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ABSTRACT Photonic solutions are today a mature industrial reality concerning high speed, high throughput
data communication and switching infrastructures. It is still a matter of investigation to what extent photonics
will play a role in next-generation computing architectures. In particular, due to the recent outstanding
achievements of artificial neural networks, there is a big interest in trying to improve their speed and energy
efficiency by exploiting photonic-based hardware instead of electronic-based hardware. In this work we
review the state-of-the-art of photonic artificial neural networks. We propose a taxonomy of the existing
solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks,
and reservoir computing) with emphasis on proof-of-concept implementations. We also survey the specific
approaches developed for training photonic neural networks. Finally we discuss the open challenges and
highlight the most promising future research directions in this field.

INDEX TERMS Artificial neural networks, neural network hardware, photonics, neuromorphic computing,
photonic neural networks.

I. INTRODUCTION
Nowadays machine learning technology is used in an
impressively large number of applications, comprising image
classification, speech recognition and language transla-
tion, decision making, web searches, content filtering on
social networks, recommendations on e-commerce websites,
etc. [1]. Artificial Neural Networks (ANN) are useful for
processing large data sets, combining and analyzing vast
amounts of information quickly and without the need of
explicit instructions [2].

Multiple neural network architectures have been investi-
gated and implemented, suited to different application needs.
For the implementation of massively interconnected ANN,
the conventional computer architecture is fundamentally inef-
ficient and not scalable with respect to computation, memory,
and communication [3], [4].

To address the shortcomings of today’s computer archi-
tecture for neural networks with the aim of increasing the
computing speed and power efficiency, a growing effort
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from both the academia and the industry has focused on the
development of specifically tailored electronic architectures.
Graphics Processing Units (GPU) have been identified as
particularly suitable for implementing the parallel computing
tasks typical of ANN, and significantly contributed to the
current success of machine learning in real application sce-
narios. Recently, Field-Programmable Gate Arrays (FPGA)
and application-specific integrated circuits (ASIC) [5], [6]
(including Google Tensor Processing Units – TPU – [7],
IBM TrueNorth [4], Fujitsu’s Deep Learning Unit, and Intel
Nervana [8]) have been specifically designed to implement
ANN computations. To this aim, these novel electronic solu-
tions focus on advanced numerical representations, memory
architectures suitable for high-speed matrix multiplications,
and a very high bidirectional off-chip bandwidth (exceeding
a Tb/s) to enable model and data parallelism. Further research
aimed at speeding up electronic ANN by means of analog
architectures based on memristors [9], [10]. Very recently,
an EU-funded project has started [11], with the aim of devel-
oping a new integrated circuit technology for ANN where
low-voltage field-effect transistors and non-volatile memo-
ries are tightly integrated exploiting quantum engineering

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 175827

https://orcid.org/0000-0003-1462-3199
https://orcid.org/0000-0002-7020-1524
https://orcid.org/0000-0003-4366-0730
https://orcid.org/0000-0001-8322-6854
https://orcid.org/0000-0002-5253-3779


L. D. Marinis et al.: PNN: Survey

of heterostructures of two-dimensional materials. All these
research and development activities aim to improve both
speed and energy efficiency of machine learning tasks.

Over the years, photonic solutions for optical communi-
cation and processing evolved along the same lines, aim-
ing at increasing the transmission speed and the energy
efficiency [12]. For this reason, optical implementations of
neural networks have been investigated since a long ago,
aimed at exploiting the large parallelism (through degrees
of freedom such as wavelength, polarization, and mode) and
the high connectivity achievable with optics [13]–[15]. Addi-
tionally, many linear transformations can be performed with
passive optics without power consumption and with minimal
latency [16], and can be then detected nowadays at rates in
excess of 50 Gb/s [17]. The feasibility of optical logic gates
has also been demonstrated [18]–[20]. Furthermore many
optical nonlinearities can in principle be used to implement
the nonlinear function in each neuron [21]–[23]. These fea-
tures indicate that optical implementations of neural networks
can overcome electronic solutions in terms of computational
speed and energy efficiency.

In this paper we present a survey of the approaches pursued
in the field of Photonic Neural Networks (PNN) – alter-
natively called, sometimes, photonic neuromorphic comput-
ing – and we also propose a classification of the existing
solutions. Previous surveys dealt with just a specific class of
PNN approaches [24]–[27] or focused either on biologically
inspired approaches [28] or on bottlenecks of photonic tech-
nologies and possible ways to overcome them [29].

The remainder of the paper is organized as follows: in
Sec. II we present the motivations behind PNN, and intro-
duce a taxonomy of the approaches present in the literature.
In Sec. III we review the most relevant solutions catego-
rized according to the previously proposed taxonomy, while
in Sec. IV we describe the specific approaches devised for
training PNN. Sec. V discusses open issues and perspectives
in this field, while Sec. VI concludes the paper.

II. PHOTONIC NEUROMORPHIC COMPUTING
By following Moore’s law [30], in the last decades electronic
ANN achieved enormous improvements in terms of power
consumption, size, and speed. In particular, the breakthrough
of neural networks in the recent years was driven by the
adoption of GPU/TPU, i.e., electronic hardware tailored to
efficiently perform the matrix multiplications needed for
inference and training in neural networks [31]. However,
electronic solutions still face a main bottleneck in the inter-
connect problem: data transfer between processors and mem-
ories is constrained by unavoidable bandwidth limitations
and is the main source of power consumption even in very
optimized architectures [32].

