearm at a fixed force level (6 N) and two levels of velocity,
9.4 mm/s and 37 mm/s. Standard HRV measures, defined in the
time and frequency domain, as well as HRV nonlinear measures
were extracted during the pre- and post-stimulus sessions, and
given as an input to a Support Vector Machine (SVM) classifier
implementing a leave-one-subject-out procedure. Results show
an accuracy of velocity recognition of 70% for the men, and
84.38% for the women, when both standard and nonlinear HRV
measures were taken into account. Conversely, non-significant
results were achieved considering standard measures only, or a
gender-aspecific classification. We can conclude that caress-like
stimuli elicitation significantly affect HRV nonlinear dynamics
with a highly specific gender dependency.

I. INTRODUCTION

The human sensibility to slowly moving touch stimuli is
mediated by low-threshold mechanoreceptors with unmyeli-
nated afferents, called C tactile fibers [1], [2], producing
affective sensations. The effect of velocity of the tactile stim-
ulus was investigated in previous studies through single unit
microneurography, recorded from single afferents belonging
to the antebrachial cutaneous nerves during soft brushing
stroking [3]. It has been found that the maximal unit response
occurred during movement velocities in the range of 1-10
cm/s. Within this range, the tactile stimulation performed
at a velocity close to 3 cm/s was considered as the most
pleasant [3]. Accordingly, this velocity was demonstrated to
be optimal for the activation of CT fibers [4].

Changes in ANS dynamics induced by passive touch
stimuli were previously studied through the analysis of
physiological signals such as Heart Rate Variability (HRV)
[5]. Specifically, a study on facial massage highlighted how
this stimulus significantly increases the LF/HF measure [6].
Moreover, caresses on hands and feet significantly reduced
the parasympathetic nervous activity, as estimated through
the HRV-HF component [5]. However, a comprehensive
characterization of HRV nonlinear dynamics as a function of
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affective haptic stimuli, also investigating the gender effect,
still need to be performed. To this extent, here we study such
a nonlinear dynamics of cardiovascular variability during
caress-like affective stimulation on the forearm. Indeed, the
ANS signaling on cardiovascular control is characterized by
multi-feedback neural interactions, leading to a nonlinear
physiological control [7], [8], [9].

In order to quantify the role of HRV nonlinear features
in recognizing the velocity of the stimuli, in this study,
we constructed two different datasets: the first consisting
of only standard features, defined in the time domain and
in the frequency domains, and the second including also
the nonlinear parameters. These datasets were considered as
input to a support vector machine algorithm implementing
a leave-one-subject-out procedure. The processing chain is
suitable to be implemented in a wearable system [10], [11].
The same investigation was performed considering the group
of men and women separately, in order to quantify the
incidence of gender differences in the hedonic interpretation
of touch.

Of note, gender differences in HRV parameters were
studied in several works in the literature [12], [13], [14].
Significant differences were found in the parasympathetic
regulation of healthy people during resting state (different
values of HF power), probably connected to the different
levels of estrogen, which improve cardiac vagal functions in
women [12]. On the other hand, men have been associated
to a higher sympathetic activity than women, as estimated
by HRV frequency parameters LF/HF and LF% [12], [14].
In the current literature, few studies investigated the gender
differences through HRV nonlinear parameters. The most
relevant results report on the identification of higher HRV
approximate entropy in female population than men, as
estimated during long-monitoring (24-h) [13] and short-time
(8-min and 15-min segments) resting state [15].

II. MATERIALS AND METHODS

A. Experimental protocol
Thirty-two participants, aged 27 ± 2 (16 males), gave

their informed consent to take part in the study. During the
experimental protocol, participants were comfortably seated
with the right forearm horizontally placed on the forearm
support, hand palm down. For all trials, participants wore
earplugs in order to prevent any auditory cues. We used
a recently developed device able to administer caress-like
stimuli using a layer of elastic fabric [16] (see Fig. 1). The
extremities of the fabric were connected to two rolls, which
were independently moved by one motor (HITEC digital DC



servomotor HS-7954 H with an input voltage of 7.4 V). The
velocity of the caress can be modulated by regulating the
velocity of the motors.

Fig. 1. An overview of the haptic system worn by one of the participants
during the experimental tests.

In this study, we considered 2 levels of velocity of the
caresses, 9.4 mm/s and 37 mm/s, provided at a fixed force
of 6 N. Stimuli were randomized among subjects, and
administered with a pre-stimulus and a post-stimulus interval
sessions of 35 seconds. During the elicitation, the ECG
was continuously acquired, following the Einthoven triangle
configuration, by means of a dedicate hardware module, i.e.
the ECG100C Electrocardiogram Amplifier from BIOPAC
inc. with a sampling rate of 500 Hz.

B. Methodology of Signal Processing
To obtain the HRV series from the ECG, an automatic

QRS complex detection algorithm was used [17]. The
methodology of HRV processing can be divided as follows:
• HRV feature extraction (standard and nonlinear)
• the LOSO procedure, which includes both the statistical

analysis for feature selection, and the application of the
SVM classifier.

