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Abstract

In this paper, a reduced-complexity model of the human arm endpoint stiffness is introduced and experimentally evaluated

for the teleimpedance control of a compliant robotic arm. The modeling of the human arm endpoint stiffness behavior is

inspired by human motor control principles on the predominant use of the arm configuration in directional adjustments

of the endpoint stiffness profile, and the synergistic effect of muscular activations, which contributes to a coordinated

modification of the task stiffness in all Cartesian directions. Calibration and identification of the model parameters are

carried out experimentally, using perturbation-based arm endpoint stiffness measurements in different arm configurations

and cocontraction levels of the chosen muscles. Consequently, the real-time model is used for the remote control of a

compliant robotic arm while executing a drilling task, a representative example of tool use in environments with constraints

and dynamic uncertainties. The results of this study illustrate that the proposed model enables the master to execute the

remote task by modulation of the directions of the major axes of the endpoint stiffness ellipsoid and its volume using

natural arm configurations and the cocontraction of the involved muscles, respectively.
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1. Introduction

Execution of a remote manipulation task in a master-slave

teleoperation setup is often subject to dynamic uncertain-

ties and jitter. Both issues result in an undesirable behav-

ior of the slave robot and reduced efficiency in physical

interactions with the object or the environment (Hannaford

and Ryu, 2002). In an attempt to overcome the limita-

tions of conventional teleoperation interfaces, the concept

of teleimpedance control has been introduced (Ajoudani

et al., 2012b), with several interaction scenarios in support

of the efficacy of this control concept (e.g., see Hocaoglu

and Patoglu, 2012).

Teleimpedance consists of replicating the desired motion

trajectories and corresponding stiffness profiles of the oper-

ator by the compliant slave robot in real time. This is to

enable the operator to modulate the task interaction forces

between the robot and the environment while avoiding

the closed-loop stability issues raised by traditional bilat-

eral teleoperation interfaces. While the human movements

can be tracked using accurate and cost-efficient external

devices, the current literature lacks appropriate and compu-

tationally efficient methods for real-time estimation of the

limb impedance. Especially concerning complex manipu-

lation tasks that demand and explore the full capacity of

human arm dynamics, traditional techniques for the esti-

mation of the human joint torque and stiffness trajectories

require several stages, from the measurement of biosignals

to the musculoskeletal kinematics and dynamics.

It is well known that human beings modulate their limb

endpoint viscoelastic properties in different ways. One

approach to achieve this is by cocontracting muscle groups

acting on the limb (Gribble et al., 2003). Alternatively, it can

be performed through adaptation in the sensitivity of reflex

feedback (Akazawa et al., 1983) or selective control of the

limb configuration (Trumbower et al., 2009). Traditionally,

the combined effect of these stiffness modulation mecha-

nisms at the arm endpoint is explored by applying position
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(force) perturbations to the hand, and probing the restoring

force (displacement response) profile (Mussa-Ivaldi et al.,

1985; Perreault et al., 2002). This is usually followed by

an offline postprocessing phase to estimate the impedance

parameters. Applications of such methods in the estimation

of dynamic impedance profiles in multijoint arm move-

ments have been extensively investigated (Franklin et al.,

2003).

Despite the popularity of perturbation-based approaches,

their real-time applications result in an inconvenient and

often impossible operation, owing to the interference of

external disturbances with the hand trajectories. As a con-

sequence, other avenues of research seek for a more suit-

able human–machine interface that is particularly beneficial

for real-time applications (Ajoudani et al., 2012b; Howard

et al., 2013; Osu and Gomi, 1999; Shin et al., 2009).

In this direction, owing to the existence of high correla-

tions between muscle activations, muscular force, and joint

torque profiles, a large portion of the related literature uti-

lizes electromyography (EMG) signals to account for the

real-time tracking of the arm joint or endpoint stiffness

profile. While in a fixed arm configuration, such a mod-

eling turns out to be straightforward, owing to the linear

association between the EMG and arm endpoint stiffness

profiles (Selen et al., 2005), the whole arm workspace stiff-

ness estimation appears to require a complex modeling of

the musculoskeletal system (Lloyd and Besier, 2003; Shin

et al., 2009). This, however, contrasts with several studies

on human motor behavior, which suggest that the central

nervous system solves for this complexity and redundancy

in an elegant, effective, and rather coordinated manner

(Kawato, 1999; Turvey, 2007).

Observations in human neuromotor control of the arm

endpoint stiffness suggest that, owing to (i) the major con-

tribution of the limb geometry to efficient modifications in

the orientation of the endpoint stiffness ellipsoid, (ii) the

ergonomic efficiency of postural adjustments in compari-

son with cocontractions, and (iii) the existence of cross-

joint muscles in limbs, human beings tend to maximize

the use of limb postures to realize a desired endpoint stiff-

ness direction (Milner, 2002). Concurrently, cocontractions

appear to mostly contribute to modifications in size, rather

than orientation of the stiffness ellipsoid (Ajoudani, 2016;

Milner, 2002). A reason for this is deemed to be the involve-

ment of the arm muscles in a synergistic fashion (Castellini

et al., 2014; Ison and Artemiadis, 2014a,b; Turvey, 2007),

which contribute to coordinated variations in the diagonal

(joint stiffness) and off-diagonal (owing to the existence

of cross-joint muscles) components of the joint stiffness

matrix (Buchanan et al., 1986; Jamison and Caldwell, 1993;

Osu and Gomi, 1999; Van Zuylen et al., 1988).

