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Abstract. We review our recent work on the derivation of the nuclear electromagnetic charge
and current operators in chiral perturbation theory, based on time-ordered perturbation theory.
We then discuss the strategies for fixing the relevant low-energy constants, and compare the
resulting predictions for the electric and magnetic form factors of the deuteron and trinucleons
with experimental data, using as input accurate nuclear wave functions derived with realistic
potentials.

1. Introduction

Besides providing a justification for the hierarchy of nuclear forces, establishing a clear contact
with the underlying theory of strong interaction and its symmetries, and leading to a well
defined expansion scheme, susceptible of systematic improvement, the chiral effective field
theory (χEFT) is ideally suited for deriving consistent electroweak currents. Indeed, chiral
perturbation theory is formulated as an effective theory of external currents, which are coupled
to the degrees of freedom of the fundamental theory. The constraints imposed by chiral
symmetry, so-called chiral Ward identities, are obtained promoting the global chiral symmetry
to a local one [1], with the external currents rμ and �μ, representing the corresponding gauge
fields. The explicit breaking of chiral symmetry by quark masses and electromagnetic currents
is naturally implemented: correlation functions are to be evaluated with the scalar source χ
proportional to the quark mass matrix and the external currents set equal to the photon field,
rμ = �μ = QAμ with Q = ediag(2

3 ,−1
3) in the meson sector and Q = ediag(1, 0) in the

nucleon sector. Indeed, soon after the Weinberg proposal [2] in the 90s, electroweak transition
operators have been addressed by Park, Min and Rho [3], using covariant perturbation theory.
Nuclear electromagnetic currents and charge operators have recently been rederived in time-
ordered perturbation theory [4, 5, 6, 7] and in the so-called unitary transformation method [8, 9]
within the same scheme as for the NN potential [10] based on the Okubo procedure [11]. The
similarities and differences among these approaches are discussed in Refs. [4, 5, 9]. In what
follows we describe the approach based on time-ordered perturbation theory (TOPT).
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The effective Lagrangian is the most general one invariant under chiral symmetry: it contains
an infinite number of operators, classified according to the chiral counting, a combined expansion
in powers of quark masses and small momenta, with χ ∼ O(p2). The chiral counting is thus
the organizing principle: it works because Goldstone bosons have derivative interactions, as
dictated by the Goldstone’s theorem. From the chiral Lagrangian (see Ref. [12]), the canonical
formalism allows to obtain the Hamiltonian which describes the interactions of pions, nucleons
and photons. For the present discussion the following contributions are relevant

HπN =

∫
dxN †

[gA τa

Fπ
σ · ∇πa+

τ

F 2
π

· (π × ∂ 0
π) + . . .

]
N, (1)

HγN = e

∫
dxN †

[
eN A0 + i

eN

2 m

(
−
←−
∇ · A + A ·

−→
∇

)
−

μN

2 m
σ · ∇ × A

−
2 μN − eN

8 m2

(
∇

2A0 + σ × ∇A0 ·
−→
∇ −

←−
∇ · σ × ∇A0

)
+ . . .

]
N , (2)

Hγπ = e

∫
dx

[
A0

(
π × ∂ 0

π
)
z
+ εzab πa (∇πb) · A + . . .

]
, (3)

HγπN = e

∫
dxN †

[
−

gA

Fπ
(τ × π)z σ · A +

gA

2 m Fπ
(τ · π + πz) σ · ∇A0

+

(
d′8
Fπ

∇πz +
d′9
Fπ

τa∇πa +
d′21

Fπ
εzabτb σ × ∇πa

)
· ∇ × A + . . .

]
N . (4)

Here gA is the nucleon axial coupling, Fπ the pion decay constant, e the proton electric charge
and m the nucleon mass, while the parameters di are (unknown) low-energy constants (LECs).
σ and τ are the spin and isospin Pauli matrices, and the isospin operators eN and μN are defined
as

eN = (1 + τz)/2 , κN = (κS + κV τz)/2 , μN = eN + κN , (5)

with κS and κV denoting the isoscalar and isovector combinations of the anomalous magnetic
moments of the proton and neutron. The non-relativistic nucleon field N is an isospin doublet,
while pions are described by the isovector π and photons by the four-vector Aμ. The chiral
dimension of the resulting vertices is obtained by counting the powers of Q, the low-momentum
scale, or equivalently the number of gradients, e.g. the two terms in HπN are each of order ∼ Q,
while the first terms in HγπN are of order ∼ e Q0 and ∼ e Q, and the remaining ones in second
line of equation (4) are of order ∼ e Q2.