1) Features extraction: Standard HRV analysis refers
to the extraction of parameters defined in the time and
frequency domain [18]. In particular, time domain features
included statistical parameters and morphological indexes.
Given a time window, several parameters were calculated,
such as simple mean value and the standard deviation of
the RR intervals. Moreover, we calculated the root mean
square of successive differences of intervals (RMSSD) and
the number of successive differences of intervals which differ
by more than 50 ms (pNN50 % expressed as a percentage
of the total number of heartbeats analyzed). Referring to
morphological patterns of HRV, the triangular index was
calculated. It was derived from the histogram of RR intervals
into NN window (TINN) in which a triangular interpolation
was performed. The time domain methods are simple and
widely used, but are unable to discriminate between sym-
pathetic and parasympathetic activity, while an appreciable
contribution is given by the frequency domain parameters.
All features extracted in the frequency domain were based
on the Power Spectral Density (PSD) of the HRV. Three
main spectral components were distinguished in a spectrum
calculated from short-term recordings: Very Low Frequency
(VLF, below 0.04Hz), Low Frequency (LF, from 0.04Hz to
0.15Hz), and High Frequency (HF, from 0.15Hz to 0.4Hz).

In addition we calculated the LF/HF ratio which should give
information about the sympatho-vagal balance.

From each HRV series, we calculated nonlinear indices
based in particular on the following three methods: complex-
ity measures calculation, Symbolic Analysis and the Lagged
Poincaré Plot (LPP).

Complexity measures: we applied three different algo-
rithms for the calculation of entropy of the HRV signals,
namely Approximate Entropy (ApEn) [19], Sample En-
tropy(SampEn) [20] and the Coefficient of Sample Entropy
(COSEn) [21].

Symbolic analysis: this is a powerful nonlinear method
based on the conversion of the series into a sequence of
symbols [22]. The full dynamics of the HRV series has been
divided in six levels of amplitude and a symbol (from 0
to 5) was assigned to each data sample according to the
level of belonging. After the data had been converted in
symbolic series we analyzed patterns of 3 and 4 symbols.
Patterns consisted of segments of n consecutive symbols,
with n − 1 of overlap from segment to segment. Then we
investigated on the trend of the patterns, with n = 3 and
n = 4. For the patterns of three symbols we identified four
classes: 0V (number of patterns where all symbols were
equal), 1Va (number of patterns with one variation between
the second and the third symbols), 1Vb (number of patterns
with one variation between the first and the second symbols),
2Va (number of pattern with a trend strictly increasing or
strictly decreasing), 2Vb (all the others). For the patterns
of four symbols we identified four classes: 0V, 1V, 2V, 3V,
which were the numbers of patterns with zero, one, two,
three variations respectively. Moreover the percentage values
of the total of all these parameters were calculated and used
as features.
Lagged Poincaré Plot: this method quantifies the fluctua-
tions of the dynamics of the time series through a graphic
(scatter plot of RR intervals) where each RRn interval is
mapped as a function of the successive RRn+M , in this study
we chose 1 ≤ M ≤ 10[23]. The quantitative analysis from
the graph can be made by calculating the dispersion of the
points in the LPP:
• SD2 and SD1: the standard deviations related to the

points along the identity line RRn+M = RRn and
along its perpendicular.

• SD12: the ratio between SD1 and SD2.
• S (S = πSD1SD2): the area of an imaginary ellipse

with axes SD1 and SD2.
• SDRR (SDRR = 1√

2

√
SD12 + SD22): an approxi-

mate relation indicating the variance of the whole HRV
series.

From each of these parameters we calculated the area under
the curve (AUC) of the plot of their values in function of
the lag M, calculating two values of AUC, the first for lower
values of M (1 ≤M ≤ 5) and the second for upper values of
M (6 ≤M ≤ 10) . Moreover we calculated the ratio between
these parameters and the total AUC for 1 ≤M ≤ 10.

2) Statistical Analysis and Pattern Recognition: All fea-
tures were extracted from HRV series gathered from before
and after the stimuli. For each parameter we calculated



the difference between the post- and pre-stimuli sessions.
Statistical analysis and pattern recognition followed a Leave-
One-Subject-Out procedure (LOSO). Specifically, we applied
features selection and SVM training on a set comprised of
1:N-1 subjects (where N is the total number of participants),
and tested the prediction of the velocity level of data gathered
from the Nth subject. This procedure was repeated N times.
To select only the features which were more significantly dif-
ferent between the two velocities, we performed a nonpara-
metric analysis through the Wilcoxon signed-rank test. Only
the features which obtained a significant p-value were used
to construct the dataset input of a Support Vector Machine
(SVM) classifier, which used the radial basis function kernel
(e−γ|u−v|

2

), where γ =(number of selected features)−1.