On these bases, we explore the role of arm geome-

try and muscular contraction in modifications in direction

and volume of the arm endpoint stiffness ellipsoid, respec-

tively. To do so, we investigate the configuration-dependent

properties of the joint and Cartesian stiffness profiles in

human beings through the muscle and arm Jacobians. With

the purpose of using a reduced number of tracking points

on the human arm to account for the arm kinematics, a

generalized arm triangle model is introduced and used to

estimate the joint angles and the muscle and arm Jacobians.

In comparison with the alternative descriptions, the gener-

alized human arm triangle in this work is able to express the

arm posture in a more accurate way by considering physi-

ological geometric constraints between segments (e.g., the

elbow joint does not allow for abduction–adduction rota-

tion) and the whole skeleton model of the human arm. Next,

a cocontraction index is defined and experimentally identi-

fied to implement the volume-adjusting component of the

arm endpoint stiffness.

With the models identified, the endpoint stiffness of the

human arm is estimated by tracking the arm kinematics and

the volume-adjusting component in real time. This enables

the master to modify the direction of the endpoint stiffness

ellipsoid by changing the arm posture in an intuitive man-

ner, while being capable of adjusting its volume by increas-

ing the cocontraction of the dominant shoulder and elbow

muscles. As a result, teleoperated tasks that require signif-

icant modulation of the endpoint stiffness and force can be

executed naturally. In this study, as a representative exam-

ple of the tasks with environmental constraints and dynamic

uncertainties, we consider the drilling of hard objects that

are placed in different locations and orientations within the

robot workspace (see Figure 1). To accomplish the task,

the end-effector force (as a consequence of the stiffness

geometry and volume modulation) must be remotely con-

trolled to achieve a high interaction force in the direction

of drilling, while avoiding the generation of unnecessarily

high interaction forces in other directions or other phases of

the task (e.g., sliding on the surface) that might be caused by

involuntary movements of the human hand. Such undesired

forces can cause damage to the robot, tool, or environ-

ment, especially when the drill penetrates the hard object.

This behavior is way beyond the interaction capabilities of

rigid robots, i.e., those operated in position control mode or

replicating a constant joint or Cartesian impedance profile.

Needless to say, any reduced-complexity representation

of the highly complex human neuromotor system is cer-

tainly subject to modeling uncertainties and inaccuracies.

For instance, we assume that both the robot and the human

operator are constrained to stand in place and that the oper-

ator arm moves in relatively low endpoint acceleration pro-

files. The reason for this is to simplify the tracking of the

human configuration, since the human whole-body poses

(e.g., using legs) can contribute to further modifications in

the geometry of the endpoint stiffness ellipsoid. In addi-

tion, low acceleration profiles of the operator arm reduce

the effect of inertia mismatch between the human arm and

the robot in the case of an impact. The main purpose of

this research is to provide computationally efficient and
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Fig. 1. Experimental setup for remote drilling of hard objects

(bricks) in different positions and orientations of the robot

workspace. To accomplish the task, the operator must adjust the

endpoint stiffness profile of the robot end-effector to achieve

the task-required interaction force profile in different phases of

the task.

real-time tools for the control of robots while executing

remote manipulation tasks that are also subject to physical

interaction uncertainties.

A preliminary implementation of this approach was pre-

sented by Ajoudani et al. (2015). The current study intro-

duces fundamental improvements to the previous results

by (i) implementing a novel human musculoskeletal model

for more accurate tracking of the human arm kinematics;

(ii) considering the effect of the muscle Jacobian to improve

the contribution of arm kinematics and the synergistic con-

tribution of muscle activities (at muscle level rather than

joint level) to the arm endpoint stiffness; (iii) providing

a more thorough description of the underlying principles

and concepts; and (iv) evaluating the proposed controller

for a realistic remote wall-drilling task with large dynamic

physical interaction uncertainties.

2. Reduced-complexity representation of the

active arm endpoint stiffness

According to Hill’s musculoskeletal model, the stiffness of

an individual muscle, km( p, q), can be calculated from the

stiffness values of the passive series element kSE( q), the

passive parallel element kPE( q), and the contractile element

kCE( p), with p and q denoting the muscle activity and the

joint angle vector, respectively. It is known that if the joint

is far from its limits, where the musculotendon unit is not

fully stretched or compressed, in the studies of active mus-

cles, kCE represents a fair estimate of the muscle stiffness,

since kSE � kCE and kPE � kCE (Latash and Zatsiorsky,

1993).

The relation between the estimated active muscle stiff-

ness (K̂m) and the joint stiffness matrix KJ can be calculated

by

KJ ( p, q) = JT
m( q) K̂m( p) Jm( q) (1)

where T and Jm are the transpose operator and the transfor-

mation relating musculotendon length changes to the joint

angle variations. This matrix is computed by the partial

derivative of the ith muscle length li with respect to the

associating joint angles qi ∈ R
7 (Winters and Crago, 2012)

Jm( q) =
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(2)

This relation assumes that no torques are present at the arm

joints. Otherwise, the effect of joint torques on the joint

stiffness variations must be included, based on the deriva-

tive of the muscle Jacobian with respect to the joint angles

(Chen and Kao, 2000). While the configuration-dependent

nature of the joint stiffness is mainly caused by the varia-

tions in passive joint properties, calculation of the Cartesian

stiffness, i.e., Kc ∈ R
6×6, conversely, requires an additional

transformation J ( q) ∈ R
6×7, which is provided by the arm

Jacobian (see next section)1

Kc( p, q) = J+T( q) [KJ ( p, q) −GJ ( q) ]J+( q) (3)

