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Abstract The concepts of integrated clinical environments and smart intensive care

units refer to complex technological infrastructures where health care relies on

inter-operating medical devices monitored and co-ordinated by software applica-

tions under human supervision. These complex socio-technical systems have strin-

gent safety requirements that can be met with rigorous and precise development

methods. This chapter presents an approach to the formalization of system require-

ments for integrated clinical environments, using the Prototype Verification System,

a theorem-proving environment based on a higher-order logic language. The ap-

proach is illustrated by modeling safety-related requirements affecting various as-

pects of an integrated clinical environments, and in particular the communication

network. A simple but realistic wireless communication protocol will be used as an

example of computer-assisted verification.
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1 Introduction

Clinical care relies on a large number of biomedical instruments, ranging from rela-

tively simple sensors to sophisticated and complex equipment, such as scanners for

positron emission tomography or surgical robots. Most of these devices are currently

operated under human supervision and as standalone components, i.e., without ex-

changing data or control signals with other devices, but there is a growing demand

to integrate devices into a collaborative environment under computer-assisted super-

vision. Such integration would afford many benefits, such as enhanced safety and

increased automatization of routine procedures.

A network of inter-operating devices can also interact with information systems,

possibly cloud-based, to manage data on patients and therapies, gathering infor-

mation needed both to care for the individual patient and to analyze large-scale

statistics.

Concepts such as Integrated Clinical Environment (ICE) (F2761-2009, 2009)

and smart ICU (Intensive Care Unit) (Halpern, 2014; Ahmed and Ali, 2016) have

been formulated to characterize these new clinical settings where the interaction of

human actors under different roles and complex equipment create a socio-technical

system with stringent safety requirements. Figure 1 (adapted from (F2761-2009,

2009)) schematically shows the overall architecture of an ICE: Several devices iner-

acting with the patient are connected within a network, connected through a network

controller to a supervisor, a software that executes actions requested by clinicians,

reports patient and system status, and performs automatic interventions when cer-

tain safety conditions are violated. The system is connected to an external network

to access databases, administrative services, or any other kind of data or services that

may be needed. This schema is the reference model adopted in the present work.

clinician

external network

medical
device

external
interface
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medical
device

medical
device
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network
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Fig. 1 An Integrated Clinical Environment (adapted from (F2761-2009, 2009)).

An example of device interconnection under supervision of a control application

is shown in Fig. 2, where the medical application running on a handheld device

enforces a safety interlock on the analgesic infusion pump based on respiratory data

provided by the patient monitor.
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Fig. 2 An example of Integrated Clinical Environment.

Interoperability (AAMI MDI/2012-03-30, 2012; FDA Guidance, 2009) is a fun-

damental concern for this kind of systems, as it enables devices with different pur-

poses and acquired from different vendors to communicate seamlessly. Clinical-

oriented interoperability standards are being developed that formulate interoperabil-

ity requirements (Kabachinski, 2006; Rhoads et al, 2010) on biomedical devices and

clinical information systems. The communication network is clearly a critical com-

ponent from the point of view of interoperability.

The present chapter, extending previous work (Bernardeschi et al, 2015, 2016),

discusses the formalization of requirements for an ICE, using a higher-order logic

language. It presents an overview of the proposed approach to domain identifica-

tion and requirements specification (Sec. 4), and then its application to the ICE

communication network. One objective of this work is showing how a logic spec-

ification language can be used to model a large and complex system in a modular

way, where different parts and aspects of the system are specified by separate theo-

ries that together produce a safety reference model against which implementations

can be checked for correctness. The implementations and the properties they must

satisfy are defined in the same language as the reference model, at a different level

of abstraction.

This chapter does not present a full specification for an ICE communication net-

work, as it only aims at introducing the main ideas by showing some specification

excerpts. It is assumed that the network connects medical devices and computers,

using wireless technology. The nodes are assumed mobile and thus liable to spo-
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radic loss of connectivity and other issues. Wired devices are taken to be logically

equivalent to wireless ones, since they can generally be unplugged and moved.

