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For liquid rubidium the Stokes-Einstein (SE) relation is well fulfilled near the melting point with an effective
hydrodynamic diameter, which agrees well with a value from structural investigations. A wealth of thermodynamic
and microscopic data exists for a wide range of temperatures for liquid rubidium and hence it represents a
good test bed to challenge the SE relation with rising temperature from an experimental point of view. We
performed classical molecular dynamics simulations to complement the existing experimental data using a
pseudopotential, which describes perfectly the structure and dynamics of liquid rubidium. The derived SE
relation from combining experimental shear viscosity data with simulated diffusion coefficients reveals a weak
violation at about 1.3Tmelting ≈ 400 K. The microscopic relaxation dynamics on nearest neighbor distances from
neutron spectroscopy demonstrate distinct changes in the amplitude with rising temperature. The derived average
relaxation time for density fluctuations on this length scale shows a non-Arrhenius behavior, with a slope change
around 1.5Tmelting ≈ 450 K. Combining the simulated macroscopic self-diffusion coefficient with that microscopic
average relaxation time, a distinct violation of the SE relation in the same temperature range can be demonstrated.
One can conclude that the changes in the collective dynamics, a mirror of the correlated movements of the
particles, are at the origin for the violation of the SE relation. The changes in the dynamics can be understood as
a transition from a more viscous liquid metal to a more fluid-like liquid above the crossover temperature range
of 1.3–1.5 Tmelting. The decay of the amplitude of density fluctuations in liquid aluminium, lead, and rubidium
demonstrates a remarkable agreement and points to a universal thermal crossover in the dynamics of liquid metals.
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I. INTRODUCTION

A liquid has borders to the gas phase at the boiling point
and to the solid state at the melting point. Crossing the boiling
point the main change is a decrease in density by several
orders of magnitude. Freezing a liquid into a crystal the density
changes only in the percent level; however, long-range order
sets in and breaks the rotational symmetry of the liquid state.
If crystallization can be avoided the liquid can be under-
cooled and eventually the material morphs into a glass with
dramatic consequences for transport parameters like diffusion
and viscosity [1]. Less dramatic are the changes in the dense
equilibrium liquid phase, which is characterized by disorder,
strong particle correlations, and a vanishing resistance against
shear forces, expressed in a vanishing static shear modulus
of the liquid. The last statement has to be amended when the
changes occur faster than typical relaxation times of the liquid.

The Stokes-Einstein (SE) relation connects the shear viscos-
ity of a solvent with the diffusion coefficient of a large particle
immersed in it. Einstein related the diffusive movements of a
Brownian particle in the solvent to the frictional force of the
surrounding solvent through Stokes’ law [2]. That relation is
based on hydrodynamics to describe the drag by a solvent with
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shear viscosity η on a diffusing spherical particle [3]:

D = kBT

Cησ
, (1)

where D is the diffusion constant, kB the Boltzmann constant, T
the temperature, and σ the diameter of the moving particle. C is
a constant which depends on the interface conditions between
particle and solvent. It is 2π for slip conditions and 3π for
nonslip conditions [4]. Early on some criticism has been put
forward that this relation describing a Brownian particle in
a solvent is only an approximation for very slowly moving
particles [5]. However, it turned out that the SE relation works
reasonably well even when the particle has the same size
and mass as the solvent particle, hence for atomic systems.
As there is some ambiguity with the so-called molecular
diameter [6], σ may be and has been regarded as an effective
hydrodynamic diameter. For example, for liquid rubidium with
a shear viscosity of η = 55 × 10−5 Pa s [7] at T = 320 K
and a particle diameter of σ = 4.44 Å [8] we arrive at a
diffusion coefficient of D = 2.88 × 10−5 cm2/s for the slip
condition. An experimental value for the diffusion coefficient
near the melting temperature (Tmelting = 312.65 K) of D =
2.7 × 10−5 cm2/s was reported [9]. That good agreement
supports the widespread opinion that the SE relation is well
fulfilled even for monatomic liquids.

Despite the good agreement in many cases extensions of
the simple SE relation have been proposed. Zwanzig proposed
a variant of the SE relation which included longitudinal
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viscosity [10] and generalizations based on frequency-
dependent friction coefficients [11]. Balucani et al. proposed a
wave-vector-dependent shear viscosity η(q) for a generalized
SE relation, which improved the agreement between calcula-
tion and experiment in the case of liquid sodium [12,13]. To
add more options further representations for the SE relation
are used, based on replacing the viscosity by a relaxation time
[14].

The shear viscosity η can be represented applying the stress
tensor autocorrelation function [4,15]. At shorter wavelengths
a Q-dependent viscosity can be introduced. Within a viscoelas-
tic response of the fluid a wave-vector- and time-dependent
viscosity is defined, which describes the decay of shear
fluctuations. The wave-vector-dependent Maxwell relaxation
time τ (Q) is the decay constant for these relaxations and
intimately related to the viscosity: η(Q) = τ (Q)G∞(Q) with
a high-frequency shear modulus G∞(Q) [13]. That relation
is the basis to replace the viscosity with a relaxation time
in the SE relation: Dτ ∝ T . Underlying is the assumption
that the high-frequency shear modulus G∞(Q) is temperature
independent, which is in a small enough temperature range
certainly well fulfilled.

The main interest in the most recent reports on the SE rela-
tion concerns less the absolute value rather than the evolution
with temperature and potential violations of the relation. The
SE relation can be written as

Dη ∝ T or Dτ ∝ T . (2)

Both forms have extensively been used to follow changes in
the dynamics, in particular, towards lower temperatures. Shi
et al. discuss different variants of the SE relation and using
MD simulation data they demonstrate different behavior with
temperature change [14]. One of the observations was that
the linear proportionality to temperature might be replaced
by a fractional dependence, coined the fractional SE relation
[16–18]. Furthermore, it has been observed that liquids in
the supercooled state demonstrate a breakdown of the SE
relation toward the glass transition [19,20]. That breakdown
is related to a decoupling in dynamics and was regarded
as a sign of dynamic heterogeneity. It should be kept in
mind that self-diffusion and viscosity are based on different
statistical averages: self-diffusion averages over the movement
of a tagged particle, and viscosity takes into account the
correlations of different particles. Therefore a departure of
these two different dynamical processes might be expected
at certain thermodynamic conditions.

Interestingly, reports have been made that the breakdown
of the SE relation can occur above the liquidus temperature
deep in the liquid state. For a metallic alloy experimental data
were reported that the product of the measured macroscopic
viscosity and microscopic diffusivity are independent of tem-
perature above the liquidus temperature over a range of about
400 K [21]. MD simulations on CuZr alloys demonstrated the
breakdown of the SE relation about 500 K above the derived
melting point of the alloy [22,23]. Classical MD simulations on
a CuZrAl alloy revealed a breakdown of the SE relation above
the melting point [24] and ab initio simulations on Al-Cu alloys
also reported a breakdown of the SE relation above the liquidus
temperature [25]. These results point to a profound change in
the dynamics within the liquid state of the melts.