For the given problem, we set the metric tensor D =
KJ in the definition of the pseudo-inverse J+ = D−1JT

( JD−1JT)−1 (Albu-Schaffer et al., 2004). The term GJ ( q)

is defined by

GJ ( q) = ∂JT( q) f0

∂q
+ ∂τg( q)

∂q
(4)

which captures the effect of arm geometry in the presence

of external load f0 and gravity τg( q). In this study, since the

human arm does not interact with the external environment

or carry a load, f0 = 0. In addition, for the sake of simplic-

ity in the identification of the human arm parameters, we

neglect the effect of τg( q).

Traditionally, the active component of the estimated mus-

cle stiffness matrix (K̂m) is estimated using Hill’s activa-

tion dynamic equations, which provide a mapping between

the muscular activities, usually measured using EMG, and

the corresponding muscles’ stiffness profiles. This, how-

ever, requires that the EMG activities of several muscles are

processed and passed through a complex system of equa-

tions to account for the muscle stiffness matrix, eventually

resulting in costly (there is a need for several EMG sensors

and amplification) and computationally intensive system

(e.g., see Shin et al., 2009). Conversely, a dense literature

gives solid evidence of the existence of synergistic rela-

tionships between arm mono- and bi-articular muscle activ-

ities, which realize a coordinated stiffening profile across

the arm joints (Buchanan et al., 1986; Ison and Artemi-

adis, 2014a; Jamison and Caldwell, 1993; Kaneko et al.,

2015; Osu and Gomi, 1999; Van Zuylen et al., 1988). As a

result, cocontractions of the arm muscles mostly contribute

to modifications in volume of the endpoint stiffness ellip-

soid, rather than its direction (Ajoudani et al., 2012a). This

strategy is deemed to be exploited by the central nervous

system to solve for the motor complexity in an efficient and

coordinated manner (Turvey, 2007).
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Therefore, we presume that (i) there exists a synergistic

relationship between the arm muscle activities, and (ii) each

muscle activation contributes to the volume of the endpoint

stiffness ellipsoid with a different ratio. To clearly explain

this choice, we can assume that the endpoint stiffness is

represented by an ellipsoid, and that cocontractions mod-

ify the volume of such ellipsoid by changing the major axis

lengths in a coordinated manner. Accordingly, we propose

K̂m = acc( p) Ks, with Ks an experimentally identified time-

invariant diagonal matrix (given that the muscle stiffness

matrix is diagonal (Zatsiorsky, 2002)), which implements

the contribution of each muscle to the active variations of

the volume of the endpoint stiffness with a certain weight.

The scalar and time-varying component, acc( p), which is a

function of the muscular activities, is multiplied by the mus-

cle weights and computes the overall contribution of muscle

activations to the volume of the endpoint stiffness ellip-

soid. Obviously, depending on the choice of muscles that

are used to compute the active component (acc), the identi-

fied scale matrix Ks would differ. In this study, as the most

dominant and easily accessible muscles of the arm for sur-

face electromyography measurements, we process the EMG

activities of two muscles, i.e., the long heads of the biceps

brachii (PB) and triceps brachii (PT), to calculate

acc( p) = c1 + c2( PB + PT) (5)

with c1 and c2 constant coefficients referring to the intrin-

sic muscle stiffness component2 and the active gain, which

will be identified experimentally. By rearranging these

equations, we obtain

Kc( p, q) = J+T( q)
[

JT
m( q) acc( p) KsJm( q) −GJ ( q)

]

J+( q)

(6)

It has been demonstrated that the configuration-

dependent effect of the muscle moment arm strongly

depends on the muscle itself and the joint movement profile

(e.g., flexion, extension, abduction, adduction). While this

dependency can be significant for particular arm muscles

and specific joint movements, on the contrary, the moment

arm of those muscles and joint movements with a relatively

trivial variation over the associating joint angles can be

safely neglected (Ettema et al., 1998; Pigeon et al., 1996).

Hence, in this paper, we exploit arm muscle length func-

tions of eight dominant muscles acting on the shoulder and

elbow joints, as described in Ettema et al. (1998) and Pigeon

et al. (1996) to model moment arms of muscles as functions

of the corresponding joint angles. The selected eight mus-

cles are the anterior and posterior portions of the deltoid,

the brachialis, the brachioradialis, the long and short por-

tions of the biceps, and the long and lateral portions of the

triceps, which present dominant effects in generation of the

torque profiles in the arm joints.