The chapter is structured as follows: Section 2 reports related work, Section 3

introduces the specification language of PVS, Section 4 describes the proposed

methodology to formalize the ICE requirements, Section 5 presents the PVS the-

ories for the ICE communication network, in Section 6 the use of these theories for

implementation and verification purposes is discussed, and Section 7 concludes the

chapter.

2 Related work

Among the accepted and proposed standards related to the concept of interoper-

ability of medical systems, we may cite the ASTM F2761 standard (F2761-2009,

2009), defining the high-level architecture of ICEs, and the AAMI White paper

MDI/2012-03-30 (AAMI MDI/2012-03-30, 2012). Standard ANSI/HL7 V2.8.2-

2015 (ANSI/HL7 V2.8.2-2015, 2015; Kabachinski, 2006) deals with data exchange

among healthcare computer applications. Besides formal standards, a great number

of papers address general issues in the area of interoperable medical systems. For

example, a list of non-functional requirements or high-level guidelines for medical

cyber-physical systems middleware has been proposed by Arney et al. (Arney et al,

2014), and Larson et al. (Larson et al, 2012) discuss requirements engineering for

medical application platform software. Uses of ICE data for health technology man-

agement are discussed by Rausch and Judd (Rausch and Judd, 2016). We build on

these works, which provide us with a set of relevant safety requirements, and show

how a logic-based language can be used to formalize core aspects of the require-

ments.

Infusion pumps have been extensively used as an example of device deployed in

an ICE. For example, a set of requirements for analgesic infusion pumps to be inte-

grated in an interoperable environment has been proposed by Larson et al. (Larson

et al, 2013; Larson and Hatcliff, 2014).

Many works address issues related to safe operation of interoperable medical

environments. Venkatasubramanian et al. (Venkatasubramanian et al, 2015) discuss

hazard analysis for requirements of an Interoperability Alarm System meant to sig-

nal interoperability failures of medical systems, taking airway laser surgery as a

case study. A paper by Leite et al. (Leite et al, 2017) deals with safety assurance for

Medical Cyber-Physical Systems of Systems and proposes an extension to Laprie’s

taxonomy (Avižienis et al, 2004) for dependability.

An example of implementation for the ICE architecture is the OpenICE platform,

described by Arney et al. (Arney et al, 2017). While the OpenICE platform uses the

OMG Data Distribution Service (Corsaro and Schmidt, 2012), Garcı́a-Valls and

Touahria (Garcı́a-Valls and Touahria, 2017) discuss the integration of the iLAND

communication middleware (Garcı́a-Valls et al, 2013) in the ICE framework. Islam

et al. (Islam et al, 2015) present a survey of applications and frameworks for health
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care based on the Internet of Things. A simulation-based study on the performance

of medical device networks is presented by Arney et al. (Arney et al, 2012). Differ-

ently from our approach, these works focus more on ICE implementation options,

rather than formalization of ICE requirements.

The application of verification methods to medical systems is drawing much at-

tention in the research community. A position paper by Kühn and Leucker (Kühn

and Leucker, 2014) is focused on the interconnection of devices in the operat-

ing room and proposes formal verification approaches, and Ray et al. (Ray et al,

2010) expose a verification strategy called instrumentation-based verification for

the model-based development of medical cyber-physical systems. The PVS theo-

rem proving environment (Owre et al, 1992) has been used for verification in many

application fields, such as autonomous vehicles (Domenici et al, 2017) and nonlin-

ear controls (Bernardeschi and Domenici, 2016). In the field of medical systems,

PVS and the PVSio-web prototyping environment (Masci et al, 2015b) have been

used to study implantable cardiac pacemakers (Bernardeschi et al, 2017, 2014) and

infusion pumps (Mauro et al, 2017). The present chapter complements these works

in that we demonstrate how formal methods technologies can be used to formalize

network requirements for an ICE system.

3 The PVS specification language

Several types of systems have been formally specified in the language of the Pro-

totype Verification System (PVS), including medical devices (Harrison et al, 2014;

Masci et al, 2014, 2015b). A PVS specification is a theory, defining types, vari-

ables, constants, functions, and axioms and theorems. Functions and axioms define

the assumed characteristics of the specified system, whereas theorems define prop-

erties that must be proved with respect to the theory. Demonstrations are carried out

interactively with the PVS theorem prover.