On a microscopic length scale within the equilibrium liquid
state changes in the relaxation dynamics with increasing
temperature have been observed for several liquid metals, like
rubidium, lead, and aluminium [26–28]. These studies demon-
strate distinct changes in the dynamics of density fluctuations
on atomic length scales with increasing temperature from the
melting point up to about twice the melting temperature. For
rubidium an additional slow relaxation process has been iden-
tified by MD simulation and explained through mode-coupling
theory [29]. That slow process was related to structural freezing
and was predicted to increase strongly in the supercooled
state. Sophisticated neutron scattering experiments proved the
existence of this slow relaxation process near the melting
point [30] and a later investigation showed that this slow
process disappears at about T ≈ 400 K ≈ 1.3Tmelting [31].
Furthermore, the amplitude S(Q,ω = 0) is interrelated to a
generalized longitudinal viscosity coefficient ηl(Q). The lon-
gitudinal viscosity is a measure for the diffusion of momentum
parallel to the velocity of the particles and can be regarded
as being sensitive to atomic-level stress correlations, in our
case, on next neighbor distances. The evaluation of ηl(Q)
showed a steplike increase of the generalized viscosity with
decreasing temperature at around 400 K [26]. In addition, MD
simulations of generalized viscosities at the structure factor
maximum confirmed that increase with decreasing temperature
[32]. The increase in generalized viscosity and the increase
of the amplitude S(Q0,ω = 0), related to the set-in of an
additional slow relaxation process, are evidence for a change in
the dynamics to a more viscous, solid-like state upon cooling at
around 400–450 K, in a temperature range of about 1.3Tmelting.
These pieces of evidence for a change in liquid dynamics on an
atomic length scale provoke the question of whether changes
exist in thermodynamic and transport coefficients in the same
temperature range.

Many studies on violations of the SE relation and changes
in liquid dynamics are based on MD simulations. However, for
liquid rubidium a wealth of experimental data of macroscopic
transport parameters exists [7,9]. Rubidium has a suitable
coherent cross section for neutrons and only a negligible in-
coherent scattering cross section [33], which provided perfect
conditions to study collective dynamics and in particular the
coherent excitations in a simple liquid metal in detail over
the past decades; see for example [34–39]. Collective data
have been obtained over a wide range of temperatures, yet
mostly in coarse temperature steps. The observation of well-
defined inelastic excitations over a wide range in wave numbers
initiated theoretical investigations based on mode coupling
theory [40,41]. Due to the neutron scattering properties of
the rubidium nucleus no self-dynamics experimental data are
available and simulations are the only source for this infor-
mation. The availability of a reliable pseudopotential, which
described structure and then dynamics quite well, prompted
many classical MD simulation studies; see for example [42–
47]. Later on first-principles methods have also been applied
to simulate liquid rubidium [48–50].

Here we present changes in macroscopic transport parame-
ters of liquid rubidium cast in the SE relation over a temperature
range up to twice the melting temperature. We complement
the available experimental shear viscosity coefficients with
data from a classical molecular dynamics (MD) simulation,
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which provides access to the not experimentally available self-
dynamics. The average relaxation time of density fluctuations
at next neighbor distances is obtained in small temperature
steps from neutron scattering and is then connected with the
simulated self-diffusion coefficient. This relation highlights the
importance of correlated particle movements when changes in
the dynamics are discussed.

II. COMPUTATIONAL AND EXPERIMENTAL DETAILS

We carried out a set of MD simulations to complement the
neutron scattering results. Structural and dynamical properties
of liquid alkali metals have been successfully predicted via
classical MD simulations using effective potentials [51–53].
As in our earlier study of liquid rubidium [32], we adopt
the widely used Price potential [42,53,54]. Price’s potential
is an effective, density-dependent potential based on a local
pseudopotential [55], which describes the bare electron-ion
interaction [56], and a dielectric function d(k), which describes
conduction-electron screening [57]. The potential has the
following form:

v(r) = (Ze)2

r

[
1 − 2

π

∫ ∞

0
dk

sin(kr)

k
cos2(krc)

d(k) − 1

d(k)

]
,

(3)

where Ze is the ion charge, and rc = 2.40 Å represents the ra-
dius of the ion core. For d(k) we use the form described by Price
et al. [54]. Comparing with the more common Lennard-Jones
potential, Price’s potential shows small oscillations; it is softer
and short ranged. These small differences produce substantial
changes in the propagation of the density fluctuations in the
liquid at wavelengths comparable to the inter-ion distance.
The parameters that characterize the potential are the particle
density (ρ), the first zero of the potential (σ ), and the depth
of the potential (ε). The system size was increased eight
times with respect to the previous paper [32] to a number
of 6912 atoms. The cubic box size has been adjusted to the
experimental density, which was kept fixed, so the simulated
system belongs to the microcanonical ensemble. The equation
of motion of all particles were integrated using the Verlet
algorithm with an integration step δt = 5 fs. The potential
was set to zero for distances greater than rcut = 5.5σ . This
large cutoff distance and the fine time step allowed a quite
satisfactory energy conservation, even in rather long runs.
Equilibration took at least 1 ns and up to 2 ns at the lower
temperatures. Averages were taken over multiple runs, each
0.5 ns long at each temperature. The number of runs ranged
from 4 at T = 600 K to 12 at 315 K. We analyzed the static
and dynamical properties of liquid rubidium at ten different
temperatures starting from the supercooled region T = 280 to
600 K, almost twice as large as the melting point. A homemade
software package was used for the simulations, which has been
continuously extended over the past decades.

We chose the wave vectors Q = (Qx,Qy,Qz) such that
Qi = ni

2π
L

, i = (x,y,z) with ni integer. The system size al-

lowed us to reach a minimum wavelength of roughly 0.07 Å
−1

,
well in the hydrodynamic regime. For a given wave vector
Q the physical properties calculated during the simulations
are averages on all the possible orientations of Q. For each

temperature we can evaluate structural and dynamical proper-
ties. Directly from the MD simulations, at each time t , we
obtain the positions of each rubidium particle [rj (t), j =
1 . . . N]. Knowing the time evolution of the configurations, we
evaluate F (Q,t) as a correlation function of the space Fourier
transform of the density n(Q,t):

F (Q,t) = 〈n∗(Q,τ )n(Q,t + τ )〉, (4)

where

n(Q,t) = 1√
N

N∑
j=1

ei Q·r̄j (t); (5)

〈· · · 〉 indicates the average over many different initial condi-
tions τ and over many different Q vectors of magnitude Q. We
obtain the intermediate scattering function F (Q,t), from which
we determine its spectrum S(Q,ω), the dynamical structure
factor. The same procedure applies to the self-dynamics.

On a microscopic length scale the diffusion coefficient D is
related through a Green-Kubo relation with the velocity auto-
correlation function Z(t) = 1

3 〈v(t) · v(0)〉 of a tagged particle
[4]:

D = 1

3

∫ ∞

0
〈v(t) · v(0)〉dt =

∫ ∞

0
Z(t)dt. (6)

The initial value is Z(0) = kBT
m

with kB the Boltzmann con-
stant, T the temperature, and m the mass of the particle.
The diffusion coefficient can also be determined from the
long-time limit of the mean-squared displacement of a tagged
particle:

D = lim
t→∞

〈| ri(t) − ri(0) |2〉
6t

. (7)

We actually exploited both methods, also averaging over the
three independent components of displacement and velocity.
The D values agree within 1%, which can be regarded as the
measure for uncertainty.

To demonstrate the good agreement between the modeled
rubidium and experimental data we show in Fig. 1 the structure
factor of liquid rubidium near the melting point from x-ray

FIG. 1. A comparison between the experimental and the simu-
lated structure factor S(Q) near the melting point is presented.
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FIG. 2. Experimental spectra S(Q0 = 1.5 Å
−1

,ω) (full symbols)
and the spectra from the MD simulation (open symbols) demonstrate
the high quality of agreement between experiment and simulation on
an absolute intensity scale.

scattering, neutron scattering [7], and our simulations. There
is a nearly perfect agreement concerning the structure. Figure 2
shows S(Q0,ω) spectra at 320 K and 500 K from neutron
data [31] compared with the simulated spectra of the dynamic
structure factor. These are absolute normalized spectra without
any scaling factor between them. The widths of both spectra are
practically identical; however, the amplitude of the simulated
spectrum at low temperature is slightly larger. There might be
some averaging in the measured spectrum due to a necessary
integration in momentum space, which might explain the
differences in the height of the spectra near the melting point.
At higher temperature the spectra amplitude agree perfectly,
probably because the structure factor peak is already not so
sharp anymore.

