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The topological susceptibility of two-dimensional U(N) gauge theories
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In this paper we study the topological susceptibility of two-dimensional U(N) gauge theories.
We provide explicit expressions for the partition function and the topological susceptibility at finite
lattice spacing and finite volume. We then examine the particularly simple case of the abelian U(1)
theory, the continuum limit, the infinite volume limit, and we finally discuss the large N limit of
our results.

I. INTRODUCTION

The study of θ-dependence of QCD by means of lat-
tice simulations has been the subject of several recent
studies, mainly triggered by the possible implications for
axion physics [1–9]. It is however well known that Monte
Carlo algorithms typically used in numerical simulations
suffer from a severe critical slowing down as the contin-
uum limit is approached, with autocorrelation times of
topological observables that grow about exponentially in
the inverse of the lattice spacing [10–13]. This led to
the development of new algorithms, specifically devised
to improve the sampling of topologically nontrivial con-
figuration [7, 8, 14–23].
From a general point of view, it is very useful to have

the possibility of performing quantitative checks of the
Monte Carlo results against exact ones. This is obvi-
ously not possible in the general case, however simplified
(toy) models sometimes exist that are analytically solu-
ble but still complicated enough to be used as nontrivial
test beds. In statistical physics the two-dimensional Ising
model is probably the most popular choice [24], while
in field theory two-dimensional lattice gauge theories are
the natural playground for tests of numerical simulations:
on one side they are computationally much cheaper than
their four dimensional counterparts, on the other side
it is possible to determine many exact results that may
constitute precise benchmarks for numerical results and
extrapolations.
The present paper is devoted to the extension of known

analytic results concerning two-dimensional U(N) lattice
gauge theories in the absence of a θ term to the case
when such a term is present, and more specifically to
the evaluation of the topological susceptibility, for finite
volumes V and for generic values of the coupling β. Finite
volume results at fixed coupling may be especially useful
because they allow direct comparison with simulations
without the need of extrapolating to infinite volume and
to the continuum limit.
The paper is organized as follows: Section II is devoted

to a summary of known results, with special emphasis on
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finite lattices with spherical and toroidal geometries. In
Section III we fix our notation trying to make correspon-
dence with previous literature as far as possible, and we
give our definitions for the density of topological charge
and for the topological susceptibility in U(N) gauge the-
ories, exploiting the existence of the U(1) subgroup. We
present our general formulas for the partition function in
the presence of a θ term and for the topological suscep-
tibility, for generic values of N , β and V , and for any
genus g of the lattice manifold, showing explicitly that
the periodicity of the partition function for 2π shifts of
the θ parameter is preserved. In Section IV we focus
on the case N = 1 where many closed-form expressions
can be explicitly found for generic values of V and can
be compared with partial results already available in the
literature. Strong evidence of precocious scaling by us-
ing a renormalized coupling is also exhibited. In Section
V we analyze the (finite volume) continuum limit of the
model β → ∞ in the presence of a θ term. In Section
VI the infinite volume limit of the topological suscepti-
bility is discussed in detail. Section VII is devoted to the
study of the large N limit in the infinite and finite vol-
ume cases (with further evidence of precocious scaling)
and to numerical checks of our large N results.

II. A SUMMARY OF KNOWN RESULTS

The finite volume lattice version of U(N) gauge the-
ories most widely studied in the literature is defined by
the following partition function [25]:

Z(N, β, P ) =
∫

e−S(N,β,P )
∏L

l=1 dUl , (1)

S(N, β, P ) = −Nβ
∑P

p=1 Tr(Up + U †
p), (2)

where unitary N × N matrices Ul are attached to the
L links of the lattice and Up =

∏

Ul are the ordered
products of the link matrices along any lattice plaquette.
β is the lattice ’t Hooft coupling, whose relationship with
the standard (dimensionful) coupling1 is Nβ = 1/(g2a2),

1 In the following we will denote by g also the genus of the manifold
on which the theory is defined; the meaning of g should however
be clear from the context.
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where a is the lattice spacing and the volume is given by
V = Pa2. The sum in Eq. (2) runs over all P plaquettes,
while the integration dUl involves all link variables and
is performed by using the Haar measure for the U(N)
group. Due to its crucial role we recall that, when the
integrand involves only functions of the eigenvalues φi of
the integration variable, the U(N) Haar measure reduces
to (see e.g. [26])

dµ(φ) = ∆(φ)∆̄(φ)
N
∏

i=1

dφi

2π
, (3)

where

∆(φ) =
1√
N !