The PVS language is based on higher-order logic, allowing functions to return

functions and to be passed as function arguments.

The specification of a complex system is usually composed of a number of PVS

theories, each related to a subsystem or to some aspect of the system that is not

confined to a single subsystem. Further, the specification can rely on a large number

of pre-defined library theories.

The PVS type system makes it possible to define types at any desired level of

abstraction, specifying the properties of type members without any assumption on

their implementation. It is also possible to specify subtypes that inherit the properties

of their parent types.

The PVS language is purely declarative, but the PVSio extension (Muñoz, 2003)

can compute PVS functions when supplied with fully instantiated arguments. Beside

the evaluator (or interpreter) for functions, the PVSio extension includes a library

for input, output, and numerical computation. These library fuctions can be used

freely in a theory, since they do not affect in any way its semantics. In this way,
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a PVS theory can be both formally verified and executed, providing a prototyping

capability.

Several samples of the PVS language occur in the following. In the samples,

a type expression of the form “[d type → r type]” denotes a function type, where

d type and r type are the domain and range type, respectively, which can be any

type, including other function types. The usual form for functions with multiple

arguments, e.g., f (x,y) and the Curried form, e.g., f (x)(y) are equivalent. The key-

word FROM denotes subtyping; subtyping can also be expressed by set comprehen-

sion, e.g., by an expression of the form {n : nat | odd(n)}, denoting the set of natural

numbers n such that n is odd. Other syntactic details will be explained as needed.

The PVS theorem prover is based on the sequent calculus (Girard et al, 1990). A

sequent has a structure of the form A1,A2, . . . ,An ⊢ B1,B2, . . . ,Bm, where the turn-

stile symbol ‘⊢’ separates the antecedent formulae on its left from the consequents

on the right. A sequent is proved if any consequent is true, or any antecedent is

false, or any formula occurs both as an antecedent and as a consequent. A formula

to be proved (a goal) is represented as a sequent without antecedents, and its proof

consists in applying various inference rules until one of the three above mentioned

final sequent forms is obtained.

4 Overview of ICE Requirements Formalization

The requirements for an ICE are not confined to technical issues concerning medical

devices, and not even to clinical issues concerning therapies or patient’s conditions,

as a large number of apparently unrelated details may affect safety. For example,

errors in the managemant of patient identity data may cause a treatment to be de-

livered to the wrong patient. The management of personal data also entails issues

on privacy and security, and so on. The requirements must then deal with disparate

concerns, including alarm management, interface to patients, clinicians, and admin-

istrative personnel, device interconnection, and software dependability.

Formalizing such a large and heterogeneous set of requirements could easily lead

to a cumbersome and unwieldy model that would be scarcely useful as a guide to

implementation and a reference for verification. Therefore it is important to rely on

specification methods that lead to the construction of well articulated and readable

reference model, organized according both to the system’s structural decomposition

and to various abstraction levels. The rest of this section will introduce the main

ideas about these specification methods.

4.1 Domain identification

Domain identification is the activity wherein the fundamental concepts in the appli-

cation domain are recognized. The ICE application domain comprises several sub-
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domains, each one representable at different levels of abstraction. These subdomains

overlap many areas, such as, e.g., device usage and patient-related administrative

procedures (e.g., related to patient identification). For example, the domain related

to patient data and identification would include information available to clinicians

to check that the right treatment is delivered to right patient, including, for example,

patient ID, demographical data (name, age, etc.), and location. Such information

could be modeled as in the following theory:

patient_theory: THEORY

begin

patient: TYPE+

patient_ID: TYPE+

patient_location: TYPE+

id(p: patient): patient_ID

location(p: patient): patient_location

...

end patient_theory

In the above declarations, the TYPE+ keyword declares patient, patient ID, and

patient location to be non empty types. The other two declarations introduce id and

location as functions from patient to patient ID and from patient to patient location,

respectively.