The coherent dynamic structure factor S(Q,ω) of liquid
rubidium has been measured by neutron scattering. Rubidium
is a nearly coherent scatterer with an incoherent contribution
of less than 0.04 barns compared to the coherent cross section
of 6.24 barns [33]. Three experiments with differing energy
resolutions have been performed to follow the changes in
dynamics at the structure factor maximum. A first series of
experiments has been performed at the three-axis spectrometer
with the multi-analyzer-detector unit of the Forschungsreaktor
München (FRM) [58]. Constant-Q scans at thirteen tem-
peratures have been measured with an energy resolution
of FWHM = 1.3 meV. A second series of experiments has
been performed at the thermal three-axis spectrometer IN3 at
the Institute Laue Langevin, Grenoble. At a final energy of
14.66 meV an energy resolution of FWHM = 0.8 meV was
obtained. A third series of experiments was undertaken at the
IRIS spectrometer of the ISIS Facility. A configuration with
an end energy of 7.38 meV was chosen, which provided an
excellent energy resolution of FWHM = 0.055 meV. More ex-
perimental details, also about multiple scattering corrections,
can be found in [26,31]. Figure 3 illustrates the change of the
spectral amplitude with rising temperature. From 320 K to 400
K the amplitude changes about twice as much as between 400
K and 550 K, indicating a change in relaxation dynamics at
next neighbor distances with rising temperature.

FIG. 3. Three experimental spectra S(Q0,ω = 0) are shown to
demonstrate the changes in amplitude with rising temperature [31].
From 320 K to 400 K the amplitude changes about twice as much as
between 400 K and 550 K.

III. RESULTS AND DISCUSSION

At first we will consider macroscopic transport parameters
of liquid rubidium and how the resulting SE relation evolves
with temperature. In Fig. 4 the experimental values for the
macroscopic shear viscosity η are depicted [7]. These data
are tabulated in a critical review of all available experimental
data. Typical uncertainties for the experimental viscosity in
the lower temperature range are given as 3% [59]. It exhibits
a smooth decay with increasing temperature. Our simulated
shear viscosity data show a good agreement with the exper-
imental data. The inset plots the slope dη

dT
of the viscosity

which indicates a change in a temperature range around 450 K
with a stronger viscosity decrease below 450 K. It has been
noticed that the density in liquid rubidium also changes in
a nonlinear way. The temperature dependence of the density
is directly related to the thermal expansion coefficient. The
thermal expansion coefficient of liquid rubidium shows an
identical change with rising temperature at about 450 K [60].
The shear viscosity η can be represented through the stress

FIG. 4. The experimental shear viscosity η (circles) of liquid
rubidium is plotted. The inset shows the numerically derived slope
of the experimental viscosity data. Included are the results from the
viscosity calculation from our MD simulation.
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FIG. 5. The figure shows the temperature dependence of the diffu-
sion coefficient D from experiment [9,61] as a line and open symbols.
In comparison MD simulation literature results from Balucani et al.
(triangles up), Wax et al. (circles), and Bertolini et al. (triangles
down) [32,47,62] are added. As stars our diffusion coefficients are
included. The inset shows our simulated D values in an Arrhenius-type
presentation.

tensor autocorrelation function [4,15]:

η = 1

kBT V

∫ ∞

0
〈σxz(t)σxz(0)〉dt =

∫ ∞

0
η(t)dt. (8)

The microscopic stress tensor can be written as

σxz(t) =
N∑

i=1

[
mvx

i (t)vz
i (t) + xi(t)F

z
i (t)

]
. (9)

Here Fi is the total force on atom i, which is given by the
gradient of the pair potential. The two terms are related to a
contribution of the kinetic energy through the displacement
of the atoms and one part from the potential energy through
the interaction potential. From the microscopic definition it can
been seen that the stress tensor describes the flow of momentum
in the liquid and hence the viscosity is the Green-Kubo integral
of the autocorrelation function of the momentum flux. The
correlations of the stress tensor fluctuations decrease strongly
in a temperature range up to about 500 K and then change
the gradient. In the same temperature range the correlated
fluctuations of volume and entropy, represented through the
thermal expansion coefficient, increase strongly [60], and
above 500 K the increase of the thermal expansion coefficient
changes distinctly to a quite modest value. Both macroscopic
parameters indicate through their changes of fluctuations a
change in dynamics in the liquid.

In Fig. 5 experimental and simulation results for the self-
diffusion coefficient D of liquid rubidium are depicted. The
experimental data have been obtained by analyzing isotope
enrichment through electrotransport [9,61]. The temperature
dependence within the experiment has and can be described by
an Arrhenius process D = (6.6 ± 1.1) × 10−4 exp(−8290 ±
670/[8.314T ]) cm2

s . The relative errors for the diffusion co-
efficient are therefore in a range of 10–15 %. Through the
open symbols three experimental data points taken from the
publication are denoted [61]. Classical MD simulated data
agree quite well with the experimental values [32,47,62]. Un-
fortunately, the experimental data are of limited use concerning

FIG. 6. The SE relation Dη is plotted over temperature. The high-
temperature linear fit is extrapolated to lower temperatures to indicate
the SE relation violation. Included as a dashed line is also a fit with
a fractional behavior. The triangles denote Dη obtained through MD
simulation data.

the available temperature range and due to non-negligible error
bars. Included in the figure are our results for D from the MD
simulation (stars). They agree quite well with previous MD
simulation results from different groups with slightly different
potential implementations. Also the overall agreement with
the experimental values is quite good, which suggests that the
self-dynamics is well described by the simulation. Note that the
two lower temperatures have been obtained in the supercooled
state of rubidium. In the inset we plot the simulation results
of D on a logarithmic scale against the inverse temperature.
Nachtrieb surveyed a range of liquid metals and concluded
that an Arrhenius-type temperature dependence as well as a
linear T dependence describe the diffusion coefficients equally
well [63]. For an Arrhenius-type behavior one would expect
a linear dependence, depicted through the line, which was
fitted through the four high-temperature points. Therefore the
departure of the low-temperature D values from the expected
linear behavior could be regarded as evidence that the dynamics
may change in a temperature range around 400 K. On the other
side reports exist that diffusion coefficients in liquid metals
can be described with a power-law temperature dependence
and not with an Arrhenius-type behavior. For example, liquid
lead diffusion was described by a D = AT 2 law [64]. Hence
a non-Arrhenius behavior of the diffusion coefficient alone
might not indicate a change in the dynamics.

In Fig. 6 the SE relation is presented in the following form:
Dη ∝ T . Here the tabulated shear viscosity data [7] and the
interpolated diffusion coefficients D from our MD simulation
are used. The SE relation predicts a linear temperature de-
pendence, which is obviously not fulfilled. The viscosity falls
with temperature faster than the diffusion coefficient increases
which results in a sublinear increase of the product. The
high-temperature points have been fitted with a line which is
extended to lower temperatures to demonstrate the deviations
from the SE relation within the data. Note that a fit with a
fractional temperature behavior Dη ∝ T γ with a γ 
= 1 is able
to fit the temperature dependence with a power of 0.92 quite
reasonably, although not perfectly (dashed line). The arrow
in the figure indicates where the SE relation starts to deviate
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FIG. 7. The amplitude S(Q0,ω = 0) at the structure factor max-
imum is plotted over temperature. The different symbols relate to 3
different measurements [26,31]. The error bars are equal to or smaller
than the symbol size. The inset shows 3 spectra to demonstrate the
changes in amplitude with rising temperature. The line is a fit through
the high-temperature points and serves as a guide to the eye.

from the high-temperature expected values. Note a linear fit
of the low-temperature values extrapolates to zero value of the
SE relation near zero K, whereas the high-temperature linear
extrapolated fit deviates from zero value. Included as triangles
are the values for the SE relation derived from pure MD
simulation data. The MD-data-derived SE relation indicates a
strong deviation from the expected linear behavior in a similar
temperature range.