Recently we have witnessed the rise of analog electronic
circuits aimed to replace and outperform specific parts of
a digital computer on specific tasks. The most notable
devices in this sense are memristors, two-terminal passive
elements able to ‘‘remember’’ the charge flow through them

by a resistance change [33]. The inherent reconfigurabil-
ity of memristors has been exploited mainly in crossbar
array architectures to form parallel weighting units in spik-
ing ANN [34], [35]. The main drawback of memristors con-
cerns the high power dissipation (being resistance-based),
IR drops in the array [36], the lack of accurate models for
mainstream simulation tools, and the absence of process
standards [33].

Photonics showed great potential at outperforming elec-
tronic ANN. A number of research efforts have been under-
taken in the field of photonic devices implementing neural
network functionalities. The rationale behind these studies
lies in the expected enhancements in terms of computa-
tional speed and energy efficiency when carrying out training
and inference tasks in optics, compared to state-of-the art
electronic solutions [37]. Photonic approaches can consid-
erably reduce the energy budget both in logic operations
and data movement using passive optical circuits to perform
the linear [38], [39] and in some cases nonlinear [40], [41]
operations typical of a neural network. The use of passive
elements in optics results in ultra-high operation speeds with-
out energy consumption beyond transmitters and receivers.
Another relevant feature of photonics, that can be suitably
exploited in the context of ANN, is its inherent parallelism
(underlying ANN themselves), which enables the distribution
of the computing power across the network, with each neuron
performing small parts of the computation in parallel [29].
While pioneering attempts [18] to replicate in photonics
the classical boolean electronic logic circuits did not prove
successful, the use of analog photonic computing devices
is today a promising research direction especially suited
for neural networks, which require fast and energy-efficient
(although approximated) computations.

Early research on PNN dates back to more than thirty
years ago [13], [14], [42], [43]. However, early implementa-
tions were bulky, not scalable, and suffered from the lack of
an adequate technology. A relevant enabling technology that
allowed to overcome some limitations of the initial solutions
is integrated photonics. Among the available photonic inte-
gration platforms, efforts focused mainly on Silicon [44] and
Indium Phosphide [45]–[47], being the most relevant plat-
forms also for optical communications [48]. In the following
we briefly review these material platforms.

Silicon is a great material for integrated photonics: it
is transparent at communication wavelengths (i.e. 1270-
1625 nm), its refractive index (3.48 at 1550 nm) guar-
antees a large contrast with respect to silica (1.45 at
1550 nm), and can be controlled thermally, electrically,
mechanically (strain) or chemically (doping) [29]. Addition-
ally, Silicon photonics benefits from the technology advance-
ments brought over the years by the CMOS technology, which
created a mass production platform that results both reliable
and cost-effective. For these reasons, Silicon has been widely
used to realize the passive elements exploited in integrated
PNN, e.g., waveguides, modulators, splitters/combiners and
filters.
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FIGURE 1. (a) Perceptron layers (fully connected). (b) Convolutional
layers: each neuron of the next layer is connected to only a small amount
of neurons of the previous layer, not all of them. This sparse topology is
inspired to receptive fields found in biological systems. Both (a) and (b)
are stateless networks, i.e., networks without memory. In real
implementations, convolutional neural networks can also contain fully
connected layers, especially the ones close to the output layer. (c) Stateful
networks: networks having some hidden neurons that store the past
values of some other neurons. State neurons provide to the network the
memory of what happened in the past.

On the other hand, IndiumPhosphide allows the integration
also of active devices, namely lasers and amplifiers, enabling
the realization of monolithically integrated solutions com-
prising both active and passive devices.

To take the best of the two photonic integration platforms,
and to connect themwith electronics, a number of approaches
have been pursued, recently summarized in [47].

A. TAXONOMY OF CURRENT APPROACHES
In the last few years, the field of photonic neuromorphic com-
puting has seen substantial advancements. Several solutions
were developed for various kinds of ANN, both integrated
and free-space optic (i.e., where light is not guided in a
transmission media) approaches were investigated. In some
cases, tailored training methods have also been proposed
(see Sec. IV). Before proposing a taxonomy of the existing
photonic neural networks, in Fig. 1 we have distinguished
neural networks that are stateless (i.e., without memory), like
multilayer perceptrons and convolutional neural networks,
from the ones which are stateful, such as spiking neural
networks and reservoir computing. Furthermore, we have
distinguished neural networks having only fully connected
layers, like multilayer perceptron, from those that use just
local connections to reduce the number of weights, like con-
volutional neural networks.

In the following we provide a taxonomy of the current liter-
ature in the field of PNN, sketched in Fig. 2 and then detailed
in Sec. III. Before that, in the next sub-sections we briefly
recap the characteristics of the types of neural networks that
have actually been implemented/prototyped in photonics.

1) MULTILAYER PERCEPTRONS
These architectures consist of several layers of neurons,
where each neuron is fully connected with neurons of the

previous and the successive layer. The first layer, receiving
the input signals, is called the input layer, while the final
layer, providing the inference task results, is the output layer.
At least one (shallow nets), but typically several (deep nets)
hidden layers are placed between the input and the output
layer. In each layer, the information propagates through the
neural network via linear combination (i.e., matrix multipli-
cation) of the results of the previous layer with the synaptic
weights. Each neuron then performs a nonlinear function on
the incoming signal.