Let us consider, as another example, the domain related to medical devices. An

object-oriented domain analysis of this subdomain might contain such classes and

relationships as shown in the UML diagram of Figure 3.

Control
«enum»

remote

local

Mode
«enum»

stopped
paused
...

magnitude: real

units: Unit

Value
Unit
«enum»

hr
mg
...

«enum»
Dimension

duration
mass
...

«enum»
Command

incr
decr
...

Command

Parameter

val: Value

Display

Settings

Panel

controlled: Control

operation: Mode

Device

Infusion_pump

Fig. 3 Part of the domain analysis for the subdomain of medical devices.

From the diagram we gather that a device has two attributes, controlled and op-

eration. The controlled attribute specifies if a device is being controlled remotely
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or locally, and accordingly can take one of the two values defined for the Control

enumeration. The operation attribute specifies the current mode of operation, such

as, e.g., stopped or paused. For simplicity, all possible modes of operation for all

kinds of devices are listed in the Mode enumeration, although having different sets

of operation modes for different device classes would make the analysis more mod-

ular.

A device is characterized by a set of Parameter values, such as infusion rate

for an infusion pump, or heartbeat rate for a cardiac monitor. A parameter’s Value

has a numerical magnitude and a physical unit, which in turn is related to a physi-

cal Dimension. We note that specifying the physical units of a parameter might be

overlooked in many analysis models, since the embedded software usually does not

keep trace of this information. However, in many applications, and particularly in

medical ones, wrong assumptions or confusion about physical units may have fatal

consequences. Expressing clearly which units are appropriate for a given value in

a given circumstance enables interface developers to formulate verifiable require-

ments, such as, e.g., “the concentration must be given in milligrams per liter”.

A device has a Panel composed of a set of Displays to visualize parameters and of

a set of Settings to allow users to issue Commands to the device. Again, all possible

commands for all kinds of devices are grouped in the single Command enumeration,

complemented by the changer predicate specifying if a given command modifies a

parameter or mode of operation.

The Device class is abstract, as it describes the common characteristics of all de-

vices. An Infusion pump is an example of a concrete class describing one particular

device (actually an “infusion pump” is still a very general concept, but for simplicity

we’ll take it as an example of a concrete class).

The above object-oriented analysis model can be taken as a guide for a logic-

based specification. A UML class is the intensional definition of a set of possible

instances, i.e., a type. The PVS language has many ways to define a type, including

the definition of uninterpreted types seen in the previous example. The definition

of an uninterpreted type simply declares that a type with a given name exists, with

the optional annotation that the type is not empty. Properties of the elements of the

type can be expressed with axioms and specific elements can be declared as type

members separately from the type definition. The UML Parameter class with its

associated types can be defined in PVS as a non empty uninterpreted type:

parameter_theory: THEORY

...

parameter: TYPE+

pulse_rate: parameter

blood_pressure: parameter

...

END parameter_theory

In the above snippet, the declarations following the parameter type introduce

pulse rate, blood pressure, and other names, as elements of parameter.
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A parameter has a value, composed of a numerical magnitude and a physical unit

with a corresponding dimension, so the parameters th theory defines the respective

types:

dimension: TYPE+

duration: dimension

mass: dimension

...

unit: TYPE+

hr: unit % hours

mg: unit % milligrams

...

value: TYPE = [# magn: real, units: unit #]

Type value above is introduced with another form of declaration, the record type

constructor. In this case, value is a record with fields magn of type real and units

of type unit. Please note that the PVS built-in type real represents the mathematical

concept of real number, not its approximations used in the programming languages.

This means that the PVS environment provides a built-in set of axioms and proved

theorems about the real numbers (and of course naturals, integers, rationals . . . ) that

can be referred to in user-defined theories and used to prove theorems.

The device type can then be defined as follows:

device_theory: THEORY BEGIN

IMPORTING parameters_th

command: TYPE+

incr_cmd: command

decr_cmd: command

pause_cmd: command

...

changer(c: command): bool

state: TYPE = setof[parameter]

display: TYPE = setof[parameter]

commands: TYPE = setof[command]

panel: TYPE = [# displ: display, cmds: commands #]

device: TYPE+

...