The two-nucleon contact Hamiltonian can be written as

HCT =

∫
dx

[
1

2
CS N †NN †N +

1

2
CT N †	σN · N †	σN

−
1

32
(16C1 − C2 − 3C4 − C7)∇

2(N †N)N †N

+
1

32
(C2 + 3C4 + C7)∇

2(N †τaN)N †τaN

−
1

32
(16C3 − C2 + C4 + C7)∇

2(N †σiN)N †σiN

+
1

32
(C2 − C4 − C7)∇

2(N †σiτaN)N †σiτaN

−
i

8
C5

[
	∇ · (N †←→∇ ×	σN)N †N − N †←→∇ N · 	∇× (N †	σN)

]

+
1

16
(8C6 − C7) 	∇ · (N †	σN)	∇ · (N †	σN) −

1

16
C7

	∇ · (N †	στaN)	∇ · (N †	στaN)

]
,(6)
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where, inside a fermion bilinear,
←→
∇ =

−→
∇ −

←−
∇. Here relativistic corrections [13] have been

ignored, while the definition of the LECs Ci, typically determined by fitting low-energy two-
nucleon scattering data and the deuteron binding energy, is chosen so as to conform to
standard notation In addition, Fierz identities have been used such that the resulting nucleon-
nucleon potential can be put in local form [14]. Minimal substitution in this Hamiltonian,
∇N → (∇ − i e eNA)N in HCT leads to a (contact) Hamiltonian Hγm

CT which includes the
coupling to the EM field and implies a (two-nucleon) contact current operator. It is also necessary
to consider non-minimal couplings, entering through the electromagnetic field tensor Fμν . The
only two independent operator structures are

Hγnm
CT = e

∫
dx

[
C ′

15 N †
σN N †N + C ′

16

(
N †

σ τzN N †N − N †
σN N †τzN

)]
· ∇ × A ,

where the isoscalar C ′
15 and isovector C ′

16 LECs (as well as the di’s multiplying the higher order
terms in the γπN Hamiltonian) can be determined by fitting photo-nuclear data in few-nucleon
systems.

2. From amplitudes to potentials

A generic transition amplitude, e.g. the two-nucleon scattering amplitude, can be calculated
from the above Hamiltonians in the conventional TOPT, as

〈f | T | i〉 = 〈f | H1

∞∑
n=1

(
1

Ei − H0 + i η
H1

)n−1

| i〉 , (7)

with |i〉 and |f〉 representing the initial and final NN states of energy Ei = Ef , H0 the free
Hamiltonian of pions and nucleons and H1 containing the interactions. The time-ordered
diagrams are obtained inserting complete sets of H0 eigenstates between successive terms of
H1. The infinite number of contributions are ordered according to the power counting in powers
of Q/Λχ � 1, where Q is the generic pion momentum and Λχ 	 1 GeV is the typical hadronic
mass scale, i.e. the mass of the states not protected by chiral symmetry.

A generic contribution in the perturbative series, equation (7), is characterized by a certain
number N of vertices, each scaling as Qαi ×Q−βi/2 (i=1, . . . , N), where αi is the power counting
implied by the relevant interaction Hamiltonian and βi is the number of pions attached to the
vertex, a corresponding N–1 number of energy denominators, and possibly L loops. Out of
these N–1 energy denominators, NK will involve only nucleon kinetic energies, which scale as
Q2, and the remaining N − NK − 1 will involve, in addition, pion energies, which are of order
Q. Loops contribute a factor Q3 each, since they imply integrations over intermediate three
momenta. Hence the power counting associated with such a contribution is(

N∏
i=1

Qαi−βi/2

)
×

[
Q−(N−NK−1) Q−2NK

]
× Q3L . (8)

Each of the N − NK − 1 ”large” energy denominators can in turn be expanded as

1

Ei − EI − ωπ
= −

1

ωπ

[
1 +

Ei − EI

ωπ
+

(Ei − EI)
2

ω2
π

+ . . .