To identify changes in the dynamics on an atomic length
scale a viable option is to look for density fluctuations at
nearest neighbor distances. The slowest dynamics for density
fluctuations is expected at the structure factor maximum. This
slowing down in liquid dynamics at nearest neighbor distances
is well known as de Gennes narrowing [65]. De Gennes derived
the frequency moments for the scattering function and found
that the normalized second moment is given by �2

0 = kBT Q2

mS(Q) .
The moments are a measure of the spread of the spectra and
show according to the calculation a decrease of the width when
the structure factor S(Q) reaches its maximum, a reflection of
how atomistic structure influences the dynamics. In a simple
picture, in a dense liquid it costs time for a density fluctuation
to relax on a next neighbor length scale due to a necessary
rearrangement of the surrounding particles. That momentum
transfer is ideal to study structural relaxation on an atomic
length scale.

In Fig. 7 the amplitude S(Q0,ω = 0) is plotted, where

Q0 = 1.52 Å
−1

denotes the structure factor maximum of liquid
rubidium. We analyzed the amplitude at the structure factor
maximum S(Q0,ω = 0) from three different measurements
on liquid rubidium, all three performed with different energy
resolution [26,31]. The error bars for determining the ampli-
tudes are smaller than the symbol size. Nevertheless, all data
sets agree quite well. The inset illustrates the change of the
spectral amplitude with rising temperature. From 320 K to
400 K the amplitude changes about twice as much as between
400 K and 550 K. With increasing temperature the amplitude
S(Q0,ω = 0) decreases in a continuous but nonlinear way.
This change was emphasized through a linear fit through

the high-temperature points above 400 K. Such a linear fit
has no theoretical basis and is merely a guide to the eye.
However, there is obviously a change in the slope around
T ≈ 400 K. Because we are probing structural relaxations at
nearest neighbor distances that change in dynamics is evidence
for a change in the local dynamics of density fluctuations.
Formally, S(Q0,ω = 0) is related to the intermediate scattering
function F (Q,t) through a Fourier transform:

S(Q0,ω = 0) = 1

2π

∫ ∞

−∞
F (Q0,t) exp(−iωt)dt |ω=0

= 1

π

∫ ∞

0
F (Q0,t)dt. (10)

The latter term is the area under the relaxation curve and can
be used as a definition for an average relaxation time 〈τ 〉. An
estimate for an average relaxation time 〈τ 〉 of F (Q,t) can be
obtained through [66]

〈τ 〉 =
∫ ∞

0
dt

〈n∗(Q,t),n(Q,0)〉
〈n∗(Q,0),n(Q,0)〉

=
∫ ∞

0 dtF (Q,t)

S(Q)
= πS(Q0,ω = 0)

S(Q0)
. (11)

For an exponential decay of the intermediate scattering func-
tion this expression is exact. Within the glass transition liter-
ature a similar expression for a stretched exponential decay
has long been used to characterize the relaxation dynamics.
The average relaxation times are depicted in Fig. 8(a) on
a logarithmic scale versus the inverse temperature. For the
temperature-dependent structure factor S(Q0) interpolated
values from the table in [26] have been applied.

If a single relaxation process dominates, then the points
should be lying on a single line in this Arrhenius-type plot.
The two lines are linear fits of the high and low temperature
region to emphasize the changes. As evidenced through the two
lines a change in relaxation dynamics occurs in the temperature
range of T ≈ 450 K. In Fig. 8(b) we plot relaxation times
obtained from a fit to the S(Q,ω) spectra. A simple Lorentzian
curve was used to fit the data, neglecting further line-shape
details near the melting point [31]. At higher temperatures the
tails of the spectra are reaching beyond the experimentally
available dynamic range of the spectrometers, which might
influence the fit results. Both methods deliver similar values
for the relaxation of density fluctuations at the structure factor
maximum. Also the relaxation times τ in Fig. 8(b) show a
non-Arrhenius behavior with a changing slope around 450 K
(see arrow). Included in the figure are relaxation times of the
self-dynamics at the structure factor maximum τs(Q0) and
from the collective movements τ (Q0) from the MD simulation.
The self-intermediate scattering function Fs(Q0,t) and the
intermediate scattering function F (Q0,t) have been fitted by
a stretched exponential F (Q,t) = exp[−(t/τ )β]. The power
β changes with temperature from 0.8 for the self-dynamics
and 0.92 for the collective dynamics at melting temperature
to 1 around 400 K. That transformation from a stretched
exponential to an exponential decay agrees very well with a
previous analysis of experimental F (Q,t) data [31]. The two
lowest temperature points are simulated in the supercooled
state of rubidium and do not show any evidence of a changing
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(a)

(b)

FIG. 8. The logarithm of the average relaxation time 〈τ 〉 is plotted
in panel (a) against the inverse temperature in an Arrhenius-type plot.
The straight lines are fits for the respective temperature ranges and
are guides for the eye to emphasize the change in dynamics with
increasing temperature around 450 K. In panel (b) the relaxation times
τ (Q0) are plotted extracted from Lorentzian fits to the S(Q,ω) spectra.
Error bars are smaller than symbol size. In addition, the relaxation
time τs(Q0) (circles) and τ (Q0) (stars) from the self-intermediate
correlation function and from the intermediate correlation function
from the MD simulation is plotted. Note the lowest two temperatures
in the simulation are in the supercooled state. The arrows indicate
temperature ranges where the dynamics appear to change.

dynamics when the melting point is crossed. The relaxation
times from the self-dynamics indicate only a weak deviation
from a linear temperature dependence on this Arrhenius plot
(indicated as an arrow). The relaxation times τ (Q0) agree well
with the experimental data despite the different methods with
which they have been obtained. The relaxation times from
the simulated intermediate scattering function F (Q0,t) deviate
from a linear Arrhenius behavior and the deviations can be
located in the same temperature range where the experimental
data show a deviation. The correlated movements, as given
through the average relaxation time 〈τ 〉 and the relaxation times
τ (Q0), are a much more explicit indicator for the changes in
the dynamics than the self-dynamics. The average relaxation
time 〈τ 〉 is identical to our measured amplitude S(Q0,ω = 0)
and can be interpreted as an average decay time of density

(a)

(b)

FIG. 9. In panel (a) the SE relation is plotted in the form D〈τ 〉
over temperature. A linear temperature dependence is expected, which
is clearly violated. In panel (b) the SE relation is plotted in the form
D〈τ 〉/T over temperature. A constant value is expected which appears
to deviate around 400–450 K.

fluctuations on next neighbor distances. It might be understood
as the average time a particle is associated with its nearest
neighbors.

Now with access to an average structural relaxation time
we can test the second form for the SE relation according
to Dτ ∼ T , relating the macroscopic diffusivity with a mi-
croscopic relaxation time. Note that the average relaxation
time is obtained from coherent neutron scattering and hence
describes correlated particle dynamics as the viscosity does. In
Fig. 9(a) the SE relation is plotted according to Dτ ∝ T . The
scatter of the points is related to the variation of the average
relaxation times from the three different measurements (see
Fig. 7). The expected linear temperature dependence is clearly
violated at a temperature of around 400 K. The product of Dτ

has units of a length squared and can be regarded as the squared
distance a particle moves during the average relaxation time.
Near the melting point a particle moves about 0.8 Å during
the average relaxation time, which corresponds to about 20%
of a hard sphere diameter of rubidium. That consideration
suggests that between melting point and about 400 K the caged
particle increases its mobility within the average relaxation
time more than at higher temperatures. In Fig. 9(b) the SE
relation is plotted in a different form according to Dτ/T ∝
constant. The data points suggest the relation is constant up to a
temperature range of about 400–450 K. At higher temperatures
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the data points deviate from the expected constant value and
demonstrate the breakdown of the SE relation.