3. Human muscle and arm Jacobian tracking

As shown in equation (6), the estimation of the end-

point stiffness Kc is highly dependent on the tracking

of the human arm configuration through two important

Jacobians: the chain Jacobian, J ( q), and the muscle Jaco-

bian, Jm( q). Toward this objective, an online and easily

scalable (subject-to-subject) model of the human right arm

is developed that requires a minimum amount of sensory

information to provide the two required Jacobians. This

section presents a summary of the implementation of this

model.3

The implementation of the proposed model is based

on one of the human right arm models developed by

the OpenSim Community, provided by Stanford University

(Holzbaur et al., 2005). This model has seven degrees of

freedom: three in the shoulder, two in the elbow, and two in

the wrist. For the most part, OpenSim provides offline anal-

ysis of the human musculoskeletal model, since retrieval

of the configuration of the human arm, i.e., a set of seven

joint angles, from the original motion marker data is treated

as a weighted least squares problem, which is actually a

numerical optimization problem, trying to match the marker

positions in the model to the corresponding experimental

marker positions as accurately as possible (Hicks and Dem-

bia, 2013). To make the estimation process of the human

arm configuration available in real time, a compact, easy-

to-measure, and scalable representation of the human arm

configuration, termed a generalized human arm triangle, is

proposed and an analytical solution to the inverse kinematic

problem from the generalized human arm triangle to the set

of seven joint angles of the right arm is developed corre-

spondingly. In comparison with the alternative descriptions,

the generalized human arm triangle used in this study is able

to express the arm posture in a more accurate way by con-

sidering the physiologically geometric constraints between

segments and the whole skeleton model of human arm.

Nevertheless, given the availability of the tracking systems

and the target accuracy in real-time applications, alternative

techniques for the real-time tracking of the arm and mus-

cle Jacobians can be exploited (e.g., see Tolani and Badler,

1996).

The generalized human arm triangle is a dimension-

independent representation of the human arm configura-

tion. It only requires a set of minimal orientation-related

variables, which are easier to measure by commercially

available motion capture systems than are position-related

variables. The model consists of five variables, as shown in

Figure 2, with the following parameters:

r unit direction vector of the upper arm;

l unit normal vector of the generalized human arm tri-

angle plane. The direction of l is determined by the

right-hand rule, and the right-hand screw direction is

the direction of elbow extension.

α angle between the upper arm and the lower arm;

f unit direction vector of the fingers;

p unit normal vector of the plane of the palm. Its direction

points outward from the palm.



Ajoudani et al. 159

Fig. 2. Generalized human arm triangle model.

In this model, the links of the upper arm and the lower arm

are non-coplanar. Hence, the generalized human arm trian-

gle plane is defined as the plane determined by the lower

arm line and the projection line of the upper arm line along

their common perpendicular. There are actually seven inde-

pendent variables in this model, owing to the normaliza-

tion of the four vectors and the perpendicular relationships

between the two pairs of vectors, r versus l and f versus

p. As a result, the human arm triangle space spanned by

these five variables has a one-to-one relationship with the

joint space spanned by the seven joint angle variables of the

human arm kinematic model. This implies that the general-

ized human arm triangle model uniquely represents the arm

configuration.

Conversely, the kinematic model of the human right arm,

which is based on the modified Denavit–Hartenberg nota-

tion, can be retrieved from the original kinematic model

file in OpenSim, the “Stanford VA Upper Limb Model”.

A diagram of the model is shown in Figure 3 and its cor-

responding Denavit–Hartenberg parameters are listed in

Table 1. The center of the base frame {0} is located in the

intersection point of the three rotational axes of shoulder

joint. The x-axis of the last frame {T} stands for the direc-

tion of thumb and the z axis indicates the opposite direc-

tion of palm. All the body segments, to which the frames

are attached, are shown in parentheses. It is worth noting

that the dimension-related parameters, lox
Humerus, lo

y

Humerus,

loz
Humerus, lo

y

Ulna, loz
Ulna, lo

y

Radius, lo
y′
Radius, loa

Radius, lod
Radius,

could be scaled to match human arms of different sizes

(the trailing subscripts show the relevant body segments for

scaling), which would make the model suitable for subject-

to-subject variation. The analytical solution to the inverse

kinematic problem from the generalized human arm trian-

gle to the set of joint angles, θi( i = 1, 2, . . . , 7), is devel-

oped in detail in (Fang et al., 2016) to capture and retrieve

the arm configuration in an efficient way.

Once the configuration of the human arm has been

reconstructed successfully, the relevant muscles around the

human arm can be correspondingly located by utilizing the

related muscle information from the model file (Holzbaur

et al., 2005). Each elements of the muscle Jacobian Jm( q),

Fig. 3. Human right arm kinematic model in the modified

Denavit–Hartenberg notation.

i.e., the muscle moment arms, are calculated as the deriva-

tive of the muscle length with respect to the corresponding

joint angles (see equation (2)).

4. Human arm endpoint stiffness estimation

This section describes the procedure to identify the stiff-

ness model parameters that correspond to the synergistic

contributions of the chosen muscles (Ks) to Kc, and the

cocontraction index (c1 and c2 in acc( p)).

To identify the model parameters, assuming that Jm( q),

J ( q), and GJ ( q) are calculated and known, Kc in equa-

tion (6) must be identified in different configurations and

cocontraction levels of the human arm. Following standard

techniques for identification of the human arm endpoint

stiffness in 3D (Perreault et al., 2002), stochastic perturba-

tions were applied to the human arm endpoint and restoring

forces were recorded using a six-axis force-torque sensor

(ATI, Inc.), which was placed between the robot and the

handle (see Figure 4). A KUKA lightweight robot IV was

programmed in position control mode using Fast Research

Interface (Schreiber et al., 2010), aimed at applying pertur-

bation profiles to the arm endpoint through the handle. The

amplitude of the applied perturbations had a peak-to-peak

value of 20 mm in each direction. The frequency spectra

of the perturbations were flat while decaying at a rate of

40 dB/Hz at frequencies greater than 4 Hz (see Figure 5).