ǫj1···jN e
iφ1(N−j1) · · · eiφN (N−jN ) . (4)

The peculiarity of two dimensional models consists in
the possibility of performing a change of integration vari-
ables (exploiting the invariance of the Haar measure) in
such a way that most nontrivial integrations involve di-
rectly the plaquette matrices. That this is a feasible
strategy can be understood, for a two dimensional com-
pact orientable manifold without boundary, by using the
Euler characteristic 2 − 2g = S − L + P , where S is
the number of sites (vertices) of the lattice and g is the
genus of the lattice manifold. The maximal number of
links that can be gauged away (maximal tree) is simply
S − 1 and therefore the number of nontrivial integration
variables I is I = L− S + 1 = P − 1 + 2g.
Two cases particularly useful for applications are the

manifolds with the topology of the sphere (g = 0) and the
manifolds with the topology of the torus (g = 1). For the
case g = 0 we have I = P − 1, implying that one of the
plaquette variables may be expressed as a function (actu-
ally the product) of all other matrices; in this case one can
easily prove the equivalence of these models to the chiral
chains of length P (see also later in this section), in order
to use the results available for these systems [27, 28]. For
g = 1 (the manifolds typically adopted in simulations)
we get I = P + 1 and the independent variables may
be chosen to be P − 1 plaquettes and two other degrees
of freedom (“torons”). Integration over the torons may
be explicitly carried out [29], and the result leads again
to the possibility of expressing the last plaquette as the
product of all other variables. This procedure can be
generalized without difficulties also to the case of generic
topology.
Without belaboring the details we only quote the final

result, due to Rusakov [30] (see also [29] for the case of
the torus): the θ = 0 partition function Z(g)(N, β, P )
corresponding to a compact orientable lattice manifold
of genus g without boundary is:

Z(g)(N, β, P ) =
∑

r

d2−2g
r

[ β̃r(N, β)

dr

]P

, (5)

where P > 1, the sum runs over all representations r of

U(N), dr is the dimension of the representation and [26]

β̃r(N, β) =

∫

χr(U)eNβ(TrU+TrU†)dU , (6)

with χr(U) the character of r. If the manifold is nonori-
entable the partition function is always equal to 1, if
fixed boundaries are present the result depends on the
holonomies associated to the boundaries [30]. When the
boundary holonomies are fixed to be trivial, one obtains
again Eq. (5) and this is a possible way of proving the
equivalence of the spherical topology with chiral chains.
We explicitly note that, when writing expressions like
Eq. (5), we must keep in mind that the number of links
belonging to each plaquette is not a priori fixed, and for
small values of P it must be large enough to ensure the
possibility of imposing boundary conditions compatible
with the genus g of the lattice manifold. In particular for
P = 2 the plaquettes must be polygons with at least 4 g
sides.
It is worth noticing that, due to the invariance prop-

erties of the measure, a simple result may be obtained in
the case g = 0, P = 2:

Z(0)(N, β, 2) = β̃0(N, 2β). (7)

We also recall that the continuum partition function
in the case of a finite (dimensionless) area A = V/a2 can
be obtained starting from the heat kernel action, corre-
sponding to the replacement2 [26]

β̃r(N, β) → dre
− Cr

4Nβ , (8)

where Cr is the quadratic Casimir in the r representation
and the result is

Z(g)(N, β,A) =
∑

r

d2−2g
r e−

1

4Nβ
CrA . (9)

The infinite volume limit of Eq. (5) can be easily recov-
ered in different ways. For instance one may observe that
when P → ∞ it is consistent to choose an axial gauge
condition, amounting to setting Ul = 1 for all the links
in the “time” direction of the lattice. Factorization of
the integrals in Eq. (2) follows trivially, implying a direct
relationship with the single plaquette model:

Z(N, β, P )
P→∞→ Z(N, β, 1)P , (10)

where

Z(N, β, 1) ≡
∫

dUeNβ(TrU+TrU†) = β̃0(N, β) (11)

2 There is sometimes confusion in the literature on the numerical
factor appearing in the exponent, which depends on the con-
ventions adopted in the action. We checked that Eq. (8) is the
correct large β limit of Eq. (13).
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and the properties of the trivial representation (d0 = 1
and χ0(U) = 1) have been exploited. It is important to
stress that the same result might have been obtained by
observing that the quantities β̃r(N, β) can be explicitly
computed for all values of N . Indeed by recalling the
definition of the modified Bessel functions of integer order

In(2Nβ) =
1

2π

∫ π

−π

e2Nβ cosφ±inφdφ (12)

it is possible to obtain the result [26]

β̃{lj}(N, β) = det
(

Ilj+i−j(2Nβ)
)

(13)

where the indices l1 ≥ · · · ≥ lN (li ∈ Z) parametrize the
U(N) representation; in particular [25]

β̃0(N, β) = det
(

Ii−j(2Nβ)
)

. (14)

Noticing that In(x) < I0(x) for all n 6= 0 and for all finite
real values of x, it is easy to get convinced that

β̃r(N, β)

dr β̃0(N, β)
< 1 (15)

for all r 6= 0 and for all finite values of β. This observation
implies Eq. (10) and also that the convergence to the
infinite volume limit is exponentially fast for large values
of P .
As we mentioned in the introduction, many exact re-

sults have been obtained in the past with regard to the
large N limit of many matrix models. For a general re-
view we refer to [31], quoting here only the existence of a
third order phase transition at N = ∞, first identified by
Gross and Witten [32] and Wadia [33], the computation
of the first few 1/N corrections of the free energy [34],
the exact expression for the large N eigenvalue distri-
bution of the plaquette variable for the single plaquette
[32] and for the chiral chains with P = 3 and P = 4
[27, 28, 35], the solution of the external field problem for
all N [27, 28, 36, 37] and the expectation value of detUp

for the single plaquette model [38].