All forms of the SE relation demonstrate a violation with
increasing temperature in the equilibrium liquid state of ru-
bidium. The first form is based on experimental macroscopic
transport parameters and exhibits an anomalous behavior
around 400 K (see Fig. 6). The second and third forms com-
bine macroscopic diffusion coefficients with a microscopic
structural relaxation time and show a violation around 450 K
(see Fig. 9). All forms combine a single particle quantity,
the diffusion coefficient, with a quantity related to correlated
movements of particles, in one case the macroscopic shear
viscosity and in the second case an average relaxation time
of density fluctuations on a next neighbor distance. The
microscopic relaxation time itself shows a departure from
a simple Arrhenius-type behavior. That change in collective
dynamics on an atomistic length scale might be the origin for
the anomalous behavior of the SE relations.

Further evidences exist for microscopic changes in the
dynamics. Previous investigations showed an increase of the
generalized longitudinal viscosity in this temperature range
upon cooling in experiment and MD simulation [26,32]. That
viscosity increase can be understood that liquid rubidium
dynamics changes from a high-temperature fluid-like behavior
to a more viscous state below that crossover temperature range.
One can conclude that the liquid state of liquid rubidium
demonstrates distinct changes in the dynamics reflecting a
more viscous and a more fluid liquid state. Note that these
changes cannot be traced back to the formation of structural
motifs, like icosahedrons, inside liquid rubidium [67] and
hence must be linked to changes in the dynamics.

Changes in the dynamics above the liquidus temperature
in liquid metals and alloys have been reported more recently.
With MD simulations on CuZr2 a violation of the SE relation
has been demonstrated at several hundred degrees above the
melting point [22]. Similar observations have been reported
in a MD simulation of a CuZrAl alloy [24]. Also ab initio
based simulations on Al-rich alloys reported a breakdown of
the SE relation in the liquid phase [25]. On the experimental
side there are not many reports for liquid metals and alloys
covering a wide enough temperature range to challenge the SE
relation. Brillo et al. reported a violation of the SE relation
over a wide temperature range above the melting point [21].
Schober pointed out that collective motions are at the origin
of the breakdown of the SE relation there [68]. In a MD
simulation study on a CuZr liquid alloy the observed dynamic
heterogeneity was linked to collective stringlike motions and
this suggestion supports the view that collective motions are
at the center for changes in the dynamics [69]. Our data on the
microscopic structural relaxation time of density fluctuations
(see Fig. 8) demonstrate that the change in collective dynamics
is at the origin of the violation of the SE relation.

Even though the origin of changes in the dynamics might
lie with correlated movements in the liquid there will be signs
of these changes in the self-dynamics. There is evidence for a
change in dynamics in that temperature range from studies
on the self-dynamics of a tagged particle [see Fig. 8(b)].
The self-dynamics of the liquid alkali metal sodium has been
studied thoroughly from melting point up to the critical point
[70]. The dynamics with changing density can be described as

FIG. 10. The normalized amplitudes S(Q,ω = 0) of liquid alu-
minium, lead, and rubidium are plotted against a normalized
temperature.

a competition between mode coupling effects, where near the
melting point the coupling to density fluctuations slows down
the diffusive process and at high temperature the coupling
to transverse excitations increases the diffusion process. A
gradual thermal crossover was suggested from a cage-effect-
dominated regime to one characterized by a vortex pattern
around the tagged particle [71]. The crossover between these
two processes was estimated to be around 1.3Tm [72] for liquid
sodium, further evidence that the dynamics in liquid metals
change in a temperature region of 1.3–1.5 Tm.

These reports raise the question of whether the changes
in dynamics are a universal feature of metals and alloys. In
Fig. 10 we plot the normalized amplitudes S(Q0,ω = 0) for
liquid aluminium, lead, and rubidium. These amplitudes are
normalized to their respective value at the melting point and
the temperature has also been renormalized to the melting
temperature. There is a nearly perfect agreement on how
the dynamics at the structure factor maximum changes with
rising temperature. All three metals agree on the normalized
amplitude value and all three demonstrate a change with rising
temperature in the range of 1.3–1.5 Tm. We interpret this agree-
ment as strong support for a universal character of the changes
in liquid metal dynamics above the melting temperature.

IV. CONCLUSIONS

The SE relation of liquid rubidium has been scrutinized over
a temperature range between melting point and about twice Tm

to search for potential violations in the liquid state. Previous
studies indicated a change in dynamics from a more viscous
liquid metal to a fluid-like liquid state at about T = 1.3–1.5 Tm

in liquid rubidium. To this end an extensive classical MD
simulation has been performed over the whole temperature
range and also into the undercooled state to complement the
available experimental data. From the simulation the self-
dynamics has been extracted, which is not accessible from
the experiment. The combination of experimental viscosity
data and simulated diffusion coefficients, the SE relation,
demonstrates a deviation of the expected linear temperature
behavior at around T ≈ 400 K ≈ 1.3Tm. This observation is
based on macroscopic transport parameters.
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On a microscopic scale the amplitude of the dynamic struc-
ture factor S(Q0,ω = 0), related to correlated dynamics on
next neighbor distances, changes its slope. From this amplitude
an average relaxation time can be derived which could be
understood as the mean time a caged particle stays within its
environment of next neighbors. The average relaxation time
of density fluctuations at this momentum transfer exhibits
a non-Arrhenius behavior with a changing slope at around
T ≈ 450 K. A SE relation formulated as a product of the
single particle diffusion coefficient with that microscopically
derived average relaxation time from collective particle move-
ments demonstrates a distinct change at a temperature of
about T ≈ 1.3Tm. These changes signal a transition between
different dynamical regimes in liquid rubidium deep within the
equilibrium liquid state. Hence, the origin for this crossover
in dynamics might be found in changes of the collective
dynamics, in particular, in the dynamics on a next neighbor
distance.

In the same temperature range a decrease of a generalized
longitudinal viscosity was observed upon heating. All these
observations can be summarized that liquid rubidium shows

two different dynamical regimes, a low-temperature more vis-
cous one and a high-temperature more fluid one separated by a
crossover region between 1.3Tm and 1.5Tm. A similar behavior
in the amplitude and generalized viscosity was observed in
liquid lead and aluminium [27,28]. A comparison of diffusion
coefficients for a range of liquid alloys and metals evidences a
dynamical crossover at a temperature in the liquid state [73],
which might be compatible with the findings here.

After appropriate normalization the amplitudes of liquid
aluminium, lead, and rubidium show a remarkable agreement
in their temperature dependence and suggest a universal
dynamic behavior. Whether such a thermal crossover from
a more solid-like to a fluid-like response in the equilibrium
liquid state is universal in liquid metals and alloys needs further
investigations.

ACKNOWLEDGMENTS

Gratefully we acknowledge C. Morkel and W. C. Pilgrim
for helpful discussions. This work was partially supported by
the Science and Technology Facilities Council (STFC).

[1] P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259
(2001).

[2] A. Einstein, Ann. Phys. 17, 549 (1905).
[3] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon

Press, New York, 1959).
[4] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic Press, London, 2006).
[5] R. Mazo, Brownian Motions (Clarendon Press, Oxford, 2001).
[6] M. Cappelezzo, C. A. Capellari, S. H. Pezzin, and L. A. F.

Coehlo, J. Chem. Phys. 126, 224516 (2007).
[7] E. E. Shpilrain, K. A. Yakimovich, V. A. Fomin, S. N. Skovorod-

jko, and A. G. Mozgovoi, in Handbook of Thermodynamic and
Transport Properties of Alkali Metals, edited by R. W. Ohse
(Blackwell Scientific Publications, Oxford, 1985).