]
, (9)

where EI denotes the kinetic energy of the intermediate two-nucleon state, ωπ the pion energies,
and the ratio (Ei − EI)/ωπ is of order Q. As a result the two-nucleon scattering amplitude T
can be expanded as

T = T (0) + T (1) + T (2) + . . . , (10)
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where T (n) ∼ Qn. We can define a two-nucleon potential v such that, when iterated in the
Lippmann-Schwinger (LS) equation,

v + v G0 v + v G0 v G0 v + . . . , (11)

with G0 the free two-nucleon propagator, G0 = 1/(Ei −EI + i η), it leads to the on-the-energy-
shell (Ei = Ef ) T -matrix in equation (10), order by order in the power counting, assuming
that

v = v(0) + v(1) + v(2) + . . . , (12)

admits the same expansion with v(n) of order Qn. This procedure implies that

v(0) = T (0) , (13)

v(1) = T (1) −
[
v(0) G0 v(0)

]
, (14)

v(2) = T (2) −
[
v(0) G0 v(0) G0 v(0)

]
−

[
v(1) G0 v(0) + v(0) G0 v(1)

]
, (15)

v(3) = T (3) −
[
v(0) G0 v(0) G0 v(0) G0 v(0)

]
−

[
v(1) G0 v(0) G0 v(0) + permutations

]
−

[
v(2) G0 v(0) + v(0) G0 v(2)

]
−

[
v(1) G0 v(1)

]
. (16)

Since the potential is thus defined from on-shell amplitudes order by order, different off-shell
extensions of the potential at a given order lead to different (on-shell) potentials at higher orders.
In fact, there is an infinite class of v(2)(ν) non-static corrections–labeled by the parameter
ν [15, 16, 17, 6]–which, while equivalent on the energy-shell, are different off the energy-shell,
and therefore lead to different potentials v(3)(ν) in equation (16). However, this ambiguity is of
no consequence, since it can be shown that different off-the-energy-shell extrapolations v(2)(ν)
and v(3)(ν) are unitarily equivalent [15, 6].

The inclusion (in first order) of electromagnetic interactions in the perturbative expansion of
equation (7) is straightforward: the transition operator can be expanded as

Tγ = T (−3)
γ + T (−2)

γ + T (−1)
γ + . . . , (17)

where T
(n)
γ is of order e Qn (e is the electric charge). The nuclear charge, ρ, and current, j,

operators follow from vγ = A0 ρ−A · j, where Aμ = (A0,A) is the electromagnetic vector field,
and it is assumed that vγ has a similar expansion as Tγ . The requirement that, in the context
of the LS equation, vγ matches Tγ order by order in the power counting implies the following
relations:

v(−3)
γ = T (−3)

γ (18)

v(−2)
γ = T (−2)

γ −
[
v(−3)
γ G0 v(0) + v(0) G0 v(−3)

γ

]
, (19)

v(−1)
γ = T (−1)

γ −
[
v(−3)
γ G0 v(0) G0 v(0) + permutations

]
−

[
v(−2)
γ G0 v(0) + v(0) G0 v(−2)

γ

]
, (20)

v(0)
γ = T (0)

γ −
[
v(−3)
γ G0 v(0) G0 v(0) G0 v(0) + permutations

]
−

[
v(−2)
γ G0 v(0) G0 v(0) + permutations

]
−

[
v(−1)
γ G0 v(0) + v(0) G0 v(−1)

γ

]
−

[
v(−3)
γ G0 v(2) + v(2) G0 v(−3)

γ

]
, (21)

v(1)
γ = T (1)

γ −
[
v(−3)
γ G0 v(0) G0 v(0) G0 v(0) G0 v(0) + permutations

]
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−
[
v(−2)
γ G0 v(0) G0 v(0) G0 v(0) + permutations

]
−

[
v(−1)
γ G0 v(0) G0 v(0) + permutations

]
−

[
v(0)
γ G0 v(0) + v(0) G0 v(0)

γ

]
−

[
v(−3)
γ G0 v(2) G0 v(0) + permutations

]
−

[
v(−3)
γ G0 v(3) + v(3) G0 v(−3)