III. TOPOLOGICAL CHARGE AND

SUSCEPTIBILITY

The existence of a topological charge in two dimen-
sional U(N) gauge theories is related to the existence of
a U(1) Abelian subgroup, that can be parametrized by a
phase Φ, related to the determinant of the U(N) matrix
by the relationship

detU = eiΦ . (16)

It is easy to get convinced that on a compact orientable
lattice manifold without boundaries the following prop-
erty holds

P
∑

p=1

Φp = 0 (mod2π) , (17)

where Φp is the phase associated with the determinant
of each plaquette variable. Hence a simple definition for
the topological charge density qp associated with each
plaquette is

qp ≡ − i

2π
ln detUp = − i

2π
Tr lnUp ; (18)

the total topological charge is Q(N,P ) =
∑

qp and, be-
cause of the above property of

∑

p Φp, Q can only take

integer values. Note that the second equality in Eq. (18)
holds only for an appropriate and Up-dependent choice of
the branch cuts. If however the standard [−π, π] branch
is used (as will always be done in the following), the two
expressions for the topological charge are generically dif-
ferent, but nevertheless the corresponding θ-dependent
partition functions are the same.
By definition the (dimensionless) topological suscepti-

bility χt(N, β, V ) is

χt(N, β, V ) =
a2

V

[

〈Q2〉 − 〈Q〉2
]

, (19)

where the expectation values are to be computed at
θ = 0. The lattice representation of χt follows trivially
from the above results, recalling that V = a2P , and sim-
ple parity arguments imply that 〈Q〉 = 0, therefore in
practice we just have to compute 〈Q2〉/P .
The θ-dependent partition function can be defined as

Zθ(N, β, P ) ≡
∫

eiθQ(N,P )e−S(N,β,P )
L
∏

l=1

dUl , (20)

and in order to compute Zθ(N, β, P ) we can repeat and
adapt Rusakov’s procedure. Let us define the quantities

γ̃r(N, β, θ) ≡
∫

χr(U)e
θ
2π

Tr lnU+Nβ(TrU+TrU†)dU , (21)

with the property that

γ̃r(N, β, 0) = β̃r(N, β). (22)

By choosing an appropriate gauge condition and perform-
ing the residual nontrivial integrations we then obtain our
general result for the θ-dependent partition function:

Z
(g)
θ (N, β, P ) =

∑

r

d2−2g
r

[ γ̃r(N, β, θ)

dr

]P

. (23)

Noticing that Tr lnU = i
∑

j φj , where e
iφj are the eigen-

values of U , and defining the functions

Iν(x) ≡
1

2π

∫ π

−π

eiνφex cosφdφ , (24)

which for integer indices reduces to modified Bessel func-
tions (see Eq. (12)), we obtain the closed form expression

γ̃{lj}(N, β, θ) = det
(

Ilj+i−j+ θ
2π
(2Nβ)

)

(25)
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using arguments identical to those needed to prove
Eqs. (13) and (14) [25, 26, 32].
From this expression it follows that θ → θ+2π is equiv-

alent to {lj} → {l′j} where l′j = lj + 1; as a consequence,
when performing the summation over all representations,

each contribution appearing in Z
(g)
θ+2π(N, β, P ) has an

identical counterpart in the expression of Z
(g)
θ (N, β, P ),

implying exact 2π periodicity in θ for all values of g,N, β
and P . We consider this to be a quite nontrivial evidence
for the correct normalization of the topological charge in
the two dimensional U(N) gauge theories.
In order to simplify the notation it is convenient to

introduce the weights

w(g)
r (N, β, P ) = d2−2g

r

[ β̃r(N, β)

dr

]P [

Z0(N, β, P )
]−1

,

(26)

with the property that
∑

r w
(g)
r (N, β, P ) = 1. Starting

from the formal expression for the topological suscepti-
bility:

χ
(g)
t (N, β, P ) = − 1

P

∂2 lnZ
(g)
θ (N, β, P )

∂θ2

∣

∣

∣

∣

∣

θ=0

. (27)

it is then possible to represent χ
(g)
t (N, β, P ) in the form

χ
(g)
t (N, β, P ) = −

∑

r

w(g)
r (N, β, P )

γ̃′′
r (N, β)

dr β̃r(N, β)
+

− (P − 1)
∑

r

w(g)
r (N, β, P )

[ γ̃′
r(N, β)

drβ̃r(N, β)

]2
(28)

where we have defined

γ̃′
r(N, β) ≡ ∂γ̃r(N, β, θ)

∂θ

∣

∣

∣

∣

θ=0

=

=

∫

χr(U)
( 1

2π
Tr lnU

)

eNβ(TrU+TrU†)dU ,

(29)

and

γ̃′′
r (N, β) ≡ ∂2γ̃r(N, β, θ)

∂θ2

∣

∣

∣

∣

θ=0

=

=

∫

χr(U)
( 1

2π
Tr lnU

)2

eNβ(TrU+TrU†)dU ,

(30)

which can be rewritten as sums of determinants involv-
ing modified Bessel functions and related functions (see
Sec. VI for more details on the simplest case). In the
derivation of Eq. (28) we have also exploited the fact
that 〈Q〉 vanishes at θ = 0, which is equivalent to

∑

r

w(g)
r (N, β, P )

γ̃′
r(N, β)

dr β̃r(N, β)
= 0 . (31)