[8] J. J. van Loef, Physica 75, 115 (1974).
[9] M. Gerl and A. Bruson, in Handbook of Thermodynamic and

Transport Properties of Alkali Metals, edited by R. W. Ohse
(Blackwell Scientific Publications, Oxford, 1985).

[10] R. Zwanzig, J. Chem. Phys. 79, 4507 (1983).
[11] R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).
[12] U. Balucani, G. Nowotny, and G. Kahl, J. Phys.: Condens. Matter

9, 3371 (1997).
[13] U. Balucani and M. Zoppi, Dynamics of the Liquid State

(Clarendon Press, Oxford, 1994).
[14] Z. Shi, P. G. Debendetti, and F. H. Stillinger, J. Chem. Phys. 138,

12A526 (2013).
[15] U. Balucani, R. Vallauri, and T. Gaskell, Phys. Rev. A 37, 3386

(1988).
[16] K. R. Harris, J. Chem. Phys. 131, 054503 (2009).
[17] S. R. Becker, P. H. Poole, and F. W. Starr, Phys. Rev. Lett. 97,

055901 (2006).
[18] L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. Buldyrev, and H. E.

Stanley, Nat. Phys. 5, 565 (2009).
[19] J. A. Hodgdon and F. Stillinger, Phys. Rev. E 48, 207 (1993).
[20] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).

[21] J. Brillo, A. I. Pommrich, and A. Meyer, Phys. Rev. Lett. 107,
165902 (2011).

[22] X. J. Han and H. R. Schober, Phys. Rev. B 83, 224201
(2011).

[23] X. J. Han, J. G. Li, and H. R. Schober, J. Chem. Phys. 144,
124505 (2016).

[24] A. Jaiswal, T. Egami, and Y. Zhang, Phys. Rev. B 91, 134204
(2015).

[25] N. Jakse and A. Pasturel, Phys. Rev. B 94, 224201 (2016).
[26] F. Demmel, A. Diepold, H. Aschauer, and C. Morkel, Phys. Rev.

B 73, 104207 (2006).
[27] F. Demmel, W. S. Howells, and C. Morkel, J. Phys.: Con-

dens. Matter 20, 205106 (2008); F. Demmel, W. S. How-
ells, C. Morkel, and W. C. Pilgrim, Z. Phys. Chem. 224, 83
(2010).

[28] F. Demmel, A. Fraile, D. Szubrin, W. C. Pilgrim, and C. Morkel,
J. Phys.: Condens. Matter 27, 455102 (2015).

[29] U. Balucani and R. Vallauri, Phys. Rev. A 40, 2796 (1989).
[30] F. Demmel, P. Fouquet, W. Häussler, and C. Morkel, Phys. Rev.

E 73, 032202 (2006).
[31] F. Demmel and C. Morkel, Phys. Rev. E 85, 051204 (2012).
[32] D. Bertolini, F. Demmel, and A. Tani, Phys. Rev. B 76, 094204

(2007).
[33] L. Köster, K. Knopf, and W. Waschkowski, Z. Phys. A 301, 215

(1981).
[34] J. R. D. Copley and J. M. Rowe, Phys. Rev. Lett. 32, 49

(1974).
[35] R. Winter, W. C. Pilgrim, F. Hensel, C. Morkel, and W. Gläser,

J. Non-Cryst. Solids 156–158, 9 (1993).
[36] P. Chieux, J. Dupuy-Philon, J. Jal, and J. B. Suck, J. Non-Cryst.

Solids 205–207, 370 (1996).
[37] W. C. Pilgrim, M. Ross, L. H. Yang, and F. Hensel, Phys. Rev.

Lett. 78, 3685 (1997).
[38] G. Pratesi, J. B. Suck, and P. A. Egelstaff, J. Non-Cryst. Solids

250–252, 91 (1999).

062124-9

https://doi.org/10.1038/35065704
https://doi.org/10.1038/35065704
https://doi.org/10.1038/35065704
https://doi.org/10.1038/35065704
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1063/1.2738063
https://doi.org/10.1063/1.2738063
https://doi.org/10.1063/1.2738063
https://doi.org/10.1063/1.2738063
https://doi.org/10.1016/0031-8914(74)90295-X
https://doi.org/10.1016/0031-8914(74)90295-X
https://doi.org/10.1016/0031-8914(74)90295-X
https://doi.org/10.1016/0031-8914(74)90295-X
https://doi.org/10.1063/1.446338
https://doi.org/10.1063/1.446338
https://doi.org/10.1063/1.446338
https://doi.org/10.1063/1.446338
https://doi.org/10.1103/PhysRevA.2.2005
https://doi.org/10.1103/PhysRevA.2.2005
https://doi.org/10.1103/PhysRevA.2.2005
https://doi.org/10.1103/PhysRevA.2.2005
https://doi.org/10.1088/0953-8984/9/16/009
https://doi.org/10.1088/0953-8984/9/16/009
https://doi.org/10.1088/0953-8984/9/16/009
https://doi.org/10.1088/0953-8984/9/16/009
https://doi.org/10.1063/1.4775741
https://doi.org/10.1063/1.4775741
https://doi.org/10.1063/1.4775741
https://doi.org/10.1063/1.4775741
https://doi.org/10.1103/PhysRevA.37.3386
https://doi.org/10.1103/PhysRevA.37.3386
https://doi.org/10.1103/PhysRevA.37.3386
https://doi.org/10.1103/PhysRevA.37.3386
https://doi.org/10.1063/1.3183951
https://doi.org/10.1063/1.3183951
https://doi.org/10.1063/1.3183951
https://doi.org/10.1063/1.3183951
https://doi.org/10.1103/PhysRevLett.97.055901
https://doi.org/10.1103/PhysRevLett.97.055901
https://doi.org/10.1103/PhysRevLett.97.055901
https://doi.org/10.1103/PhysRevLett.97.055901
https://doi.org/10.1038/nphys1328
https://doi.org/10.1038/nphys1328
https://doi.org/10.1038/nphys1328
https://doi.org/10.1038/nphys1328
https://doi.org/10.1103/PhysRevE.48.207
https://doi.org/10.1103/PhysRevE.48.207
https://doi.org/10.1103/PhysRevE.48.207
https://doi.org/10.1103/PhysRevE.48.207
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/PhysRevLett.107.165902
https://doi.org/10.1103/PhysRevLett.107.165902
https://doi.org/10.1103/PhysRevLett.107.165902
https://doi.org/10.1103/PhysRevLett.107.165902
https://doi.org/10.1103/PhysRevB.83.224201
https://doi.org/10.1103/PhysRevB.83.224201
https://doi.org/10.1103/PhysRevB.83.224201
https://doi.org/10.1103/PhysRevB.83.224201
https://doi.org/10.1063/1.4944081
https://doi.org/10.1063/1.4944081
https://doi.org/10.1063/1.4944081
https://doi.org/10.1063/1.4944081
https://doi.org/10.1103/PhysRevB.91.134204
https://doi.org/10.1103/PhysRevB.91.134204
https://doi.org/10.1103/PhysRevB.91.134204
https://doi.org/10.1103/PhysRevB.91.134204
https://doi.org/10.1103/PhysRevB.94.224201
https://doi.org/10.1103/PhysRevB.94.224201
https://doi.org/10.1103/PhysRevB.94.224201
https://doi.org/10.1103/PhysRevB.94.224201
https://doi.org/10.1103/PhysRevB.73.104207
https://doi.org/10.1103/PhysRevB.73.104207
https://doi.org/10.1103/PhysRevB.73.104207
https://doi.org/10.1103/PhysRevB.73.104207
https://doi.org/10.1088/0953-8984/20/20/205106
https://doi.org/10.1088/0953-8984/20/20/205106
https://doi.org/10.1088/0953-8984/20/20/205106
https://doi.org/10.1088/0953-8984/20/20/205106
https://doi.org/10.1524/zpch.2010.6093
https://doi.org/10.1524/zpch.2010.6093
https://doi.org/10.1524/zpch.2010.6093
https://doi.org/10.1524/zpch.2010.6093
https://doi.org/10.1088/0953-8984/27/45/455102
https://doi.org/10.1088/0953-8984/27/45/455102
https://doi.org/10.1088/0953-8984/27/45/455102
https://doi.org/10.1088/0953-8984/27/45/455102
https://doi.org/10.1103/PhysRevA.40.2796
https://doi.org/10.1103/PhysRevA.40.2796
https://doi.org/10.1103/PhysRevA.40.2796
https://doi.org/10.1103/PhysRevA.40.2796
https://doi.org/10.1103/PhysRevE.73.032202
https://doi.org/10.1103/PhysRevE.73.032202
https://doi.org/10.1103/PhysRevE.73.032202
https://doi.org/10.1103/PhysRevE.73.032202
https://doi.org/10.1103/PhysRevE.85.051204
https://doi.org/10.1103/PhysRevE.85.051204
https://doi.org/10.1103/PhysRevE.85.051204
https://doi.org/10.1103/PhysRevE.85.051204
https://doi.org/10.1103/PhysRevB.76.094204
https://doi.org/10.1103/PhysRevB.76.094204
https://doi.org/10.1103/PhysRevB.76.094204
https://doi.org/10.1103/PhysRevB.76.094204
https://doi.org/10.1007/BF01416296
https://doi.org/10.1007/BF01416296
https://doi.org/10.1007/BF01416296
https://doi.org/10.1007/BF01416296
https://doi.org/10.1103/PhysRevLett.32.49
https://doi.org/10.1103/PhysRevLett.32.49
https://doi.org/10.1103/PhysRevLett.32.49
https://doi.org/10.1103/PhysRevLett.32.49
https://doi.org/10.1016/0022-3093(93)90121-D
https://doi.org/10.1016/0022-3093(93)90121-D
https://doi.org/10.1016/0022-3093(93)90121-D
https://doi.org/10.1016/0022-3093(93)90121-D
https://doi.org/10.1016/S0022-3093(96)00444-9
https://doi.org/10.1016/S0022-3093(96)00444-9
https://doi.org/10.1016/S0022-3093(96)00444-9
https://doi.org/10.1016/S0022-3093(96)00444-9
https://doi.org/10.1103/PhysRevLett.78.3685
https://doi.org/10.1103/PhysRevLett.78.3685
https://doi.org/10.1103/PhysRevLett.78.3685
https://doi.org/10.1103/PhysRevLett.78.3685
https://doi.org/10.1016/S0022-3093(99)00217-3
https://doi.org/10.1016/S0022-3093(99)00217-3
https://doi.org/10.1016/S0022-3093(99)00217-3
https://doi.org/10.1016/S0022-3093(99)00217-3