γ

]
, (22)

where v
(n)
γ = A0 ρ(n) − A · j(n), v(n) are the NN potentials constructed in equations (13)–(16)

(the ν dependence of v(2) and v(3) is understood), and use has been made of the fact that v(1)

vanishes. In the propagator G0, the initial energy Ei includes the photon energy ωγ (itself of
order Q2), since Ei = E1 + E2 + ωγ = E ′

1 + E ′
2, and the intermediate energy EI may include, in

addition to the kinetic energies of the intermediate nucleons, also the photon energy, depending
on the specific time ordering being considered.

3. Electromagnetic current and charge operators up to one loop

The contributions to the electromagnetic current operator up to one loop, as resulting from
the interaction Hamiltonians and the perturbative expansion outlined above, are illustrated
diagrammatically in figure 1. Since there is no n = −3 contribution to j the current operator is
unaffected by the non-static corrections entering the potentials v(2) and v(3). The lowest order
(n = −2) consists of the single-nucleon convection and spin-magnetization currents:

j(−2) =
e

2 m
(2 eN,1 K1 + i μN,1 σ1 × q + 1 ⇀↽ 2) , (23)

where q is the momentum carried by the external field, ki and Ki denote the combinations of
initial and final nucleon momenta ki = p′

i − pi, Ki = (p′
i + pi)/2, and eN,i and μN,i have been

defined in equation (5). The counting e Q−2 follows from the product of a factor e Q1 associated
with the γNN vertex, and a factor Q−3 due to the momentum-conserving δ-function implicit in
a disconnected term of this type. In this one-body contribution we also include a q2-dependence
(which would only arise at successive chiral orders) in the form of the electric and magnetic
form factors, as resulting from fits of electron scattering on the proton and deuteron. We refer

eQ−2

eQ−1

eQ0

eQ

Figure 1. Diagrams illustrating one- and two-body currents entering at LO (e Q−2), NLO
(e Q−1), N2LO (e Q 0), and N3LO (e Q 1). Nucleons, pions, and photons are denoted by solid,
dashed, and wavy lines. Only the relevant topologies are indicated. Loop corrections to short-
range currents turn out to vanish.

to Refs. [4, 5, 7] for the explicit expressions up to N3LO, as obtained within the formalism
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outlined in section 2. They depend on the known parameters gA and Fπ (NLO and N3LO), and
the nucleon’s magnetic moments (LO and N2LO). Loop corrections to the short-range currents
turn out to cancel [7]. Unknown LECs enter the N3LO one-pion exchange (OPE) contribution
involving the γπN vertex of order e Q2 from HγπN ,

j
(1)
γπN = i e

gA

F 2
π

σ2 · k2

ω2
k2

[(
d′8τ2,z + d′9 τ1 · τ2

)
k2 − d′21(τ1 × τ2)z σ1 × k2

]
× q + 1 ⇀↽ 2 . (24)

The contributing LECs could be fixed by relating them, in a resonance saturation picture, to
the couplings in the N to Δ excitation and ρπγ transition currents, or they could be fixed by
pion photo-production data on a single nucleon or photo-nuclear data at low energies. Further
LECs enter the two-contact currents, from minimal and non-minimal substitution,

j
(1)
CT,m =

i

16
(τ1 × τ2)z

[
[C2 + 3C4 + C7 + (C2 − C4 − C7)σ1 · σ2] (k1 − k2)

+C7 [σ1 · (k1 − k2)σ2 + σ2 · (k1 − k2)σ1]
]

−
i C5

4
(σ1 + σ2) × (e1 k1 + e2 k2) , (25)

where the Ci can be taken from the NN potential, and

j
(1)
CT,nm = −i e

[
C ′

15 σ1 + C ′
16 (τ1,z − τ2,z)σ1

]
× q + 1 ⇀↽ 2 . (26)

No three-body currents arise up to N3LO included here, due to cancellations between irreducible
and recoil-corrected reducible diagrams, similarly to what happens for the three-nucleon force.