2) CONVOLUTIONAL NEURAL NETWORKS
These ANN are designed to process data in the form of
multi-dimensional arrays, so they are mainly used for images
and videos [1]. Convolutional neural networks (CNN) are
composed of multiple layers: the first stages are a series of
convolutional layers, followed by pooling layers. The former
have the role to detect local conjunctions of features from
previous layers, while the latter semantically merge similar
features into one. Convolutional layers are connected through
a sparse topology, i.e., each neuron is connected to only a
small number of neurons of the previous layer. Another char-
acteristic feature of these layers is weight sharing. Between
two convolutional layers there is also a nonlinearity, typically
a rectified linear unit (ReLU). Finally, to perform the classi-
fication, a fully-connected neural network is applied to the
output of these layers.

3) SPIKING NEURAL NETWORKS
In theseANN the information is encoded into events, or spikes.
This is an hybrid encoding with both analog and digital
properties: the time at which a spike occurs is analog, while its
amplitude is digital and can thus be restored [27]. The com-
putational primitive, i.e., the spiking neuron, has generally an
integrate-and-fire response behaviour. It can be considered a
stateful neural network, since its neurons have internal time
dynamics.

4) RESERVOIR COMPUTING
These architectures follow a different approach to neuromor-
phic computing. They are composed of three layers: the input,
the reservoir, and the readout layer. The peculiarity is that
the reservoir, which should be the most complex section,
is a sparsely and randomly connected fixed network of non-
linear neurons. This means that the connectivity complexity
is typically largely reduced [24]–[26]. The actual behaviour
depends on the input and readout layers, so that a particular
reservoir can be used for different applications by changing
these layers. Training typically occurs in the readout layer.

III. LITERATURE REVIEW
Here we present a review of the current literature according
to the taxonomy described in Sec. II-A and sketched in Fig. 2.
Together with the proposed taxonomy, the figure categorizes
a number of relevant PNNproof-of-concept implementations,
indicating also their hardware design (free space optics vs.
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FIGURE 2. Taxonomy of PNN approaches and associated proofs of concept, indicating the hardware implementation (free space optics or integrated
photonics) and the operation mode (inference only or trainable). Only the types of neural networks for which a photonic version has been demonstrated
in the literature are reported.

integrated photonics) and if they can be trained in optics (a
feature that is not always present, being very complex to
implement). As the Coherent Matrix Multiplier CNN imple-
mentation comprises also fully connected layers, in Fig. 2 it
is connected to both Photonic Multilayer Perceptron and to
Photonic CNNs.

Each of the following sections describes the most relevant
approaches of each category and includes a table summa-
rizing the hardware implementation, the reported results and
applications, and the training mechanisms.

A. PHOTONIC MULTILAYER PERCEPTRONS
In [37] a general deep neural network (DNN) is proposed,
based on nanophotonic circuits that process coherent light.
As shown in Fig. 3, layers of this architecture are com-
posed of two parts: an Optical Interference Unit (OIU) that
performs the optical matrix multiplication, and an Opti-
cal Nonlinear Unit (ONU) that implements the nonlinear
activation function. The OIU consists of a cascaded array
of 56 programmable Mach-Zehnder Interferometers (MZIs).
The MZIs physically implement the singular value decom-
position, which is a factorization of any matrix M with two
unitary matrices U ,V † and a diagonal rectangular matrix
6 in the form M = U6V † [49]. Only the OIU has been
experimentally demonstrated. The ONU was emulated on
a computer converting the signal from the optical to the
electrical domain and vice versa. Even though a procedure
for on-chip training is proposed (see description in Sec. IV),

FIGURE 3. Schematic of the PNN proposed in [37]. A layer in this
architecture is formed by an Optical Interference Unit (OIU) and an
Optical Nonlinear Unit (ONU). The OIU consists of a mesh of
programmable MZIs that implement the singular value decomposition,
which is a factorization of any matrix M with two unitary matrices U, V †

and a diagonal matrix 6 in the form of M = U6V †.

in the experimental study the training was actually performed
on a computer. This implementation was tested on a vowel
recognition task reaching an accuracy of 76.7%, and more
recently on a MNIST digit recognition task (a widely used
classification benchmark), reaching an accuracy of 95% [50]
(for MNIST, the best known accuracy using DNNs trained on
electronic computers is slightly below 99% [51]).
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One of the latest works on this MZI-based approach sug-
gests a path towards quantum optical neural networks [52].
The goal is to directly exploit quantum optics features, such
as mode mixing and optical nonlinearity, in photonic neural
networks.

Back to non-quantum implementations, activity on
MZI-based OIUs continued, evaluating trade-offs between
expressivity and robustness in universal optical linear
multipliers [53]. The study compared two types of networks
based on MZI meshes, i.e., GridNet and FFTNet. The former
is an universal unitary multiplier in the shape of a grid-
like network, the latter is a less expressive (i.e. non truly-
universal) but more compact design. The lower number of
MZIs leads to reduced overall loss and noise at the expense
of waveguide crossings, because components are not in a
grid-like structure. Both architectures were compared on the
MNIST dataset and, in the case of ideal components, clas-
sification accuracies reached 97.8% for GridNet and 94.8%
for FFTNet. Fabrication inaccuracies, calibration issues and
other non-idealities were then modeled by adding indepen-
dent zero-mean gaussian noise to the phase of the phase
shifters and to the transmittance of the beam splitters. With
these non-idealities GridNet accuracy dropped below 50%,
while FFTNet maintained near constant performance. This
study showed how a more robust network can be greatly
preferred over one with higher expressivity.