The proof of this identity rests on the cancellation of the
contributions coming from each representation r (associ-
ated to {lj}) and its conjugate representation r∗ (associ-
ated to {−lN+1−j}), indeed

dr∗ = dr ; β̃r∗(N, β) = β̃r(N, β) ,

γ̃r∗(N, β, θ) = γ̃r(N, β,−θ) ,
(32)

0 5 10 15 20 25 30
P

0

0.005

0.01

0.015

0.02

χ t(g
) (2

,1
,P

)

g=∞
g=2
g=1
g=0

FIG. 1. Behaviour of the U(2) topological susceptibility as a
function of the dimensionless volume P for the value β = 1 of
the coupling. Results are shown for three different topologies,
corresponding to g = 0, 1 and 2; the horizontal line denotes
the asymptotic P → ∞ value computed by using Eq. (63).

from which it follows γ̃′
r∗(N, β) = −γ̃′

r(N, β).
By the same arguments applied in the previous Section,

and observing that γ̃′
0(N, β) = 0 for obvious symmetry

reasons, we may conclude that also the convergence of
the topological susceptibility to its infinite volume limit
is exponentially fast. An example of the finite volume
behaviour of the topological susceptibility is shown in
Fig. 1 for the U(2) case.
A peculiar property of the case g = 0, P = 2 (the

two-link chiral chain) is

χ
(0)
t (N, β, 2) = 0, (33)

implied by the trivial relationship Tr lnU +Tr lnU † = 0.
It is also quite interesting to study the limit g → ∞ of

the theory. Since g appears in the exponent of 1/dr in
the weights Eq. (26), all representations with dr > 1 dis-
appear as g → ∞ and only the representations labelled
by l1 = l2 · · · = lN give a finite contribution in this limit.
The relevant representations are therefore identified by a
single index l, running from −∞ to +∞, and the parti-
tion function is simply

Z
(∞)
θ (N, β, P ) =

∑

l

[γ̃l(N, β, θ)]
P

(34)

where the explicit form of the U(N) characters has been
used (see [26]) and

γ̃l(N, β, θ) = β̃0(N, β)
〈

(detU)l+
θ
2π

〉

, (35)

where the average 〈 〉 stands for the average in the single
plaquette model at θ = 0. The topological susceptibility
of the g = ∞ theory is shown in Fig. 1 for the U(2) case.
Further aspects of the large g behaviour will be discussed
in Sec. V and Sec. VII.
To better understand the form of Eq. (28) it is conve-

nient to further generalize the problem, by introducing
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plaquette dependent lattice coupling and θ angle. It is
immediate to verify that the Rusakov result can be gen-
eralized to this case and the partition function becomes

Z
(g)
~θ

(N, ~β, P ) =
∑

r

d2−2g
r

P
∏

p=1

γ̃r(N, βp, θp)

dr
. (36)

We can now write a formal expression for the two-point
correlation function of the topological charge by using

〈qiqj〉(g)(N, β, P ) = − ∂2

∂θi∂θj
lnZ

(g)
~θ

(N, ~β, P )

∣

∣

∣

∣θp=0
βp=β

(37)
and it is simple to verify that 〈qiqj〉(g)(N, β, P ) has the
form

〈qiqj〉(g)(N, β, P ) = c
(g)
1 (N, β, P )δij+

+ c
(g)
2 (N, β, P )(1 − δij) ,

(38)

which expresses the fact that in two dimensions the corre-
lator 〈qiqj〉(g) takes just two values. These values are ob-
viously related to the expressions appearing in Eq. (28),
that can indeed be rewritten in the form

χ
(g)
t (N, β, P ) = c

(g)
1 (N, β, P ) + (P − 1)c

(g)
2 (N, β, P ) .

(39)
This is nothing but the general relation between the sus-
ceptibility and the two point function, written in the
case in which 〈qiqj〉(g) assumes only two values. Since
γ̃′
0(N, β) = 0, it is simple to show that c2 goes to zero ex-

ponentially in P (the dimensionless volume) as the ther-
modynamic limit is approached; in this limit the two
point function of the topological charge reduces to a δ
function.

IV. THE CASE N = 1

In the purely Abelian case N = 1 many simplifica-
tions occur, due to the commutativity of the matrices.
In particular there is no dependence on the genus of the
manifold, as one can easily see by noticing that all the
representations have dimension 1.

The topological charge density is simply qp =
φp

2π
(where φp is the Abelian phase of the plaquette) and the
character of the n-th representation of Up is just einφp .
As a consequence one may compute directly the θ depen-
dent partition function on a finite lattice obtaining

Zθ(1, β, P ) =

+∞
∑

n=−∞

[

In+ θ
2π

]P

. (40)

The U(1) weights are simply

wn(1, β, P ) =

[

In(2β)
]P

∑

n

[

In(2β)
]P

(41)

The resulting expression for the finite volume topological
susceptibility is then

χt(1, β, P ) = −
∑

n

wn(1, β, P )
I ′′
n(2β)

In(2β)
+

− (P − 1)
∑

n

wn(1, β, P )
[I ′

n(2β)

In(2β)

]2

,

(42)

where we introduced the auxiliary functions

I ′
n(x) ≡

1

2π

∂

∂ν
Iν(x)

∣

∣

∣

∣

ν=n

=

=
i

2π

∫ π

−π

φ

2π
einφ+x cosφdφ

(43)

I ′′
n(x) ≡

1

(2π)2
∂2

∂ν2
Iν(x)

∣

∣

∣

∣

ν=n

=

= − 1

2π

∫ π

−π

(

φ

2π

)2

einφ+x cosφdφ .