END device_theory

The UML Device class (Fig. 3) has two attributes, which could be defined as

PVS record fields, if device were a record type. Another way to map UML attributes

to PVS, arguably more flexible, is using functions. The following code shows the

signatures of three functions taking an argument of type device, which is mapped to

an element of type state, mode, or panel, respectively:

state(d: device): state

operation(d: device): mode

panel(d: device): panel
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Similar functions are used in the parameters th, where, in particular, the readonly

predicate specifies if a parameter cannot be changed by the user:

unit_dimension(u: unit): dimension

parm_dimension(p: parameter): dimension

value(p: parameter): value

readonly(p: parameter): bool

Infusion pumps are a subset of device and the main parameters of a pump, set-

table by the user, are the volume to be infused (VTBI) and the infusion rate, declared

in the parameters th theory. Type infusion pump is declared as a non empty subtype

FROM device, and its properties are expressed by axioms. For example, there are

axioms stating that the commands accepted by the pump change parameter values

or the mode of operation:

infusion_pumps_theory: THEORY

IMPORTING device_theory

infusion_pump: TYPE+ FROM device

pause_cmd_ax: AXIOM changer(pause_cmd)

edit_VTBI_ax: AXIOM changer(edit_VTBI)

edit_rate_ax: AXIOM changer(edit_rate)

incr_ax: AXIOM changer(incr)

...

end infusion_pumps_theory

A specific pump, i.e., an instance if the UML Infusion pump class, can be mod-

eled by a dedicated theory:

ACME_pump_theory: THEORY

IMPORTING infusion_pumps_theory

ACME_pump: infusion_pump

ACME_panel: AXIOM

panel(ACME_pump)‘display(VTBI) and

panel(ACME_pump)‘display(rate) and

panel(ACME_pump)‘settings(pause) and

panel(ACME_pump)‘settings(incr) and

...

end ACME_pump_theory

In the above theory, axiom ACME panel states that parameters VTBI and rate

belong to the display part of the pump’s panel, and commands pause, incr, decr,

bolus, and pwr belong to the settings part. The PVS syntax uses the backtick (‘)

notation to access a record field, so that, e.g., panel(ACME pump)‘display is the

display field of the record associated with ACME pump by the panel function. Also,

the expression display(VTBI) means that VTBI belongs to the set display: In PVS,

the name of a set can be used as a set membership predicate. The declarations in the

theory correspond to the displayed data and controls of a real infusion pump shown
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in Fig. 4. In particular, the settings match buttons in the panel, e.g., incr (increment)

and decr (decrement) match the up and down chevron buttons.

Fig. 4 Front panel of an

actual infusion pump.

Another domain concerns the interactions within the ICE, that can be formalized

in the following theory, expressing concepts related to commands being issued, con-

firmed, accepted, enabled, or disabled, concepts related to devices being controlled

remotely or locally, and so on:

interactions_theory: THEORY BEGIN

IMPORTING device_theory

control: TYPE = {remote, local}
controlled_under(d: device): control

% has cmd_instance i been issued?

issued(i: cmd_instance): bool

% issued locally or remotely?

issued_under(i: cmd_instance): control

enabled(c: command): bool

% does c change a parameter or mode?

changer(c: command): bool

confirm_requested(c: command): bool

confirmed(c: command): bool

accepted(c: command): bool

...
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END interactions_theory

Several system-level ICE requirements induce other requirements on the underly-

ing network. Such requirements concern information integrity and availability, and

system resilience against malfunctions or improper operation. The basic fact that an

ICE is a set of interconnected devices implies that the network must be dependable.

Also specific ICE requirements depend on the availability and correctness of the

network. For example, data on patient conditions must be available also when the

patient is moved to another room. Another important ICE requirement is that the

supervisor must be notified of clinical alarms related to patient conditions and tech-

nical alarms related to device or network failures, including device disconnections.