The use of Semiconductor Optical Amplifiers (SOAs) for
the implementation of an Indium Phosphide-based integrated
PNN has been recently proposed in [54], [55]. The imple-
mented structure is a 3-layered neural network with four
neurons per layer where the linear part, i.e., weighting and
sum, is performed by an array of monolithically integrated
SOAs. Four input signals are encoded at different wave-
lengths and multiplexed to form a single wavelength-division
multiplexed (WDM) signal. The WDM signal is broadcast
to the neurons of the next layer and de-multiplexed through
four arrayed waveguide gratings (AWGs). The single neu-
ron is formed by four inputs, four SOAs and a 4:1 multi-
mode interference (MMI) combiner. Different weights are
implemented by tuning SOA control currents. This chip has
been used to perform a Fisher’s Iris flower classification
(another classification benchmark), reaching an accuracy
of 95% when simulated and of 85.8% when implemented,
with the decrease mainly due to distortions in E/O and
O/E conversions and to the digital implementation of the
nonlinear unit.

An all-optical implementation of a multilayer perceptron,
including the nonlinear activation function, has been reported
in [56]. The proposed architecture is based on free space
optics, encoding signals with the light power. The linear part
consists of a spatial light modulator placed at the back focal
plane of a Fourier lens, performing the linear summation,
while the nonlinear activation function is realized through
electromagnetically induced transparency. The article reports
the implementation of a two-layer fully-connected PNN for
the classification of Ising models. The electromagnetically

FIGURE 4. Photonic Weight Processing Unit reported in [57]. Input
electrical vectors are converted to optical signals and sent to the
photorefractive interaction region, which performs a matrix-vector
multiplication (weighting). Two orthogonal optical transmitters enable
the parallel execution of both inference and training. Indeed, when
the second input optical beam is sent through the perpendicular direction
of the photorefractive interaction region, it will be subjected to the
transposed weight matrix: this property is really important for an efficient
implementation of the backpropagation algorithm (which requires the
multiplication by the transposed matrix of weights).

induced transparency is produced by laser-cooled Rb atoms
in a darkline two-dimensional magneto-optical trap.

A Photonic Weight Processing Unit has been proposed
in [57]. This system, depicted in Fig. 4, stores synaptic
weights as refractive index gratings in a Gallium Arsenide
photorefractive interaction region that forms the weighting
matrix W . Gratings are written by two interfering optical
beams. During inference, input electrical vectors are con-
verted into optical signals and sent to the photorefractive
region that performs the matrix-vector multiplication. The
peculiarity of this implementation is that, when the optical
inputs are sent through the adjacent side of the photorefrac-
tive region, they are subject to the transposed weight matrix
W T . This behaviour enables the parallel execution of both
inference and training functionalities by adding a second,
orthogonally placed, transmitter/receiver chain.

Finally, in [40] a PNN implementation is proposed and
demonstrated using submillimiter waves. The neural net-
work consists of a stack of diffractive surfaces realized
by a 3D printing process. The realized prototype works at
0.4 THz. Each point on a layer acts as a neuron, character-
ized by a complex-valued response. In this case the learn-
ing phase is done through a computer, which fixes the net-
work design, while the inference (query) phase is all-optical.
This implementation has been subject to further investi-
gations towards: (i) better accuracies (97% in the MNIST
digit recognition task), (ii) integration with electronic neural
networks to achieve hybrid machine learning and computer
vision systems, and (iii) higher frame rates with lower power
consumption [58].

B. PHOTONIC CONVOLUTIONAL NEURAL NETWORKS
An all-optical integrated solution for a convolutional neural
network (CNN) is proposed in [59]. The studied solution
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TABLE 1. Photonic multilayer perceptrons.

consists of convolutional layers divided in three parts: an OIU
based on MZI that performs linear operations in the kernel
matrix, an optical nonlinearity and a tree of 3 dB splitters
feeding variable-length delay lines forming the ‘‘repatching
logic’’, i.e, a step required to reconstruct data processed by
the CNN. The delay lines are tailored such that the outputs
from a layer are synchronized in time and form a new patch
for input into the next layer’s kernel matrix.

In [60] a photonic accelerator for convolutional neural net-
works is introduced. The building blocks of this system are
microring resonator (MRR) banks, proposed in [61]. These
MRRs are designed to perform multiply and accumulate
(MAC) operations and implement the Broadcast-and-Weight
(B&W) protocol [62], [63], which relies on WDM to enable
scalable interconnections among laser neuron processors.
The B&W protocol is in principle agnostic to the type of
neural network as long as it uses multiple wavelengths. The
protocol is exploited also in spiking and perceptron-based
neural networks [64], and it enables massive parallel com-
munications among neurons. In a multinode system a WDM
signal is broadcast to all nodes in parallel and each node filters
a unique wavelength. The weighting is obtained by tuning the
drop coefficient of a node from 0% to 100%. The accelera-
tor consists of a weighting MRR bank repository, in which
microrings tune to convolutional kernel weights. The weights
are initially stored in an off-chip DRAM memory and then
they are loaded into a kernel weight buffer upon arrival of a

new layer request. An execution time improvement of three
orders of magnitude over an electronic engine was demon-
strated. This work has been further developed in [65] aiming
at improved integration and better performance in terms of
speed and power consumption. A speed between 2.8 and
14 times faster with respect to GPUs has been estimated,
while consuming 0.75 times the energy.