This perturbation profile and the corresponding forces in

response, ensure adequacy of data for the identification of

endpoint dynamics (Mann et al., 1989).
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Table 1. Denavit–Hartenberg parameters of human right arm kinematic model.

i (i−1 Ti) θi (°) di (m) ai−1 (m) αi−1 (°)

1 θ1 ( 0.0) 0.00 0.00 0.0

2 θ2 ( 0.0) 0.00 0.00 90.0

3 θ3 ( −90.0) −lo
y
Humerus

0.00 −90.0

4 θ4 ( 180.0) loz
Ulna

− loz
Humerus

−lox
Humerus

−90.0

5 θ5 ( −124.2) −lo
y
Ulna

− lo
y
Radius

− lo
y′

Radius
0.00 −90.0

6 θ6 ( 101.3) −lod
Radius

loa
Radius

97.8

7 θ7 ( 13.7) 0.00 0.00 −145.0

T −90.0 0.00 −0.08 −90.0

Fig. 4. Stiffness measurement experimental setup. A KUKA lightweight robot was programmed to apply stochastic perturbations to

the human hand. Experiments were carried out in different arm configurations (typical examples are shown in this figure). Arm joints

were allowed to vary within the redundant manifold of the corresponding shoulder and wrist position. Two subjects participated in the

experiments.

F/T: force–torque.

Fig. 5. Power spectrum of the applied position disturbances.

Experiments were carried out in seven different positions

of the wrist with respect to the shoulder frame. These con-

figurations were chosen anterior to the coronal plane of

the body, within a reasonable workspace of the human arm

while avoiding singular configurations and joint limits. In

each set, arm joints were allowed to vary within the redun-

dant manifold of the corresponding shoulder–wrist configu-

ration to realize two or three distinct elevation angles of the

shoulder joint (see Figure 4), resulting in 24 arm configura-

tions in total. At each configuration, the subjects were asked

to modulate and keep the cocontraction of the arm muscles

in three different levels: minimum activity, medium activ-

ity (20% Pnmax ), and high activity (40% Pnmax ), where Pnmax

is the maximum value of the cocontraction indicator and is

calculated from the processed (acquired, filtered, and nor-

malized at 1 kHz; see Ajoudani et al., 2012b, for details)

EMG signals from two dominant, antagonistic upper arm

muscles; namely the biceps (PB) and triceps (PT) brachii,

hence

Pn = PB + PT

2

Throughout the experiments, Pn was illustrated to the

subject to keep the cocontraction levels as steady as possi-

ble. Meanwhile, body markers were attached to the human

wrist, elbow, and shoulder for synchronized and precise

tracking of (i) the human hand trajectories under perturba-

tions and (ii) the human arm and muscle Jacobians, using an

Optitrack motion tracking system at 100 Hz. Acquisition,

processing, control, and synchronization algorithms were

all implemented in C++.

Consequent to the acquisition and preprocessing of the

position and restoring force trajectories of the human arm

endpoint, multiple-input–multiple-output dynamics of the

endpoint impedance were decomposed into the linear sub-

systems associating each input with each output (Ajoudani

et al., 2012b). Based on this assumption, and indicating by

Fx( f ), Fy( f ), and Fz( f ) the Fourier transforms of the end-

point force along the axes of the Cartesian reference frame,

with x( f ), y( f ), and z( f ) the transforms of the human

endpoint displacements, the dynamic relation between the

displacements and force variations can be described by




Fx( f )

Fy( f )

Fz( f )



 =





Gxx( f ) Gxy( f ) Gxz( f )

Gyx( f ) Gyy( f ) Gyz( f )

Gzx( f ) Gzy( f ) Gzz( f )









x( f )

y( f )

z( f )



 (7)

A non-parametric algorithm was adopted to identify the

empirical transfer function of each of the single-input–

single-output (SISO) subsystems described previously in
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the frequency domain (MATLAB, The MathWorks Inc.).

The smoothed spectral estimates of input and outputs (using

windowing techniques) were fed to this algorithm in order

to identify each SISO transfer function. Consequently, we

adopted a parametric, second-order, linear model of each

impedance transfer function of the type

Gij( s) = Icijs
2 + Bcijs + Kcij, s = 2π f

√
−1 (8)

where Ic, Bc, and Kc denote the endpoint inertia, viscosity,

and stiffness matrices, respectively. The parameters of the

second-order linear model were identified based on a least

squares algorithm in the frequency range from 0 to 10 Hz.

In a postprocessing stage, identified Cartesian stiffness

matrices from the calibration trials were used to compute

Ks, c1, and c2 by minimizing the Frobenius norm

‖JT
m( q) acc( p) KsJm( q) −JT( q) Kc( p, q) J ( q) ‖

with Jm ∈ R
8×7, Ks ∈ R

8×8, J ∈ R
3×7, and Kc ∈ R

3×3 (only

translational components of the stiffness matrix). Consider-

ing that the muscle stiffness matrix is diagonal (Zatsiorsky,

2002), 10 unknown parameters ( Ks, c1, and c2) must be

identified, which defines the minimum number of required

trials for the calibration experiments. Based on this number,

the total number of the trials was divided into the calibration

and test trials for the validation of the identified model.

Once the model parameters have been identified, equa-

tion (6) can be utilized for the real-time computation of the

arm endpoint stiffness profile using electromyography sig-

nals of one antagonistic pair of muscles and the tracking of

the arm triangle.