A communication theory defines the high-level concepts of communications be-

tween devices and supervisor, such as destination device of a command or issue and

reception time of a command.

communication_theory: THEORY BEGIN

IMPORTING ...

connected(d: device): bool

sent_to(i: command, d: device, t: time): bool

received_by(i: command, d: device, t: time): bool

...

END communication_theory

4.2 Requirements formalization

In the specification of an ICE, it is necessary to specify requirements on interactions

involving devices, people, and supervisor software in various combinations. For ex-

ample, a simulation showed that an infusion pump could receive a pause command

from the ICE while infusion parameters were being manually edited, resulting in

over- or underdosing (Masci et al, 2015a); such a situation can be avoided by en-

forcing a requirement forbidding the intervention of a local operator when a device

is being controlled remotely by the ICE supervisor, except for emergency actions.

Another requirement, specific to infusion pumps, might state that a confirmation

must be requested and granted before a state-changing command issued during an

infusion is issued. Other requirements may concern properties of the ICE commu-

nication network, such as, e.g., non-duplication of control messages (Bernardeschi

et al, 2016). Such requirements refer in particular to the interactions theory intro-

duced above.

The requirement that remote control overrides local control, except for the pause

command that may be needed in an emergency, can then be expressed as in the

following axiom:

infusion_pump_reqmts_theory: THEORY BEGIN

IMPORTING interactions_theory, infusion_pumps_theory
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remote_disables_local: AXIOM

forall (p: infusion_pump):

(controlled_under(p) = remote

=> forall (c: command):

(cmds(pnl(p))(c) and changer(c)

and c /= pause_cmd

=> not enabled(c) and enabled(pause_cmd)))

...

END infusion_pump_reqmts_theory

This axiom means that for any remotely controlled infusion pump p all com-

mands in p’s settings that change parameter values or operation mode are disabled,

except for the pause command.

System-level requirements on communication can then be expressed in the fol-

lowing theory:

communication_reqmts_theory: THEORY BEGIN

IMPORTING communication_theory

...

cmd_delivery: AXIOM

forall (i: command, d: device, t: time):

connected(d) and sent_to(i, d, t)

=> exists (tr: time):

received_by(i, d, tr) and t < tr

once: AXIOM

forall (i: command, d: device, t, t1: time):

received_by(i, d, t) and received_by(i, d, t1)

=> t1 = t

disconnect_notification: AXIOM

forall (d: device):

not connected(d)

=> disconnect_alarm(d)

END communication_reqmts_theory

The first two axioms above concern guarantee of delivery and integrity of com-

munication: cmd delivery states that every command i sent to a connected device d

at time t will be received by d at a later time t1, while once states that any command

i received by a device d is received only once. Suppose, for example, that the ICE

supervisor resets a life-supporting device so that it can be reprogrammed and then

restarted. If the data packet carrying the reset command is duplicated and resent by

a node, the spurious copy could reach the device after restart and reset it, blocking

its life-supporting operation. The once axiom forbids this kind of hazard.

The third axiom requires that a disconnection notification to the ICE supervi-

sor related to device d be produced when the network controller detects that d is

disconnected.
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5 Formalization of the ICE Communication Network

As briefly anticipated in the Introduction, an ICE communication network carries

data and control signals between devices (including operator interfaces) and the ICE

supervisor. The network may also be interfaced to external networks. For example,

the supervisor might fetch a patient’s electronic medical record from a database,

update it, and return it to the database.

The network may be structured on a number of subnetworks, each of which could

rely on multiple physical infrastructures, possibly shared among subnetworks. For

example, the communication network could use small wired networks for the op-

erating rooms and a larger, both wired and wireless network for the ward. The

operating room subnetworks would support medical apps with special safety and

dependability requirements.

Such a complex system must be modeled at different levels of abstraction, down

to the level of network topology and communication protocols. The rest of this sec-

tion sketches a network specification that is general enough to allow for many dif-

ferent choices of hardware and communication protocols.