Diagrams contributing to the charge operators ρ(n) up to order e Q1 (N4LO) included are
illustrated in figure 2. The leading contribution, of order e Q−3, is a one-body operator and
results from the first term of the γN interaction Hamiltonian in equation (2),

ρ(−3) = e eN,1 + 1 ⇀↽ 2 , (27)

and, as before, electric form factors can be included, even if they would arise at successive
chiral orders. There are no NLO (e Q−2) contributions, whereas at N2LO there is a relativistic
correction of order (Q/m)2 to the LO charge operator, which results from the second line of
equation (2). At this order, there are in principle also a pion-in-flight term, which, however, turns
out to vanish when the contributions of the six time-ordered diagrams, evaluated in the static
limit, are summed up, and a OPE contribution, which vanishes due to a similar cancellation. The
power counting is different from the current operator, for which the LO term is of order e Q−2

(in the two-nucleon system), i.e. it is suppressed by an extra power of Q relative to ρ(−3), and
where there are NLO (e Q−1) corrections involving seagull and in-flight contributions associated
with OPE, which have no counterpart in the present case. The pion-in-flight and OPE diagrams
also lead to N3LO contributions due to non-static corrections resulting from the expansion of
the denominators involving pion energies as in equation (9). In particular, the specific form
of the N3LO charge operator depends on the (non-unique) off-the-energy shell prescription
adopted for the non-static piece in the OPE potential [6]. The same applies to part of the N4LO
contributions. This ambiguity in the non-static OPE and two-pion exchange (TPE) potentials
and accompanying charge operators is of no consequence, however, since different form for these
are related to each other by a unitary transformation [6, 7]. Thus, provided a consistent set is
adopted, predictions for physical observables, such as the few-nucleon charge form factors, will
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eQ−3

eQ−1

eQ0

eQ

Figure 2. Diagrams illustrating one- and two-body charge operators entering at LO (e Q−3),
N2LO (e Q−1), N3LO (e Q 0), and N4LO (e Q 1). The square represents the (Q/m)2, or (v/c)2,
relativistic correction to the LO one-body charge operator, whereas the solid circle is associated
with a γπN charge coupling of order e Q. Only the relevant topologies are indicated.

remain unaffected by the non-uniqueness associated with off-the-energy-shell effects. Finally,
charge conservation,

ρ(q = 0) =

∫
dx ρ(x) = e (e1 + e2) , (28)

where ρ(x and ρ(q) denote, respectively, the charge density and its Fourier transform, implies
that the charge operators ρ(n≥−2)(q) vanish at q = 0. This latter requirement is satisfied by the
operators illustrated in figure 2, regardless of the adopted off-the-energy shell prescription [6].
We also emphasize that, up to N4LO included, there are no unknown LECs. As a consequence,
the loop integrals entering diagrams at N4LO, although individually ultra-violet divergent, sum
up to give a finite result.

4. Fixing the LECs

The operators described in the previous section depend on the LECs Ci entering the two-nucleon
contact Lagrangian through the minimal coupling procedure, on the non-minimal coupling
LECs C ′

15 and C ′
16 and on the subleading pion-nucleon couplings d′i entering in the one-pion

exchange N3LO current. The latter could be fitted to pion photo-production data on a single
nucleon, which however involve photon energies much higher than those relevant for the threshold
processes under consideration here, or related to hadronic coupling constants through resonance
saturation. We prefer to treat them as fitting parameters. In Refs. [18, 7] we explored different
strategies to such fitting procedure. It turns out that the most effective one is to use Δ-resonance
saturation for the isovector pion-nucleon couplings in equation (24),

d′8 = 4d′21 =
4μγNΔhA

9mN (mΔ − mN )
(29)

where μγNΔ ∼ 3μN is the NΔ transition magnetic moment and hA the πNΔ coupling constant,
hA/fπ = fπNΔ/mπ with f2

πNΔ/(4π) = 0.35. We are then left with 3 parameter, one isovector
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and two isoscalar,
C ′

15 = dS
1 /Λ4, d′9 = dS

2 /Λ2, C ′
16 = dV

1 /Λ4, (30)

The isoscalar LECs can be fixed from the magnetic moments of the deuteron and the isoscalar
combination of the trinucleon. The isovector LEC can be fixed from the isovector trinucleon
magnetic moment or from the np thermal radiative capture cross section. Nuclear wave functions
are taken from the Hyperspherical Harmonic method [19], using either the Argonne v18 (AV18)
[20] or the Idaho chiral N3LO [21] two-nucleon potentials for Λ = 500, 600 MeV [22]. For A = 3
we also included, respectively, the Urbana IX [23] and chiral N2LO [24, 25] with the intervening
LECs cD and cE fixed from the trinucleon binding energies and the 3H Gamow-Teller matrix
element [26]. Electromagnetic matrix elements are calculated with MonteCarlo methods, with
statistical uncertainties of less than 1%.