5. Results

This section describes the results of the offline identifica-

tion and real-time stiffness model for two healthy subjects

(male, A (aged 33) and B (aged 32)).

5.1. Identification experiments

As stated before, experimental identification of the end-

point impedance matrices was performed by applying

position perturbations and acquiring the force response

within a 10 Hz frequency range. In all trials, multiple and

partial coherence values of the force–position data (see

Figure 6), positive definiteness, and symmetric4 measures

of the estimated impedance matrices (Ajoudani et al.,

2012b; Perreault et al., 2002) were the proving factors for

the feasibility of the acquired results. Those trials that did

not satisfy these conditions were discarded and repeated.

Figure 7 illustrates endpoint stiffness ellipsoids experi-

mentally estimated from the perturbation experiments for

three typical cocontraction profiles of the human arm, in

three different configurations for subjects A (upper two

rows) and B (lower row). For the sake of comparison, the

3D translational ellipsoids are projected to the xy, xz, and

Fig. 6. Multiple and partial coherence values over the frequency

range [0 10] Hz. These indexes investigate the linear dependency

on each output to all system inputs, and between single input and

single output, respectively. The x-axis scales are logarithmic and

the y-axis scales are linear. Perfect coherence will be observed

when the functions have values close to one. However, a linear

approximation of the non-linear human arm endpoint stiffness

behavior is naturally subject to a certain level of uncertainty, as

observed in the plots.

yz planes. Each ellipsoid’s major axes directions and mag-

nitudes are achieved from singular value decomposition of

the corresponding projected stiffness matrix. These typical

results show that the muscular cocontractions (minimum

activity (green, solid), medium activity (blue, dashed), and

high activity (red, dotted)) mostly contribute to the volume

of the ellipsoid, with a negligible effect on its major axes

directions (observable in each individual plot). Instead, a

change of the arm configuration can substantially modify

the geometry of the resulting ellipsoids, as observed in each

row. It is worth remembering that no external forces are

applied or received by the subjects.

To further investigate the effect of muscular co-

contraction in volume adjustment of the endpoint stiffness

ellipsoids, the correlation (P < 0.0005; RA
2 = 0.76; RB

2 =
0.89) between the cocontraction index Pn and the volume

index

3
1
3
Kc

= [λ1.λ2.λ3]
1
3

where λ1, λ2, and λ3 are the eigenvalues of the correspond-

ing experimentally identified endpoint stiffness matrix, is

calculated for randomly selected trials and illustrated in

Figure 8. These figures illustrate a reasonably linear depen-

dency between the cocontraction index and the volume

index for subjects A (upper plot) and B (lower plot).

5.2. Real-time stiffness model

In a postprocessing phase, to evaluate the accuracy of the
identified real-time model parameters, each subject’s test
trials (nT ) were used to calculate the mean average error
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Fig. 7. Stiffness ellipsoids plotted for three distinct levels of the

cocontraction values (minimum activity (green, solid), medium

activity (blue, dashed), and high activity (red, dotted)) in three dif-

ferent arm configurations, illustrated from the top view in bottom

plots. The numbers after the letter C- in the configurations refer

to the row number in which the ellipsoids are plotted. The upper

two rows are from subject A and the third from the top illustrates

a typical example for subject B. Values are given in newtons per

meter.

value between the results of the real-time model and the
desired one using

eK = 1

nT

nT
∑

i=1

‖Jmi
T( q) acci ( p) KsJmi( q) −Ji

T( q) Kci( p, q) Ji( q) ‖
‖Kci( p, q) ‖

which led to values of 12.3% and 11.5% for subjects A and

B, respectively. Here, Kci( p, q) is the experimentally esti-

mated endpoint stiffness matrix of the subject for trial i,

and was used as the desired value for the real-time model

that receives the arm configuration (through J and Jm), Ks,

and cocontraction index (acc) to estimate the corresponding

value.5

It is important to note here that the stiffness modeling

accuracy depends on the complexity of the model and the

number of parameters to be identified. The main objective

in this work was to achieve a reasonable trade-off between

the two. This is because the number of unknown model

parameters identifies the size of the experimental (train-

ing) data, which, owing to the complexity and difficulty

of the stiffness estimation experiments, it is more practi-

cal to keep as low as possible.6 Hence, we neglected a part

Fig. 8. Relationship between average muscular activities of the

antagonistic pair (Pn) and the volume index (cube root of 3) of the

experimentally identified endpoint stiffness matrices for subjects

A (top) and B (bottom). These results support the use of linear

mapping, acc, in this work.

of the complexity of the model that does not contribute

to a substantial performance degradation (that lay within

this 12% error range), and limited the number of unknown

parameters to 10.

Figure 9 illustrates typical results of the tracking of the

human arm endpoint stiffness profile in different arm geom-

etry and muscular cocontraction levels. Arm configurations

(upper plots) of the master were tracked using the arm tri-

angle data and used to estimate the arm joint angles and

the two Jacobians. Estimated poses that include the mus-

cle paths are calculated by our developed methods and

visualized in the middle plots using MATLAB’s robotic

toolbox.