Staying within the same framework, we report HolyLight,
a nanophotonic accelerator meant to boost CNN inference
throughput in data centers [66]. In HolyLight-M, the first ver-
sion of this accelerator, the photonic hardware is exploited to
perform convolutions. This architecture is based on Photonic
Processing Units composed of: (i) a photonic matrix-vector
multiplier that relies on an array ofmicrodisk resonators, pho-
todetectors and a wavelength multiplexer to perform parallel
computations, (ii) a 16-bit photonic ripple carry adder con-
sisting of 16 microdisk-based 1-bit electro-optic full adders,
(iii) a Photonic Binary Shifter consisting of a square mesh
of microdisk resonators. The main bottleneck of this imple-
mentation was found in the ADCs and DACs required for
the matrix-vector multiplier, limiting the speed at 1.28 Gbps
and consuming 85.7% of the total power. The subsequent ver-
sion, called HolyLight-A, avoids the use of ADCs and DACs
by recurring to power-of-2 quantized weights. The resulting
accuracy degradation is less than 1%. The overall system
architecture is very similar to its predecessor, except in the
fact that by restricting the weight values only to exact powers
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of 2 the photonic matrix-vector multiplier has been removed.
HolyLight-A performs CNN inference 3.1 times faster than
TPUwhile improving the CNN inference throughput perWatt
by 13 times over ISAAC electronic accelerator [67].

A multi-layer hybrid optical-electrical neural network
based on an optical coherent matrix multiplier is presented
in [38]. The network layers, depicted in Fig. 5, consist of
a matrix-vector multiplier and an element-wise nonlinearity.
The multiplier combines inputs and weights, both encoded as
optical signals, and performs homodyne detection between
each signal-weight pair. The resulting electronic signals are
subjected to a nonlinear function, serialized, converted back
to optical signals and sent to the input of the next layer. Synap-
tic connections are realized by the quantum multiplication
process in homodyne detectors. This optical system can be
used for both fully-connected and convolutional layers and it
can further allow both inference and training to be performed
in the same optical device.

The use of a multi-core optical fiber to realize neural
networks has been proposed in [68]. Single cores inside the
fiber are used to realize individual neurons, while synaptic
interconnections are mimicked by means of optical coupling
between the cores. The weighting behaviour is implemented
through pump driven amplification in erbium-doped cores.
This network can be used together with a MultiMode Fiber
(MMF) for image detection as shown in [69]. Light can be
preprocessed by a digital micromirror device and projected in
theMMF. This projection in theMMF space reduces the num-
ber of required nodes, i.e., optical cores. We categorized this
solution as CNN due to the presence of sparsely connected
layers in the developed feed-forward network.

Finally, the use of diffractive surfaces tailored specifically
to realize optical convolutional layers and the consequent
improvements in realizing CNNs have been reported in [70].

C. PHOTONIC SPIKING NEURAL NETWORKS
Substantial research works have been conducted in this field
for many years, as summarized in [27], initially exploiting
ultrafast bulk optical components connected to realize large
fiber-based systems. Successive photonic implementations
pushed integrability aiming at greater scalability and energy
efficiency, hardware cost reduction, and robustness to envi-
ronmental fluctuations.

A graphene excitable laser was proposed as a spiking
neuron [71], the fundamental building block for spike infor-
mation processing. The embedded graphene layer was used
as an optical saturable absorber to perform the nonlinear
activation function. The structure was modelled as integrated,
but realized as a fiber-based prototype for the demonstration
of two applications: temporal pattern recognition and stable
recurrence.

A more compact and faster approach was recently pro-
posed in [63], where the neuron is based on a distributed
feedback (DFB) laser instantiated on an Indium Phosphide
platform. The laser has two photodetectors enabling both
inhibitory and excitatory stimuli. This system is compatible

with the B&W protocol [62]. The proposed device can pro-
cess up to 1012 MACs/s. The use of semiconductor excitable
lasers is a common choice for realizing a spiking neuron:
many of these devices have been proposed, and a summary
can be found in [72].

A new type of device for a spiking neuron, that can be
also interfaced with photonic synapses, was reported in [73].
The proposed solution implements a bipolar integrate-and-
fire neuron in which the integration unit consists of two
double bus ring resonators with an embedded Phase Change
Material (PCM), namely Ge2Sb2Te5 (GST), controlling the
propagation in the ring. The resonators’ output is summed
and used to excite the firing unit composed of a photonic
amplifier, a circulator and a rectangular waveguide with a
GST element on top. This neuron was used to simulate a fully
connected network with three layers for an handwritten digit
recognition task. This spiking neuron can be integrated with
GST-embedded photonic synapses proposed in [74] to form
an all-photonic spiking neural network. This work has been
further developed with the proposal of a photonic dot product
engine (i.e. matrix-vector product) in [75].

Another PCM-based approach to produce an all-optical
spiking neurosynaptic network was reported in [76]. The
proposed structure, depicted in Fig. 6, is a fully connected
network where in each neuron the input spikes are weighted
using PCMcells over waveguides (synaptic interconnections)
and summed using a wavelength-division multiplexer based
on an MRR arrays. The spiking mechanism is enabled by
a PCM cell over a ring resonator. Spiking occurs if the
integrated power of the post-synaptic spikes exceeds a cer-
tain threshold following a nonlinear response resembling the
ReLU function. The study not only proposes a multilayered
fully connected network with proof of supervised learning,
but it also presents and demonstrates a design variation allow-
ing unsupervised learning. This is obtained by overlapping
(in time) the output pulses with the input pulses through a
feedback line. The synaptic weights of all inputs that con-
tributed to a spike generation are increased, while the others
are decreased (implementing a simplified variation of the
spike timing-dependent plasticity).