(44)

The typical behaviour of χt(1, β, P ) as a function of β
and P is shown in Fig. 2(a). In Fig. 2(b) one may
observe the precocious scaling exhibited by the ratio
χt(1, β, P )/χt(1, β, 1), when we parametrize the depen-
dence on the coupling by means of the combination
4π2Pχt(1, β, 1), corresponding to a physical dimension-
less quantity in the continuum limit (where it takes the
asymptotic value P

2β ). Precocious scaling by use of renor-

malized couplings was observed in a different context in
references [39, 40].
The finite volume continuum limit of the θ dependent

partition function in the U(1) case is

Zθ

(

1,
A

2β

)

=
∑

n

e−
A
4β (n+

θ
2π )

2

, (45)

where we dropped the θ−independent multiplicative fac-
tor I0(2β)

P . A corresponding expression for the topolog-
ical susceptibility can easily be obtained, which can be
written in the form

χt(1, β, A)

χt(1, β, 1)
= 1 + 2X

∂

∂X
lnZ0(1, X) , (46)

where X = A
2β . In order to compare with continuum re-

sults (see e.g. [41]), it must be kept in mind that g2 = 2e2

in the U(1) case to preserve the canonical normalization
of the fields (see also the note at the end of Section II).
In the infinite volume limit the dominant term of the

sum in Eq. (40) is the one corresponding to the minimum
value of n+ θ

2π , and we thus see the emergence of a multi-
branched structure

Zθ(1, β, P )
P→∞→

[

I θ mod 2π
2π

(2β)
]P

, (47)

with the partition function being non-analytic at the odd
multiples of π. This phenomenon persists also when
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FIG. 2. (a) Behaviour of the U(1) topological susceptibility as
a function of the coupling β and of the dimensionless volume
P . For comparison points obtained by using numerical lattice
simulations are also shown in the case β = 2.5 (error-bars are
smaller than symbols). (b) Same data as in the upper panel
but with quantities normalized by using χt(1, β, 1).

considering the infinite volume limit of the continuum
version of the model discussed above. The presence of
these first order transition points prevents a simple fac-
torization of the form Eq. (10) from being applicable for
generic θ values, indeed a naive application of factoriza-
tion would give

Zθ(1, β, P )
P→∞→

[

I θ
2π
(2β)

]P

, (48)

which is non periodic in θ. It is however important to
stress that, as far as we consider −π ≤ θ ≤ π, all the
expressions obtained by using the single plaquette model
correctly describe the P → ∞ limit of the P -plaquette
model. In particular the infinite volume topological sus-
ceptibility is given by

χt(1, β,∞) = −I ′′
0 (2β)

I0(2β)
. (49)

V. THE CONTINUUM LIMIT

The continuum limit of two dimensional U(N) gauge
theories is simply the limit β → ∞ because the coupling

g2 is dimensionful and therefore the above limit is the
same as the limit a2 → 0. By generalizing the argu-
ments that lead to Eq. (13) we may obtain the following
representation for the functions γ̃r(N, β, θ) appearing in
Zθ(N, β, P ):

γ̃{lj}(N, β, θ) =

∫

det
[

eiφj(lj+i−j)
]

×

× ei
θ
2π

∑
j φje2Nβ

∑
j cosφj

∏

j

dφj

2π
.

(50)

In the β → ∞ limit one may replace cosφj with 1 −
1
2φ

2
j and perform the resulting gaussian integration, thus

obtaining

γ̃{lj}(N, β, θ) → A(N, β) det
[

e−
1

4Nβ (lj+i−j+ θ
2π )

2
]

, (51)

where the common factor A(N, β) does not depend on θ.
A few straightforwardmanipulations allow to represent

the above result in the form

γ̃{lj}(N, β, θ) →A(N, β) det
[

e−
1

4Nβ
(lj+i−j)2

]

×

× e
θ
π

∑
j lj+N( θ

2π )
2

.

(52)

The determinant can be computed in the limit β → ∞,
obtaining the result

det
[

e−
1

4Nβ
(lj+i−j)2

]

→ B(N, β) d{lj} e
− 1

4Nβ
C{lj} , (53)

where B(N, β) is another common factor independent
of θ, and it is possible to verify that the product
A(N, β)B(N, β) is nothing but the asymptotic form of

β̃0(N, β) in the large β limit, hence it is a lattice arti-
fact that can be ignored when analyzing the continuum
properties of the model.
We recall that C{lj} is the quadratic Casimir of the

representation, as expected from the θ = 0 result Eq. (8).
We report here, for the convenience of the reader, the
known explicit form of C{lj} and d{lj}:

C{lj} =

N
∑

i=1

li(li − 2i+N + 1)

d{lj} =
∏

i>j

(

1− li − lj
i− j

)

.