Computed arm Jacobians together with the cocontrac-

tion index acc in two arbitrary contraction levels were used

to calculate the Cartesian stiffness profiles along the x

(Kcx), y (Kcy), and z (Kcz) directions, in real time (lower

plots). Results suggest that the chosen arm configurations

have modulated the direction of the realized endpoint stiff-

ness profile, proving that its volume can be adjusted using

muscular cocontractions.

6. Teleimpedance control experiments

This section presents the experimental results of the pro-

posed real-time model for the execution of remote tasks
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Fig. 9. Human configuration (top figures) and corresponding right arm musculoskeletal models (middle figures). Bottom plots illustrate

results of real-time tracking of the human endpoint stiffness in three translational axes (Kxx, Kyy, and Kzz), calculated from the human

arm kinematics and EMG data (Pn). The last two rows for each column correspond to different muscular cocontraction levels where the

arm configuration is kept constant.

with dynamic uncertainties. As a representative exam-

ple, we consider a remote wall-drilling task where the

impedance planning and regulation of the tool play a dom-

inant role in control of the interaction forces to accomplish

the task: to penetrate the drill in a hard object, the force

on the direction of the drill must be sufficiently high that it

calls for a stiffer behavior in this direction.

Conversely, to avoid the generation of unnecessary inter-

action forces in remaining Cartesian directions, a relatively

compliant behavior must be achieved so that if any unde-

sired movement is generated by the operator, the interaction

forces will remain reasonably low, so as not to damage the

tool, the environment, or the robot. This behavior is way

beyond the interaction capabilities of rigid robots or those

operated in position control mode.

The experimental setup for the drilling task is illustrated

in Figure 10. Two bricks are placed in different positions

and orientations with respect to the KUKA base frame to

evaluate the capability of the operator in adjustment of the

hand trajectories and stiffness profile (volume and geome-

try) to perform the drilling task. The EMG signals (acquired

at 1 kHz) and the arm kinematics (computed at 50 Hz) are

processed in real time and used to calculate the human

arm endpoint stiffness according to equation (6). A Carte-

sian impedance controller is developed based on the study

presented by Albu-Schaffer et al. (2003), to achieve the

desired stiffness profile (∈ R
6×6) in real time. The rotational

components of this matrix are considered constant, i.e.,

[70 70 70] Nm/rad, while translational components repli-

cate the operator’s estimated endpoint stiffness matrix in

real time. The Cartesian damping matrix is designed based

on the desired Cartesian stiffness profile and the damping

ratio ξ = 0.7, according to Albu-Schaffer et al. (2003).

Consequently, the computed joint torque profile is sent to

the KUKA robot’s torque controller through Fast Research

Interface at 500 Hz. All communication, processing, con-

trol, and synchronizations codes are developed in a C++

environment.

The subject was asked to start from an arbitrary config-

uration (e.g., see Figure 11 left figure) and guide the robot

end-effector to place the drill perpendicular to the brick on

his left and perform the drilling task (see Figure 11 middle

figure). Since the wrist kinematic data were used to control

the KUKA end-effector movements, the subject was asked

to use the shoulder and elbow configuration to control the

drilling forces by geometric adjustment of his arm endpoint

stiffness ellipsoid. If drilling forces were not sufficient and

the drill was not penetrating into the rigid object, muscular

coactivations could be used to increase the volume of the

endpoint stiffness ellipsoid. This procedure was repeated
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Fig. 10. Teleimpedance experimental setup. The muscular activities of the two antagonistic muscles are processed and used to compute

the volume-adjusting component of the endpoint stiffness. The human arm kinematics (muscle paths, moment arms, arm Jacobian, etc.)

are calculated from the three rigid body markers in real time and used to compute the geometry of the endpoint stiffness ellipsoid.

The wrist tracking data are processed and used for the control of position and orientation of the robot end-effector trajectories in real

time. The endpoint stiffness profile and the robot trajectories are achieved for the KUKA robot end-effector (drill) using an impedance

controller developed here, which is based on the work of Albu-Schaffer et al. (2003).

Fig. 11. Selected scenes from the wall-drilling experiment (see video attachment). Starting from an initial configuration (most left

figures), the operator adjusts the robot end-effector position and orientation to place the drill vertically on the brick on his left, while

adjusting the arm configuration (shoulder and elbow) to increase the stiffness on the drilling direction (middle figures). The procedure is

repeated for the right side wall, as observed in the most right figures. The stiffness ellipsoids in xy plane that correspond to a particular

arm configuration and muscular activity level (see Fig.12) are plotted at the bottom of the selected scene. The ellipsoids are plotted in

KUKA frame, which is illustrated using the yellow arrows.

for the brick on the operator’s right side, as illustrated in the

pose on the right of Figure 11. The subject had complete

visual perception of the scene, since the robot, the bricks,

and the operator were all located in the same room.

The operators processed EMG signals (filtered and nor-

malized); the estimated endpoint stiffness profiles in the

three main Cartesian directions are plotted in Figure 12. The

stiffness ellipsoids in the xy plane that correspond to a par-

ticular arm configuration and muscular activity levels (A,

B, and C) are plotted at the bottom of the selected scenes of

Figure 11. The ellipsoids are plotted in the KUKA frame,

as illustrated by the yellow arrows in Figure 11.

These results illustrate that the master is capable of mod-

ulating the task forces using selected arm poses and the

coactivation levels of the arm muscles. The achieved arm

pose of the human at each phase orients the end-effector

stiffness in such a way that the major axis, with a stiffer

profile, coincides with the drilling direction. The remaining

axes instead achieve a more compliant behavior to reduce

the effect of involuntary movement of the human wrist in

the generation of unnecessary interaction forces.