III. EXPERIMENTAL RESULTS

Classification results on the two datasets including i)
linear and ii) linear and nonlinear features of HRV are
shown in Tables I, II, and III in form of confusion matrix.
The generic element rij of the confusion matrix indicates
how many times in percentage a pattern belonging to the
class i was classified as belonging to the class j. A more
diagonal confusion matrix corresponds to a higher degree of
classification. The matrix has to be read by columns.

Considering data from all of the subjects, i.e., men and
women, standard HRV features were able to recognize the
two velocities with an accuracy of 51.61%, whereas an
accuracy of 58.07% was achieved considering also features
coming from nonlinear methods.

TABLE I
CONFUSION MATRIX OF SVM CLASSIFIER FOR THE TWO LEVELS OF

VELOCITIES (ALL THE SUBJECTS)

Standard features Standard and Nonlinear
V1 V2 V1 V2

V1 45.1613 54.8387 V1 61.2903 38,7096
V2 41.9355 58.0645 V2 45.1613 54,8387

Given the poor classification performances, hypothesizing
that gender significantly affected the system accuracy, we
then split the dataset by gender. Considering data gathered
from men exclusively, standard HRV features were able to
recognize the two velocities with an accuracy of 68.50%,
whereas an accuracy of 84.38% was achieved considering
also features coming from nonlinear methods (see Table II).

TABLE II
CONFUSION MATRIX OF SVM CLASSIFIER FOR THE TWO LEVELS OF

VELOCITIES (WOMEN)

Standard features Standard and Nonlinear
V1 V2 V1 V2

V1 62.5000 37.5000 V1 81.2500 18.7500
V2 25.0000 75.0000 V2 12.5000 87.5000

Considering data gathered from men exclusively, standard
HRV features were able to recognize the two velocities with
an accuracy of 33.34%, whereas an accuracy of 70% was
achieved considering also features coming from nonlinear
methods (see Table III).

TABLE III
CONFUSION MATRIX OF SVM CLASSIFIER FOR THE TWO LEVELS OF

VELOCITIES (MEN)

Standard features Standard and Nonlinear
V1 V2 V1 V2

V1 40.0000 60.0000 V1 73.3333 26.6667
V2 73.3333 26.6667 V2 33.3333 66.6667

Fig. 2. Values of the features SD1, SD2 and S, as functions of the M
lags in the pre-stimuli and in the post-stimuli sessions, for V1=9.4 mm/s
and V2=37 mm/s. The values regards one female subject.

Fig. 3. Values of the features SD1, SD2 and S, as functions of the M
lags in the pre-stimuli and in the post-stimuli sessions, for V1=9.4 mm/s
and V2=37 mm/s. The values regards one male subject.

Furthermore, feature selection procedures highlighted the
crucial role of Lagged Poincaré Plot (LPP) measures consid-
ering data coming from the women only, whereas symbolic
analysis was identified as the most informative methods in
classifying velocity levels in men. As an example, Fig. 2
shows how the LPP parameters changed from the pre-stimuli
to the post-stimuli session for a women, considering two
velocities of caressing. More specifically, it can be easily
noticed that the parameters SD1, SD2 and S decrease with
V1 (slower caress) and increase with V2 (faster caress)



from pre-stimuli to post-stimuli. Conversely, the parameters
increase during both V1 and V2 in men (see Fig. 3).

IV. CONCLUSION AND DISCUSSION

In conclusion, we presented a novel approach to automat-
ically recognize two different levels of velocity of a caress-
like stimulation, as elicited by a haptic device. To this aim,
we used ANS features derived from standard and nonlinear
analysis of HRV series. We tested the proposed approach
on data gathered from 32 subjects (16 males), also grouping
data by gender.

The average accuracy of the SVM classifier was of 70%
for the group of men, only when nonlinear HRV features are
also taken into account. Likewise, average accuracy 84.38%
for the group of women.

The satisfactory classification accuracy obtained only
when the men and the women were divided, suggests a
significant gender effect on HRV nonlinear dynamics occur-
ring during affective haptic elicitation. Accordingly, previous
studies highlighted different effects of caress-like stimuli on
gender, mainly related on perceived pleasantness associated
to the stimulus. In particular, as velocity of the stimulus
increased, at constant force level, males and females reported
opposite valence perceptions: for the women, the more the
velocity, the lower the pleasantness; for the men, the more
the velocity, the higher the pleasantness. [24]. Of note, this
opposite self-assessemnt of the stimulus valence recalls the
changes in the trends shown in Fig. 2 and Fig. 3.

It is worthwhile noting that no significant classification
accuracy was obtained when using standard HRV features.
This results suggest that HRV nonlinear dynamics is strongly
affected by affective tactile stimulation, according to different
levels of velocity. Future work will focus on the study of
HRV linear and nonlinear dynamics as a function of the
force and velocity, as well as body site of an affective tactile
stimulus. Moreover, other physiological dynamics related to,
e.g., electrodermal responses, and EEG will be taken into
account [25], [26], [27].
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