Finally, we report the investigation of superconducting
optoelectronic spiking neurons, called Loop Neurons and
described in [77] and references therein. These neurons use
single photon detectors to detect incoming spikes encoded
in single photons. Detection events are integrated and con-
verted in a supercurrent by a Josephson circuit that ulti-
mately stores it in a superconductive loop. The threshold
behaviour is performed by a Josephson junction: when the
stored current exceeds its crucial current a fluxon is produced,
which triggers an amplification sequence. The result of this
amplification is light emission from an LED, i.e., the fir-
ing event. Synaptic weights are dynamically managed by a
parallel circuit that combines another single photon detector
and another Josephson junction. A network of these neurons
spanning a whole 300 mm Si wafer, i.e., one million neurons
and 200million synapses, would dissipate only 1W of power.
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FIGURE 5. Layer diagram of the architecture based on optical coherent matrix multiplication proposed in [38]. In this
solution both inputs and weights are encoded as serial optical signals. Input vectors are replicated and combined with
the weights through a multiplier that performs homodyne detection between each signal-weight pair. The nonlinear
activation function is thus performed in the electrical domain. Finally, the resulting electrical vectors are serialized,
converted to optical signals and sent to the input of the next layer.

TABLE 2. Photonic convolutional neural networks.

However, the working temperature of 4.3 K and the subse-
quent need of a cryogenic cooler result to be the main bot-
tleneck of this architecture. To achieve the superconducting
behaviour a cryogenic system, consisting of liquid Helium,
is required consuming 1 kW without power being dissipated
on-chip and 1 kW per on-chip dissipated W.

D. PHOTONIC RESERVOIR COMPUTING
Reservoir computing has attracted a lot of attention in the
last decades because of its potential versatility. The reser-
voir is a highly dynamical system used to perform signal-
mixing of the inputs, and the resulting reservoir states are then
processed by an application-specific readout. The peculiarity

of this approach is that the most complex part of the PNN,
i.e., the reservoir, is fixed and can be used for multiple
tasks by changing the readout. Two papers provide a good
introduction to this topic, surveying different physical real-
izations of reservoirs (from electronic through photonic to
biological) [26], and focusing on the most promising appli-
cations of photonic reservoirs [25].

A reservoir computing architecture realized with only pas-
sive photonic elements was demonstrated in [39]. It con-
sists of a 16-node square mesh of splitters, waveguides,
and optical combiners, resulting in a complex and random
interferometer [24]. Being a fully passive reservoir, it is ideal
in terms of energy efficiency, but it is an inherently linear
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FIGURE 6. Scheme of the Spiking Neuron proposed in [76]. The structure exploit a Phase Change Material
(PCM) placed over the waveguides. The input spikes are weighted using PCM cells (I) and summed through
a wavelength division multiplexer based on an MRR array (II). The spiking mechanism is enabled by a PCM
cell (III) over a ring resonator (IV): if the integrated input power exceeds a certain threshold, a spike occurs
with a nonlinear response resembling the ReLU function.

TABLE 3. Photonic spiking neural networks.

device. The lack of nonlinearity is compensated in the readout
part, exploiting the nonlinear response of a fast photodiode.

Recently a photonic reservoir has been proposed, based on
silicon all-pass MRRs as nodes in a 4×4 swirl topology [41].
This reservoir architecture, depicted in Fig. 7, results to be
both passive and nonlinear thanks to the ring resonator nodes,
with the advantage that the readout can be linear. The network
has been numerically tested for a boolean XOR task, training
the linear readout using ridge regression.

Another photonic reservoir architecture suitable for inte-
gration on a silicon chip has been recently proposed, made
of a photonic crystal cavity resonator with a quarter-stadium
shape [78]. The cavity consists of holes with a radius
of 155 nm etched from a 220 nm silicon slab, and is connected

to external waveguides through W1-defects in the photonic
crystal cavity walls. Light is sent inside through one W1-
defect, while the other waveguides are used for the readout.
This structure was numerically tested in a header recognition
task and in boolean XOR and AND tasks.

The use of vertical cavity surface emitting lasers (VCSELs)
in the field of PNN ismainly investigated as a base for spiking
neurons [72]. Nevertheless, a photonic reservoir based on a
diffractively coupled VCSEL matrix has also been reported
in [79]. This reservoir is based on diffractive imaging. Light
emission from the VCSELmatrix crosses a diffractive optical
element and is imaged onto a reflective spatial light modula-
tor that controls the network coupling weights. This coupling
introduces nonlinear dynamics in the system.
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FIGURE 7. Reservoir based on Nonlinear Passive Microring Resonators
proposed in [41]. The reservoir is both passive and nonlinear thanks to
the use of MRRs in a 4× 4 swirl topology. The nonlinear behaviour of the
reservoir relaxes the readout complexity.