7. Conclusions

In this paper, with the purpose of achieving a desired

physical interaction performance in a teleimpedance con-

trol setup, a novel, computationally efficient, and real-time

model of the human arm endpoint stiffness was proposed.



Ajoudani et al. 165

Fig. 12. Processed (filtered and normalized) electromyography

(EMG) signals of the biceps brachii and triceps brachii muscles

are illustrated in the upper plot during the teleimpedance exper-

iment. The resulting human arm endpoint stiffness (achieved in

KUKA endpoint using the Cartesian impedance controller of the

robot), in KUKA frame of reference is illustrated in the lower plot.

Lines, A, B, and C roughly correspond to the left, middle, and right

configurations of Figure 11.

Toward this end, a real-time model of the human arm kine-

matics, including muscle paths, arm Jacobian, etc., was

introduced and used for the computation of the dominant

effect of arm kinematics in geometric modifications of the

arm endpoint stiffness. In addition, a cocontraction index

was defined using muscular activities of a dominant antag-

onistic muscle pair, which contributes to a coordinated stiff-

ening in all axes of the endpoint stiffness ellipsoid. The

calibration and identification of the model parameters were

carried out experimentally, using perturbation-based arm

endpoint stiffness measurements in different arm configu-

rations and cocontraction levels of the chosen muscles. The

proposed experimental study, which concerned the drilling

of hard objects placed in different positions and orientations

of the robot workspace, evaluated the proposed model in the

generation of a desired stiffness profile, in real time. Results

suggested that the proposed model provided the master with

the ability to regulate the direction of the principal axes of

the endpoint stiffness ellipsoid and its volume by choos-

ing the arm pose and applying muscular cocontractions,

respectively.

As mentioned previously, any reduced-complexity repre-

sentation of the highly complex human neuromotor system

is certainly subject to modeling uncertainties and inaccu-

racies. For example, the contractile element kCE depends

not only on the activation of the muscle but also on the

length of the muscle itself, which is non-linearly related to

the joint angle pose and velocity (Piovesan et al., 2013).

Furthermore, for muscles with long tendons or in elderly

individuals, the relation kSE � kCE and kPE � kCE may not

be valid (Piovesan et al., 2011).

It is important to note that some previous work (Lac-

quaniti et al., 1993; Burdet et al., 2001; Franklin et al.,

2007) has illustrated that human beings can learn to change

the orientation of the endpoint stiffness ellipsoid toward the

direction of the external disturbance. However, these studies

did not address the extent of the stiffness modulation in con-

stant arm poses, which has been quantitatively shown to be

limited in other work (Perreault et al., 2002; Trumbower et

al., 2009). In particular, Perreault et al. (2002) demonstrated

that the range of available stiffness orientations decreases as

endpoint force exertion increases,7 and the endpoint force

direction significantly constrains direction and magnitude

of the stiffness orientations that can be achieved. This range

was reported to be only 0.91◦ ± 5.85◦. Given these find-

ings, Perreault et al. (2002) claim that it appears unlikely

that static endpoint stiffness orientation is controlled inde-

pendently of force by voluntary neural mechanisms during

postural tasks.

Future work will focus on the integration of wearable tac-

tile feedback or model-mediated cutaneous force feedback

(Mitra and Niemeyer, 2008) to our teleimpedance setup for

improved transparency, while guaranteeing the robustness

and stability of the teleoperation interface.
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Notes

1. In this study, we neglect the effect of reflex feedback in muscle

stiffness variations.

2. It is worth mentioning that the main focus of this study is to

determine the active stiffness of the human limb; thus, the pas-

sive modeling (including tendon and muscle passivity) is sub-

ject to uncertainty. Especially concerning special cases, e.g.,

in elderly subjects, the tendon stiffness is likely to increase.

Future research will be conducted to evaluate the estimated

accuracy of the passive components.

3. The new kinematic model improves the accuracy of the joint

angle identification and the arm Jacobian calculation previ-

ously presented by Fang and Ding (2013). In addition, it pro-

vides muscles paths as a function of the joint angles that are

used for the calculation of moment arms, i.e., the muscle Jaco-

bian, in real time. While avoiding replication of the content of

the kinematic model published elsewhere (Fang et al., 2016),

in this paper, we aim to provide enough detail and evidence to

support the accuracy of the proposed model.

4. By calculating Kc − KT
c /Kc + KT

c , which resulted in an aver-

age value of 9% overall trials for subjects A and B.

5. Results of the identification of Ks for subjects A [3.8509,

18.8039, 7.0586, 4.8555, 0.8714, 0.0450, 9.2425, 5.3625] and

B [2.3006, 11.2550, 4.3380, 2.9111, 0.2019, 0.5832, 5.6096,

1.4676] demonstrate a good consistency between the two. The

scales are normalized to the parameter c2 in equation (5).

6. This limitation is probably the main reason for a limited

performance of non-parametric or model free approaches in
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modeling human dynamics (which are usually not directly

measurable) that require a rich training dataset.

7. Consider that force production in human beings is accompa-

nied by the coactivation of the involved antagonistic muscles,

but the reverse may not be true (Gribble et al., 2003).
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Appendix: Index to multimedia extension

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of multimedia extension.

Extension Media type Description

1 Video Video of the drilling experiment