5.1 Network structure

The supervisor and the devices can be modeled abstractly as network nodes. The

networking infrastructure may have routing elements, also modeled as nodes. Each

node is identified by a natural number (of type node id) smaller than the number

network size of nodes. The mapping from devices to their network identifiers is ex-

pressed by a function dev2node f. Nodes with special roles, such as the network con-

troller (associated with the supervisor), are identified by constants of type node id.

Further, two subsets of node id (router id and device id) can be used to identify

router and device nodes, as shown in the nodes theory.

nodes_theory: THEORY BEGIN

IMPORTING devices_theory

network_size: posnat

node_id: TYPE = below(network_size)

router_id: TYPE FROM node_id

device_id: TYPE FROM node_id

network_controller: node_id

dev2node_f: TYPE = [device -> node_id]

...

END nodes_theory

Graphs are an obvious tool to represent the communication network. In PVS,

we can use the digraphs theory provided by the NASA PVS libraries (Butler and

Sjogren, 1998), which is parametric with respect to the type of graph nodes. In the

network graph theory below, type network graph is the set of directed graphs g such
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that each node n is in the set vert(g) of vertices and each pair (m,n) of nodes is in the

set edges(g) of edges only if the two nodes are distinct, i.e., the graph has no self-

edge. The theory also defines the type topology of functions from node identifiers to

finite sets of node identifiers, meant to represent the set of immediate neighbors of

each node.

network_graph_theory: THEORY BEGIN

IMPORTING nodes_theory, digraphs[node_ids]

network_graph: TYPE =

{g: digraph[node_ids] |

(FORALL (n: node_ids):

vert(g)(n))

and (forall (m, n: node_ids):

edges(g)((m, n)) => (m /= n))}
topology: TYPE = [node_ids -> finite_set[node_ids]]

...

END network_graph_theory

5.2 Network dynamics

The kinds of information flowing through the network range from very simple mes-

sages, such as “start infusion” to highly structured data, such as DICOM images.

The definition of such application-specific data must be given in separate theo-

ries, while the general model of the communication network provides a low-level,

application-agnostic specification of packet communication. The packet theory de-

fines packets as records with fields for timestamp, originating (source) node, desti-

nation nodes, and payload. The theory also defines the type of packet trains (pktrain

in the PVS code), i.e., groups of packets sent in a single burst from a sender node to

a common set of receiver nodes.

packet_theory: THEORY BEGIN

IMPORTING nodes_theory, time_theory

address: TYPE = finite_set[node_id]

...

packet: TYPE = [#

timestamp: time,

source_addr: node_id,

destination_addr: finite_set[node_id],

payload: finite_sequence[int] #]

pktrain: TYPE = [#

pks:

{pks: finite_set[packet] | NOT empty?(pks)},
time_tx: time,
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sender_addr: node_id,

receivers_addr: {rcv: finite_set[node_id] | NOT

member(sender_addr, rcv)} #];

END packet_theory

Each node stores incoming packet trains in a receive buffer. At any time, the state

of the network is defined by the contents of each node’s buffer and, in a scenario

of mobile nodes, by the current topology and the current physical locations of the

nodes. The network theory defines the network state as a record with fields for a

global clock, functions mapping each node to its receive buffer and location, and

a log recording the sequence of packets processed by each node (the definitions

of buffers and locations are omitted). Communication primitives, such as forward,

handle packets and update the network state accordingly.

network_theory: THEORY BEGIN

IMPORTING time_theory, receive_buffer_theory,

location_theory

network_state: TYPE = [#

global_clock: time,

net_rcv_buf: [node_id -> rcv_buf],

net_location: [node_id -> location]

log: [node_id -> finite_sequence[packet]] #]

forward(p: packet)

(forwarder: node_id)

(net: network_state, g: network_graph):

network_state = ...

...