F. DEMMEL AND A. TANI PHYSICAL REVIEW E 97, 062124 (2018)

[39] F. Demmel, D. Pasqualini, and C. Morkel, Phys. Rev. B 74,
184207 (2006); F. Demmel, A. Diepold, H. Aschauer, and C.
Morkel, J. Non-Cryst. Solids 353, 3164 (2007).

[40] J. Bosse, W. Götze, and M. Lücke, Phys. Rev. A 18, 1176 (1978).
[41] L. Sjögren, Phys. Rev. A 22, 2866 (1980).
[42] A. Rahman, Phys. Rev. Lett. 32, 52 (1974).
[43] R. D. Mountain, Phys. Rev. A 26, 2859 (1982).
[44] U. Balucani, R. Vallauri, T. Gaskell, and M. Gori, Phys. Lett.

A 102, 109 (1984); U. Balucani, R. Vallauri, and T. Gaskell,
Phys. Rev. A 35, 4263 (1987).

[45] G. Kahl and S. Kambayashi, J. Phys.: Condens. Matter 6, 10897
(1994).

[46] D. Pasqualini, R. Vallauri, F. Demmel, Chr. Morkel, and U.
Balucani, J. Non-Cryst. Solids 250–252, 76 (1999).

[47] J. F. Wax, R. Albaki, and J. L. Bretonnet, Phys. Rev. B 65, 014301
(2001).

[48] F. Shimojo, Y. Zempo, K. Hoshino, and M. Watabe, Phys. Rev.
B 52, 9320 (1995); S. Munejiri, F. Shimojo, and K. Hoshino, J.
Phys.: Condens Matter 12, 4313 (2000).

[49] M. M. G. Alemany, J. L. Martins, and B. J. C. Cabral, J. Non-
Cryst. Solids 347, 100 (2004).

[50] A. Kietzmann, R. Redmer, F. Hensel, M. P. Desjarlais, and T. R.
Mattsson, J. Phys.: Condens Matter 18, 5597 (2006).

[51] R. D. Murphy and M. L. Klein, Phys. Rev. A 8, 2640 (1973).
[52] M. Silbert, in Liquid Metals, edited by R. Evans and D. A.

Greenwood, Institute of Physics Conference Series, Vol. 30
(Institute of Physics, Bristol, 1977), p. 72.

[53] D. L. Price, Phys. Rev. A 4, 358 (1971).
[54] D. L. Price, K. S. Singwi, and M. P. Tosi, Phys. Rev. B 2, 2983

(1970).
[55] W. A. Arrison, Pseudopotentials in the Theory of Metals (Ben-

jamin, New York, 1966).

[56] N. W. Ashcroft, Phys. Lett. 23, 48 (1966).
[57] K. Singwi, A. Sjölander, M. P. Tosi, and R. H. Land, Phys. Rev.

B 1, 1044 (1970).
[58] F. Demmel, A. Fleischmann, and W. Gläser, Nucl. Instrum.

Methods Phys. Res. Sect. A 416, 115 (1998).
[59] W. D. Weatherford, J. Robert, K. Johnston, and M. L. Valtierra,

J. Chem. Eng. Data. 9, 520 (1964).
[60] F. Demmel and C. Morkel, EPJ Web Conf. 151, 02002

(2017).
[61] S. J. Larsson, C. Roxbergh, and A. Lodding, Phys. Chem. Liq.

3, 137 (1972).
[62] U. Balucani, A. Torcini, and R. Vallauri, Phys. Rev. A 46, 2159

(1992).
[63] N. N. Nachtrieb, Adv. Phys. 16, 309 (1967).
[64] G. Mathiak, A. Griesche, K. H. Kraatz, and G. Frohberg, J. Non-

Cryst. Solids 205–207, 412 (1996).
[65] P. G. de Gennes, Physica 25, 825 (1959).
[66] B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover

Publications, New York, 2000), p. 15.
[67] F. Demmel and C. Morkel, Phys. Chem. Liq. 50, 31

(2012).
[68] H. R. Schober, Physics 4, 80 (2011).
[69] H. Zhang, C. Zhong, J. F. Douglas, X. Wang, Q. Cao, D. Zhang,

and J. Jiang, J. Chem. Phys. 142, 164506 (2015).
[70] W.-C. Pilgrim and C. Morkel, J. Phys.: Condens. Matter 18,

R585 (2006).
[71] U. Balucani, A. Torcini, A. Stangl, and Chr. Morkel, J. Non-

Cryst. Solids 205–207, 299 (1996).
[72] A. Stangl, Chr. Morkel, U. Balucani, and A. Torcini, J. Non-

Cryst. Solids 205–207, 402 (1996).
[73] A. Jaiswal, T. Egami, K. F. Kelton, K. S. Schweizer, and Y.

Zhang, Phys. Rev. Lett. 117, 205701 (2016).