(54)

The continuum limit of the partition function on a
manifold with (dimensionless) area A/(Nβ) = g2V is
therefore

Z
(g)
θ

(

N,
A

2β

)

=
∑

{lj}

d2−2g
{lj}

e
− A

4Nβ

[

C{lj}
+ θ

π

∑
j lj+

N

4π2
θ2

]

.

(55)
and the continuum limit of the weights defined in Eq. (26)
is

w
(g)
{lj}

(

N,
A

2β

)

= d2−2g
{lj}

e−
A

4Nβ
C{lj}

[

Z
(g)
0

(

N,
A

2β

)

]−1

.

(56)
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An immediate consequence of the above results is the pos-
sibility of evaluating the finite volume continuum limit of
the topological susceptibility:

χ
(g)
t (N, β,A) =

1

8π2β

[

1− A

2β

∑

{lj}

w
(g)
{lj}

(

∑

j

lj
N

)2
]

(57)

which in the infinite volume limit does not depend on the
genus and becomes simply

χ
(g)
t (N, β,∞) =

1

8π2β
, (58)

for all N , because w
(g)
r (N, β,A) → δr,0 when A → ∞.

It is important to note that the continuum expression
for the partition function is consistent with the previ-
ously proven periodicity in θ with period 2π of the par-
tition function. Let’s focus on the exponents appearing
in Eq. (55) and notice that they can be rewritten in the
form

C{lj} +
θ

π

∑

j

lj +
N

4π2
θ2 =

=
∑

j

[

(

lj +
θ

2π

)2

+ (N + 1− 2j)

(

lj +
θ

2π

)

]

;

(59)
also in the continuum θ → θ + 2π is thus equivalent to
{lj} → {l′j} where l′j = lj + 1. Since d{l′j} = d{lj} the

periodicity of the continuum partition function Eq. (55)
follows as in Sec. III.
The continuum version of the g → ∞ limit is simply

Z
(∞)
θ

(

N,
A

2β

)

=
∑

l

e−
A
4β

(l+ θ
2π

)2 , (60)

and one may appreciate that it turns out to be indepen-
dent of N and therefore coincident with the continuum
version of the U(1) model. However we notice that, con-
trary to naive expectations, the finite volume continuum
limit will not in general coincide with its U(1) value, and
will depend on N and g, with the notable exception of
the large N limit, to be discussed in Sec. VII.
The properties of the finite volume continuum limit

will be discussed in detail in a forthcoming publication.

VI. THE INFINITE VOLUME LIMIT

We assume in this section −π ≤ θ ≤ π (see the dis-
cussion in Sec. IV), in order to exploit the large volume
factorization also at θ 6= 0, obtaining for all genuses

Z
(g)
θ (N, β, P )

P→∞→ Zθ(N, β, 1)P , (61)

where

Zθ(N, β, 1) ≡
∫

e
θ
2π

Tr lnU+Nβ(TrU+TrU†)dU =

= γ̃0(N, β, θ) .

(62)

0 0.5 1 1.5 2
β

0

0.05

0.1

0.15

0.2

χ t(N
,β

,1
)

N=9
N=8
N=7
N=6
N=5
N=4
N=3
N=2
N=1

FIG. 3. Behaviour of the infinite volume topological suscepti-
bility for U(N) with N < 10 and 0 ≤ β ≤ 2, computed using
Eq. (63).

Computing the infinite volume topological susceptibility
thus amounts to evaluating the quantity

χt(N, β, 1) = − γ̃′′
0 (N, β)

β̃0(N, β)
, (63)

where we exploited the fact that γ̃′
0(N, β) = 0 and the

property

w(g)
r (N, β, P ) → δr,0 (64)

in the limit P → ∞. γ̃′′
0 may be evaluated starting from

γ̃′′
0 = −

∫

dµ(φ)

(

∑

i

φi

2π

)2

e2Nβ
∑

i cosφi , (65)

and it can be seen (using again arguments analogous to
those of [25, 26, 32]) that γ̃′′

0 may be expressed as the
sum of the N2 determinants obtained from det Ii−j(2Nβ)
by replacing one of the lines with I ′′

i−j(2Nβ) and two
different lines with I ′

i−j(2Nβ). Using these expressions
it is straightforward to numerically compute χt(N, β, 1)
and in Fig. 3 we show the results obtained for N < 10
and 0 ≤ β ≤ 2; two different regimes are clearly visible in
this figure, which will be discussed in depth in Sec. VII.

VII. THE LARGE N LIMIT

In the largeN limit analytic calculations are made pos-
sible by the fact that the functional integral is dominated
by the saddle point configuration of the fields, which
in turn can be found by solving the appropriate (sad-
dle point) equations for the eigenvalues φi of a matrix
variable. In practice one must replace the summations
over the index “i” with an integration in the variable φ,
weighted by an eigenvalue density ρ(φ) = 1

N
di
dφ , normal-

ized to
∫

dφρ(φ) = 1.
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Explicit eigenvalue densities have been found for the
infinite volume case (equivalent to the single plaquette)
[32], and for the chiral chains with P = 2, 3, 4 [27, 28],
and the corresponding free energies have been computed.
In all cases a third order phase transition is present, and
therefore one needs to know the separate expressions for
the strong and weak coupling eigenvalue distributions.
As we saw in the previous sections, as far as we are inter-
ested in the topological susceptibility (or in other prop-
erties related to the behaviour of the free energy close to
θ = 0) we can use the single plaquette model to compute
values in the thermodynamic limit.
In the single plaquette model the transition occurs at