Finally, time-delayed reservoir architectures have been
proposed, where a more complex recurrent network is emu-
latedwith a single nonlinear node bymeans of a delay line in a
closed loop. The realization presented in [80] exploits a semi-
conductor laser coupled to an optical fiber delay loop to form
the reservoir. The loop comprises an optical circulator that
defines the propagation direction and suppresses unwanted
reflections. Feedback conditions are controlled through a
polarization controller and an attenuator.

IV. TRAINING
Training is a nontrivial aspect of neural networks as it does
not only influence the network behavior, but it also affects
its overall performance. In supervised learning, the training
procedure makes use of an objective function that measures
the distance (or error) between the desired output and the
actual one. This function is used to adjust the neural network
internal parameters, i.e., the weights in synapses. In order to
minimize the objective function, a gradient vector is com-
puted, to assess the way the error is affected by the change
of any weight [1].

Whenever there is a change in the nature of the data being
treated by the network, it needs to be retrained. This is called
learning. This retraining can be done gradually as the network
performs the inference (online learning), or it can be done by
a separate machine that adjusts the network according to a
new batch of training data (offline learning).

Since the training involves gradient computation or even
more complex computations, it is a resource and time con-
suming phase. On the contrary, the inference (i.e., query-
ing the neural network) is a much simpler process, since
the weights are assumed known at this stage. For this rea-
son, many PNN implementations support only the inference
phase, and the weights are obtained by using software imple-
mentations. Some implementations cannot be trained at all,
like the deep diffractive neural network presented in [40].
These architectures are very fast and power efficient, but
application-specific, since their weights are frozen in hard-
ware during fabrication. However, training in the electrical

domain has two main drawbacks: (i) a dependence of the
physical system on the model accuracy is added, and (ii) the
speed and power efficiency improvements associated with the
use of a photonic architecture are likely to be lost [81].

To take full advantage of photonic technology, the training,
although complex, should be specifically tailored for optical
architectures. Below the most relevant training methods pro-
posed for PNN are reviewed and summarized in Table 5.

A. ON-CHIP FORWARD PROPAGATION
In [37], together with the coherent nanophotonic circuit, a on-
chip training method tailored for this PNN was presented,
even though the neural network used in the experimental
demonstration was trained on a conventional computer.

This PNN is suitable for obtaining every parameter’s gra-
dient by forward propagation and finite difference method:
two forward propagations are carried out on-chip to relate the
cost function to a parameter’s actual value and a perturbed
version of it. The gradient associated with that parameter is
then calculated by finite difference.

This training was proven through simulations. Thanks to
the on-chip implementation, this method follows the PNN
forward propagation speed and its power consumption scales
with the number of distinct parameters, instead of the number
of total parameters as in a conventional backpropagation [37].

B. IN SITU BACKPROPAGATION AND GRADIENT
MEASUREMENT
The method, proposed in [81], develops backpropagation on
a physical realization of the adjoint variable method, which
is typically implemented for the optimization and inverse
design of photonic structures. The procedure implements this
method by physically propagating the adjoint field and inter-
fering its time-reversed copy with the original field. Gradient
terms, expressed as the solution to an electromagnetic adjoint
problem, can be directly retrieved through in situ intensity
measurement.

In [81], the discussion focuses on the well-known coherent
nanophotonic circuit [37], that is used as the basis for a sim-
ulation of the training procedure on a simple XOR problem.

The most significant aspect of this method is that it has
been developed starting from Maxwell’s equations and not
over a particular network, so it can be potentially extended to
different photonic platforms. The method scales in constant
timewith respect to the number of parameters, allowing back-
propagation to be efficiently implemented in a hybrid opto-
electronic network. The main limitation of the procedure is
that it is exact only in the limit of a lossless, feed-forward
and reciprocal system. Uniform losses are not an issue, but
they must be taken into account by adding a step for scaling
the measured gradients.

C. TRAINING PHOTONIC CONVOLUTIONAL NEURAL
NETWORK WITH SINUSOIDAL ACTIVATIONS
The problem of training actual hardware realizations of PNN
is discussed in [82]. The chosen basis architecture for a fully
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TABLE 4. Photonic reservoir computing.

optical neural network is a variation of the one proposed
in [61], where positive and negative weights are implemented
through couples of WDM signals, and the activation function
is sinusoidal (which should ensure the highest expressivity).

At first, the problem of PNN initialization, i.e., the choice
of initial weights, is addressed. These values are derived from
the constraint of constant variance of input signals through the
various layers, in order to allow the information to arrive to
the employed training error function and to ensure the smooth
flow of gradients.

The second tackled issue is the bounding of the neurons’
response, i.e., the response of the activation function, since
physical systems work better within a specific power range.
This problem is addressed together with the weight regu-
larization, a method used in ‘‘classical’’ contexts to reduce
overfitting phenomena, here employedwith the aim to impose
constraints dictated by the PNN hardware.

The third non-ideality discussed is Noise-Aware Training,
which is of paramount importance when dealing with phys-
ical implementations. The developed training method aims
to significantly increase noise robustness by allowing the
network to adapt to the actual characteristics of the hardware
implementation.

Finally, the proposed methods have been tested using
three different CNNs in four different recognition problems:
MNIST dataset, MNIST fashion dataset, CIFAR10 dataset
and the FI-2010 dataset. The methods have been separately
evaluated and finally a proof of concept has demonstrated
that they can also tackle all aforementioned issues (activation
limits, weights limits, and noise) at the same time.