062124-10

https://doi.org/10.1103/PhysRevB.74.184207
https://doi.org/10.1103/PhysRevB.74.184207
https://doi.org/10.1103/PhysRevB.74.184207
https://doi.org/10.1103/PhysRevB.74.184207
https://doi.org/10.1016/j.jnoncrysol.2007.05.050
https://doi.org/10.1016/j.jnoncrysol.2007.05.050
https://doi.org/10.1016/j.jnoncrysol.2007.05.050
https://doi.org/10.1016/j.jnoncrysol.2007.05.050
https://doi.org/10.1103/PhysRevA.18.1176
https://doi.org/10.1103/PhysRevA.18.1176
https://doi.org/10.1103/PhysRevA.18.1176
https://doi.org/10.1103/PhysRevA.18.1176
https://doi.org/10.1103/PhysRevA.22.2866
https://doi.org/10.1103/PhysRevA.22.2866
https://doi.org/10.1103/PhysRevA.22.2866
https://doi.org/10.1103/PhysRevA.22.2866
https://doi.org/10.1103/PhysRevLett.32.52
https://doi.org/10.1103/PhysRevLett.32.52
https://doi.org/10.1103/PhysRevLett.32.52
https://doi.org/10.1103/PhysRevLett.32.52
https://doi.org/10.1103/PhysRevA.26.2859
https://doi.org/10.1103/PhysRevA.26.2859
https://doi.org/10.1103/PhysRevA.26.2859
https://doi.org/10.1103/PhysRevA.26.2859
https://doi.org/10.1016/0375-9601(84)90791-6
https://doi.org/10.1016/0375-9601(84)90791-6
https://doi.org/10.1016/0375-9601(84)90791-6
https://doi.org/10.1016/0375-9601(84)90791-6
https://doi.org/10.1103/PhysRevA.35.4263
https://doi.org/10.1103/PhysRevA.35.4263
https://doi.org/10.1103/PhysRevA.35.4263
https://doi.org/10.1103/PhysRevA.35.4263
https://doi.org/10.1088/0953-8984/6/50/004
https://doi.org/10.1088/0953-8984/6/50/004
https://doi.org/10.1088/0953-8984/6/50/004
https://doi.org/10.1088/0953-8984/6/50/004
https://doi.org/10.1016/S0022-3093(99)00110-6
https://doi.org/10.1016/S0022-3093(99)00110-6
https://doi.org/10.1016/S0022-3093(99)00110-6
https://doi.org/10.1016/S0022-3093(99)00110-6
https://doi.org/10.1103/PhysRevB.65.014301
https://doi.org/10.1103/PhysRevB.65.014301
https://doi.org/10.1103/PhysRevB.65.014301
https://doi.org/10.1103/PhysRevB.65.014301
https://doi.org/10.1103/PhysRevB.52.9320
https://doi.org/10.1103/PhysRevB.52.9320
https://doi.org/10.1103/PhysRevB.52.9320
https://doi.org/10.1103/PhysRevB.52.9320
https://doi.org/10.1088/0953-8984/12/19/302
https://doi.org/10.1088/0953-8984/12/19/302
https://doi.org/10.1088/0953-8984/12/19/302
https://doi.org/10.1088/0953-8984/12/19/302
https://doi.org/10.1016/j.jnoncrysol.2004.09.014
https://doi.org/10.1016/j.jnoncrysol.2004.09.014
https://doi.org/10.1016/j.jnoncrysol.2004.09.014
https://doi.org/10.1016/j.jnoncrysol.2004.09.014
https://doi.org/10.1088/0953-8984/18/24/002
https://doi.org/10.1088/0953-8984/18/24/002
https://doi.org/10.1088/0953-8984/18/24/002
https://doi.org/10.1088/0953-8984/18/24/002
https://doi.org/10.1103/PhysRevA.8.2640
https://doi.org/10.1103/PhysRevA.8.2640
https://doi.org/10.1103/PhysRevA.8.2640
https://doi.org/10.1103/PhysRevA.8.2640
https://doi.org/10.1103/PhysRevA.4.358
https://doi.org/10.1103/PhysRevA.4.358
https://doi.org/10.1103/PhysRevA.4.358
https://doi.org/10.1103/PhysRevA.4.358
https://doi.org/10.1103/PhysRevB.2.2983
https://doi.org/10.1103/PhysRevB.2.2983
https://doi.org/10.1103/PhysRevB.2.2983
https://doi.org/10.1103/PhysRevB.2.2983
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1103/PhysRevB.1.1044
https://doi.org/10.1103/PhysRevB.1.1044
https://doi.org/10.1103/PhysRevB.1.1044
https://doi.org/10.1103/PhysRevB.1.1044
https://doi.org/10.1016/S0168-9002(98)00559-2
https://doi.org/10.1016/S0168-9002(98)00559-2
https://doi.org/10.1016/S0168-9002(98)00559-2
https://doi.org/10.1016/S0168-9002(98)00559-2
https://doi.org/10.1021/je60023a014
https://doi.org/10.1021/je60023a014
https://doi.org/10.1021/je60023a014
https://doi.org/10.1021/je60023a014
https://doi.org/10.1051/epjconf/201715102002
https://doi.org/10.1051/epjconf/201715102002
https://doi.org/10.1051/epjconf/201715102002
https://doi.org/10.1051/epjconf/201715102002
https://doi.org/10.1080/00319107208084094
https://doi.org/10.1080/00319107208084094
https://doi.org/10.1080/00319107208084094
https://doi.org/10.1080/00319107208084094
https://doi.org/10.1103/PhysRevA.46.2159
https://doi.org/10.1103/PhysRevA.46.2159
https://doi.org/10.1103/PhysRevA.46.2159
https://doi.org/10.1103/PhysRevA.46.2159
https://doi.org/10.1080/00018736700101425
https://doi.org/10.1080/00018736700101425
https://doi.org/10.1080/00018736700101425
https://doi.org/10.1080/00018736700101425
https://doi.org/10.1016/S0022-3093(96)00253-0
https://doi.org/10.1016/S0022-3093(96)00253-0
https://doi.org/10.1016/S0022-3093(96)00253-0
https://doi.org/10.1016/S0022-3093(96)00253-0
https://doi.org/10.1016/0031-8914(59)90006-0
https://doi.org/10.1016/0031-8914(59)90006-0
https://doi.org/10.1016/0031-8914(59)90006-0
https://doi.org/10.1016/0031-8914(59)90006-0
https://doi.org/10.1080/00319104.2011.590989
https://doi.org/10.1080/00319104.2011.590989
https://doi.org/10.1080/00319104.2011.590989
https://doi.org/10.1080/00319104.2011.590989
https://doi.org/10.1103/Physics.4.80
https://doi.org/10.1103/Physics.4.80
https://doi.org/10.1103/Physics.4.80
https://doi.org/10.1103/Physics.4.80
https://doi.org/10.1063/1.4918807
https://doi.org/10.1063/1.4918807
https://doi.org/10.1063/1.4918807
https://doi.org/10.1063/1.4918807
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.1016/S0022-3093(96)00244-X
https://doi.org/10.1016/S0022-3093(96)00244-X
https://doi.org/10.1016/S0022-3093(96)00244-X
https://doi.org/10.1016/S0022-3093(96)00244-X
https://doi.org/10.1016/S0022-3093(96)00449-8
https://doi.org/10.1016/S0022-3093(96)00449-8
https://doi.org/10.1016/S0022-3093(96)00449-8
https://doi.org/10.1016/S0022-3093(96)00449-8
https://doi.org/10.1103/PhysRevLett.117.205701
https://doi.org/10.1103/PhysRevLett.117.205701
https://doi.org/10.1103/PhysRevLett.117.205701
https://doi.org/10.1103/PhysRevLett.117.205701