The cumulative contributions to the observables used to fix the LECs are shown in figures 3
and 4. It can be seen that the convergence pattern of the chiral series is reasonable. In the
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Figure 3. (Color online) Cumulative contributions to the deuteron and trinucleon (isoscalar)
magnetic moments. The bands represent the variation with the two nuclear Hamiltonian model.

isovector case, depending on the strategy, either one of the two observables is in fact a prediction,
which then turns out to be accurate to 2% for μV and 1% for σnp, with a marginal dependence
on the cutoff and on the Hamiltonian model. We will describe results with the latter strategy
(using μV to constrain the LEC), which also proved effective in a recent investigation of magnetic
moments and transitions in nuclei with A ≤ 9 [27], using quantum Montecarlo techniques.

5. Results

In figure 5 we show the charge monopole and quadrupole form factors of the deuteron, confronted
to the results extracted from unpolarized and tensor-polarized deuteron data.

For each interaction model also the leading order results in the expansion of the charge
operator are shown. The chiral expansion stops at N3LO in this case, since the loop contribution
is of isovector character. We observe very good agreement with data up to quite large momentum
transfers. The cutoff dependence is larger for the chiral potentials, and does not decrease as
we increase the order in the chiral expansion of the charge operator. This is a general feature
that we observe. We therefore conclude that the Λ-dependence is mainly due to the interaction
potentials, and that the scheme differences in the derivation of the potentials and the transition
operator are important. This means that also the calculations with the chiral potentials should
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and to the np radiative capture cross sections. The black line indicates the experimental value.
Notations as in figure 3.
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Figure 5. (Color online) Deuteron charge and quadrupole form factors at leading order (LO)
and including all subleading terms up to N3LO (TOT), for the two interaction models. The
bands represent the variation with the cutoff Λ between 500 and 600 MeV. The experimental data
are from Refs. [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

be considered as being of hybrid character. On the contrary, we checked that the impact of the
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off-shell ambiguity, discussed earlier is negligible.
The magnetic form factor is plotted in figure 6. The correct normalization is imposed in

this case by our procedure for fixing the isoscalar LECs. The agreement between theory and
experiment extends to momenta of order 2-3 fm−1, depending on the interaction model. In
figure 7 we show the charge form factors for 3He and 3H. In this case also the chiral loops
contribute at N4LO. The interaction potentials also include the corresponding three-nucleon
forces. We observe a large effect of two-body contributions, which bring theory closer to
experiment in the diffraction region. By examining separately the individual contributions in
the chiral series, however, there is no clear sign of convergence for momenta larger than 3 fm−1,
as the contributions at N3LO and N4LO are of comparable size, and much larger than the
N2LO. Finally, in figure 8, we show the magnetic form factors of trinucleons, whose isoscalar
combination is used to fix one the relevant LECs. The agreement with data is very good up
to momenta ∼ 2 fm−1. Also in this case the role of the two-body contributions is crucial in
bringing theory closer to data, but the diffraction region is still problematic.

6. Conclusions

Chiral perturbation theory, in conjunction with accurate ab-initio techniques to describe light
nuclei, allows to make sharp predictions for nuclear electromagnetic observables in the low-energy
domain. We have described our formalism to derive the nuclear current and charge operators
up to one loop order of the chiral expansion, based on the requirement that, when iterated in
the Lippman-Schwinger equation, they lead to the same transition amplitude obtained within
time-ordered perturbation theory, order by order in the chiral expansion.

The issue of the convergence pattern of the chiral expansion and of the naturalness of the
relevant LECs, however, deserves further investigation, in particular for what concerns the role
of the Δ resonance and its possible inclusion within the effective theory.
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