D. NONLINEARITY INVERSION
In photonic reservoir computing, training concerns the read-
out layer. Recent research in photonic reservoir mainly
focused on reservoir layer development, with several struc-
tures proposed (see Sec. III-D). Nevertheless the readout
layer is of fundamental importance because it defines the net-
work behavior and, unlike the reservoir, it has to be properly
trained. Training and signal mixing in the readout has been
so far developed in the electrical domain [39], but this results
in a limitation of the speed and of the power consumption
reduction achievable with an all-optical reservoir.

Implementing an all-optical readout requires only a single
photodetector that receives the weighted sum of all optical
signals. This approach has a relevant drawback: the direct
observability of the photonic reservoir states is lost. Observa-
tion of the internal states is required in classical linear readout
training algorithms, such as ridge regression.

In [83] a training procedure, called nonlinearity inversion,
is proposed, that overcomes the observability problem of an
all-optical readout. The method solves this issue by estimat-
ing the amplitude and phase of the reservoir states through a
single photodetector (the absolute phase is lost, but relative
phases can be obtained). Complex states are observed by
appropriately setting the readout weights while iterating over
a predefined input sequence. The training procedure has been
numerically tested on a 3-bit header recognition task over a
wide range of input signal bit rates. The baseline approach
still exhibits a slightly better task performance, but it needs a
more complex hardware implementation and is applicable in
a smaller range of bit rates.
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TABLE 5. Training methods for PNN.

V. DISCUSSIONS: THE LONG MARCH TOWARDS TRULY
DEEP PNN
From the presented survey, it becomes apparent that the
challenge of developing truly deep neural networks with pho-
tonics is still open. Photonic multilayer perceptrons and pho-
tonic spiking neural networks seem to have a lot of potential
towards the realization of all-optical ANNs. While waiting
for these long-term breakthroughs, photonic accelerators for
CNNs seems to be, in the short term, the most promising
photonic solutions in order to enhance inference speed and
to reduce power consumption.

Both prominent companies [53], [57] and fast-growing
start-ups [50], [84]–[86] are actively working in the field,
which indicates a growing industrial interest and possibly
practical applications in the foreseeable future.

However, there are still many under-investigated opportu-
nities to improve the implementation of PNN. Furthermore,
some types of deep neural networks (Long-Short-TermMem-
ory Neural Networks, Generative Adversarial Nets, Geomet-
ric Deep Neural Networks, Deep Belief Networks, Deep
Boltzmann Machines, etc.) have not yet been implemented
using photonics.

In fact, more research is needed to assess whether a specific
type of deep neural network can be implemented optically
in an efficient manner, i.e., in a way that provides advan-
tages with respect to fully electronic implementations. For
instance, an open question is whether or not this is the case
with respect to Hyperdimensional Learning (HL), proposed
in [87], a really promising approach to neural networks,
which is still in its infancy. Here the problem of a photonic
implementation mainly resides in the very large size of the
internal representation of objects used in HL.

Regarding the actual realization of PNN, the ultimate goal
is to demonstrate large networks with thousands of nodes
and interconnections across many hidden layers, i.e., truly
deep architectures. With this in mind, it is evident how essen-
tial are the PNN cascadability (enabled by low propagation

losses, crosstalk, and noise [54]) and robustness not only to
fabrication imperfections, but also to parameter drifts over
time [29]. Resonant structures like microring resonators are
particularly sensitive to manufacturing deviations: this issue
needs to be properly addressed in relation to their use in
PNN, as discussed in [88]. On the other hand, linear optical
processors based on MZI appear to be more robust to pro-
cess inaccuracies, thanks also to their reconfigurability: some
studies discuss how to achieve reliable photonic computations
even with imperfect components [89], [90].

Furthermore, the photonic implementation of the nonlinear
activation function is a relevant aspect that still requires ade-
quate investigation. Indeed many demonstrations still emu-
late the nonlinearities in software, as the integration of non-
linear elements is still challenging. Several approaches to
address this issue have been reported, including devices based
on: MZIs [91], [92], graphene and quantum well electro-
optic absorption modulators [93], and photonic crystals [94].

Some technological breakthroughs would be beneficial
to PNN, in particular the implementation of an integrable,
non-volatile and energy-efficient photonic memory element.
In this scenario the use of Phase Change Materials (PCM)
seems the most promising approach in order to achieve
such photonic memories, since they have also shown the
potentiality for multi-level storage [95]. PCM cells have
been recently exploited in PNN, mainly for spiking neural
networks [73], [74], [76].

VI. CONCLUSION
In this work we have reviewed the most relevant implementa-
tions of ANN with photonic hardware. In particular, we have
proposed a taxonomy of both stateless and stateful PNN,
allowing to group the demonstrated architectures and high-
light similarities, technological issues and trends. We have
then reviewed specific approaches for the training of PNN,
which is the most challenging task to accomplish even in
photonics.
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The progress in the field of PNN is indeed remarkable,
especially in the latest years, and new promising research
directions are emerging, with potentially disruptive impact
on developing faster and/or less energy-hungry PNN imple-
mentations. Many challenges are still to be overcome: many
diverse material platforms are being investigated without a
clear winner, the maturity of the developed hardware must
improve (in many demonstrators critical elements are still
emulated in electronics), the scalability and the robustness of
the proposed PNN architectures should grow in order to meet
the requirements of typical machine learning problems.

Nevertheless the growing research efforts both from
academia, prominent companies, and fast-growing start-ups
indicate that the coming years will witness a huge expansion
of this field, with strong potentials to address real-world
applications.
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