βc =
1
2 and the eigenvalue density is [32]

ρ(φ, β) =

{

ρs(φ, β) if β ≤ βc , |φ| ≤ π
ρw(φ, β) if β > βc , |φ| ≤ φc

(66)

where φc = 2 arcsin
√

1/(2β) and

ρs(φ, β) =
1

2π

(

1 + 2β cosφ
)

(67)

ρw(φ, β) =
2β

π
cos

φ

2

( 1

2β
− sin2

φ

2

)
1

2

. (68)

In order to extend these results to the evaluation of the
large N limit of the topological susceptibility at infinite
volume we must replace the saddle point equation intro-
duced in [32] with

P

∫ +φc

−φc

ρ(φ′, β) cot
φ− φ′

2
dφ′−2β sinφ+i

θ̂

2π
= 0 , (69)

where we introduced the scaling variable θ̂ = θ/N in
order to obtain a consistent largeN limit, in analogy with
the procedure adopted in [42, 43] following the original
proposal by Witten [44]. We may introduce in the saddle
point equation the Ansatz

ρ(φ, β) = ρ0(φ, β) + i
θ̂

2π
ρ1(φ, β), (70)

where ρ0(φ, β) is the eigenvalue density Eq. (66) found
in [32], while ρ1(φ, β) must be an odd function of φ sat-
isfying the equation

P

∫ +φc

−φc

ρ1(φ
′, β) cot

φ− φ′

2
dφ′ + 1 = 0. (71)

If we denote by F(β, θ) the free energy of the system, its
θ-dependent part F (β, θ) ≡ F(β, θ)−F(β, 0) is therefore3

F (β, θ) = −1

2

( θ

2π

)2
∫ φc

−φc

ρ1(φ, β)φdφ , (72)

3 This expression is clearly non 2π-periodic in θ, as a consequence
of the use of the single plaquette model.

0 0.5 1 1.5
β
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(a)
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FIG. 4. (a) Comparison of numerical data obtained by using
Eq. (63) (solid lines) and the leading order large N theoretical
predictions, which is given by Eq. (75), (76) and (77) for β <
1/2 (dashed lines) and by Eq. (79) for β > 1/2 (dotted-dashed
line). (b) Deviations of numerical data from their expected
asymptotic behaviour.

with the factor 1/2 coming from the partial cancellation
of the two terms in the free energy that are quadratic in
θ, i.e. the θ-term and the term coming from the Haar
measure. In the large N limit the above expression is
finite while all contributions of higher order in θ are de-
pressed by powers of 1/N . Hence we immediately obtain
the large N relationship

χt(N, β, 1) → 1

4π2

∫ φc

−φc

ρ1(φ, β)φdφ. (73)

Notice that the equation defining ρ1(φ, β) may depend
on β only through the limits of the integration domain,
which in turn should not change with respect to the do-
main of ρ0, because all change in φc would be depressed
by a power of 1/N . This observation implies that spe-
cial care will be needed in the strong coupling region,
because φc = π with no apparent dependence on β, but
the formal solution for ρ1,s is

ρ1,s(φ, β) =
1

2π
tan

φ

2
, β <

1

2
, (74)

implying a nonintegrable singularity around ±π. It is
easy to get convinced that the resulting singular behavior
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may be parametrized by

χt,s(N, β, 1) → χt,s(N, 0, 1) + f(β) , (75)

where

χt,s(N, 0, 1) =
N

12
− 1

2π2

N
∑

k=1

N − k

k2
→

→ 1

2π2
(lnN + γE + 1) +O(N−1)

(76)

and f(β) is a regular function connected to the β depen-
dent cutoff scale, which is in turn related to the behavior
of the density ρ0,s in the proximity of ±π. On these
grounds, since ρ0,s ∼ (1− 2β) when φ → ±π, we find

f(β) =
1

2π2
ln(1− 2β), (77)

which shows the correct β → 0 limit and exhibits a di-
vergence in the limit β → 1/2, as required in order to
match the weak coupling behavior.
In the weak coupling regime β > 1/2 the solution of

Eq. (71) is

ρ1,w(φ, β) =
1

2π

sin(φ/2)
√

1
2β − sin2(φ/2)

, (78)

the integral in Eq. (73) is convergent and we get (using
Eq. 3.842.2 of [45])

χt,w(N, β, 1) → − 1

4π2
ln

(

1− 1

2β

)

. (79)

This result can be easily obtained also without explic-
itly solving the saddle point equation, because from the
definition of the topological charge we have

F (β, 2πℓ) = ln〈detU ℓ
p〉 (80)

and in [38] it has been proven that, at N = ∞ in the
weak coupling phase of the single plaquette model, we
have

〈detUp〉 =
(

1− 1

2β

)
1

2

; (81)

this was further strengthened in [46] by showing that

〈detU ℓ
p〉 =

(

1− 1

2β

)ℓ2/2

. (82)

Hence we may establish the relationship, holding for all
ℓ and β > 1/2

F (β, 2πℓ) = − ℓ2

2

∫ φc

−φc

ρ1(φ, β)φdφ =
ℓ2

2
ln

(

1− 1

2β

)

,

(83)

0 5 10 15 20

4π2P χ
t
(∞)(N,1,1) 
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χ t(∞
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/ χ

t(∞
) (N

,1
,1

) 

N=1
N=2
N=3
N=∞

FIG. 5. Large N scaling of the topological susceptibility at
g = ∞ for several values of P at coupling β = 1.

implying immediately

χt,w(N, β, 1) → − 1

4π2
ln

(

1− 1

2β

)

. (84)

This result reproduces the correct large β behavior of
the susceptibility and shows a divergence for β → 1/2,
needed in order to match the strong coupling behavior.
Notice that, due to the singularity in N , this argument
could not be applied to the strong coupling phase, where
it is known that ln〈detUp〉 is proportional to N and be-
haves like lnβ when β → 0 [38, 47, 48].
The numerical evaluation of χt, even for quite small

values of N , shows surprisingly good agreement with the
above predictions, as shown in Fig. (4).
The above results are restricted to the infinite volume

version of the models, but they may be employed in the
g → ∞ limit in order to obtain for this case expressions
holding also in the finite volume large N limit, at least in
the weak coupling regime. Indeed by trivially extending
Eq. (82) to include the dependence on θ and substituting
the results in Eqs. (34)-(35) one easily obtains for large
N :

Z
(∞)
θ (N, β, P ) → [β̃0(N, β)]P

∑

l

(

1− 1

2β

)
P
2 (l+

θ
2π )

2

.

(85)
This expression can be rewritten in the form

Z
(∞)
θ (N, β, P ) → [β̃0(N, β)]PZθ(1, X) , (86)

where Zθ(1, X) is the U(1) partition function of the single
plaquette model (see Sec. IV) and therefore

χt,w(∞, β, P )

χt,w(∞, β, 1)
= 1 + 2X

∂

∂X
Z0(1, X) , (87)

where now

X = 4π2Pχt,w(∞, β, 1) . (88)
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Here χt,w(∞, β, 1) is the value Eq. (79) of the large N
limit of the topological susceptibility in the weak cou-
pling regime, from which we may appreciate that in the
continuum limit X → P

2β . It is worth noticing that very

precocious large N scaling is obtained when studying

χ
(∞)
t,w (N, β, P )/χ

(∞)
t,w (N, β, 1) as a function of the dimen-

sionless variable 4π2Pχt,w(N, β, 1), which is the finite-N
analogous of X , see Fig. 5. This is analogous to what was
previously observed in the case of U(1), shown in Fig. 2.
Another important comment concerns the dependence

of the large N finite volume susceptibility on g. It is
possible to show that the same results holds true not
only for g → ∞, but also for all g > 1 values, because
representations with dr > 1 get suppressed as N → ∞
(see Eq. (26)). On the other hand it can not hold in the

case g = 0, since we know that χ
(0)
t (N, β, 2) = 0 for all

N and, as a consequence, it vanishes also in the N → ∞
limit.
By generalizing to general g the arguments put forward

by Douglas and Kazakov [49] one may argue that the
finite area transition they found is present only in the g =
0 case, and it would be interesting to investigate whether
this transition may affect the topological susceptibility.

VIII. CONCLUSIONS

In this paper we studied the θ dependence of two di-
mensional gauge theories, providing explicit expressions
for the topological susceptibility in the most general set-
ting, i.e. at finite volume, finite lattice spacing and for a
generic topology of the space-time manifold.
These expressions can be simplified in several different

ways by restricting to more specific cases. In particular
we analyzed the thermodynamic limit at fixed (’t Hooft)
coupling and the continuum limit at fixed dimensionless
volume, the case of the abelian U(1) theory being par-

ticularly simple. We finally addressed the large N limit
of the results obtained at infinite volume, showing that
the large N behaviour of the topological susceptibility is
completely different for β < 1/2 and for β > 1/2. These
two regions correspond to the strong and weak coupling
phases of the N = ∞ theory, separated by the Gross-
Witten-Wadia transition.

From the practical point of view our results can be
useful to benchmark, in two dimensional gauge theories,
new Monte-Carlo algorithms specifically targeted at im-
proving the decorrelation of topological modes in lattice
gauge theories. From the theoretical side the most sig-
nificant results obtained are probably the determination
of the continuum θ−dependent partition function on a
manifold of arbitrary genus and the large N limit (at
infinite volume) of the topological susceptibility for arbi-
trary coupling.

A remarkable aspect of our large N computation is the
fact that the θ term is sub-leading in the action, but nev-
ertheless we have been able to compute the topological
susceptibility at large N using the saddle-point approxi-
mation method, whose range of applicability is typically
restricted to leading order computations. This is analo-
gous to what has been done in [42] for two dimensional
CPN−1 models, but the present case is probably more
surprising since the topological susceptibility does not
vanish in the large N limit.

Putting together the two arguments presented in
Sec. VII to justify Eq. (79) we obtain a new and com-
pletely independent proof of Eq. (81), suggested in
[47, 48] and proven in [38], and of Eq. (82), proven in
[46]. A natural question is whether the new proof can be
extended to other cases that were not tractable with the
previously known methods.
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