END network_theory

Using the above theories, different messaging protocols can be modeled, accord-

ing to the needs of different applications. A network protocol is an algorithm exe-

cuted by each node in order to perform a network service, primarily to propagate

application-specific information. The most general description of this concept is an

algorithm that updates the state of a network, i.e., a function from network states to

network states. Since such a function in general depends on the network structure,

the protocol type can be specified as in the following theory:

protocol_theory: THEORY BEGIN

IMPORTING network_graph_theory, network_theory

protocol: TYPE =

[network_graph, node_id

-> [network_state -> network_state]]

END protocol_th

Most protocols need a routing table to store, for each node, paths towards other

nodes. In the routing table theory, the type of routing tables is defined by the set
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of functions mapping each source node i to a vector of paths leading to the other

nodes. The digraphs theory defines a path as a nonempty finite sequence of nodes

connected by edges, and a vector of paths originating from node i is in turn a func-

tion mapping each correspondent node j to the path from the source node. Predicate

routing tbl? means that a function rt of type routing table is a routing table of a net-

work graph g if rt maps any ordered pair i, j of nodes to a path from i to j. Predicate

valid routing tbl? imposes the further condition that the route does not contain any

self-edge.

routing_table_theory: THEORY

BEGIN

IMPORTING network_graph_theory, digraphs[node_id]

routing_tbl: TYPE =

[i: node_id -> [j: node_id -> path[node_id]]]

routing_tbl?(rt: routing_tbl, g: network_graph):

bool =

FORALL (i, j: node_id):

path_from?(g, rt(i)(j), i, j)

valid_route?(g: network_graph,

p: path[node_id],

i, j: node_id): bool =

((i /= j) AND (l(p) > 1)

AND path_from?(g, p, i, j))

valid_routing_tbl?(rt: routing_tbl,

g: network_graph): bool =

routing_tbl?(rt,g)

AND FORALL (i, j: node_id):

valid_route?(g, rt(i)(j), i, j)

...

END routing_table_theory

5.2.1 Mobility

In order to express node mobility, the network model can be extended with a the-

ory where mobility is expressed with functions that change network connectivity in

three steps: i) select a target direction among those allowed by the topology, ii) de-

termine the new set of neighbors of the mobile node, iii) modify and return the new

topology. The node mobility theory defines such functions; three auxiliary functions

are used to implement the corresponding steps.

node_mobility_theory: THEORY

BEGIN
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IMPORTING network_graph_theory

%-- select a target direction

select_target(s: finite_set[node_id]): node_id

%-- set of neighbours for the mobile node

new_neighbours(tp: topology,

mobile_node, target_node: node_id):

finite_set[node_id] =

{n: node_id | n /= mobile_node

AND (tp(target_node)(n) OR n = target_node)}

%-- change topology tp according to

%-- the new neighbourhood

change_topology(tp: topology)

(mobile_node:

node_id, nbs: finite_set[node_id]):

topology =

LET tp = remove_node(mobile_node, tp)

IN add_node(mobile_node, nbs, tp)

%-- node mobility function

node_mobility(m: node_id, tp: topology): topology =

LET target = select_target(tp(m)),

new_nbs = new_neighbours(tp, m, target)

IN change_topology(tp)(m, new_nbs)

...

END node_mobility_theory

5.3 Requirements

The requirements of the communication network derive from the higher-level ICE

requirements, i.e., they express the properties that any network implementation must

exhibit in order to be used in an ICE. Consider, for example, the once axiom in

Theory communication reqmts. In terms of network-specific concepts, the absence

of packet duplication can be expressed as “in any network state, for all packets p

and node n, the set of packet trains containing p transmitted by n is either empty

or a singleton”, as shown in the following excerpt, where transm tpkts is the set of

packet trains containing p and sent by a node n (definition not shown):

comm_netwk_reqmts_theory: THEORY BEGIN

IMPORTING ...

no_duplication: AXIOM

FORALL (net: network_state, p: packet):

FORALL (n: node_id):
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empty?(transm tpkts(p, log(net), n)) OR

singleton?(transm tpkts(p, log(net), n))

...

END comm_netwk_reqmts_theory

Other types of requirements concern the interaction between devices and super-

visor at a higher abstraction level. For example, in order to express the discon-

nect notification system requirement (Sec. 4) as a network requirement, the fol-

lowing declarations are included in the network theory:

alarm_cause: TYPE = {disconnection, ...}
severity_t: TYPE = {low, medium, high}
disconnected(d: node_id): bool

alarm(d: node_id, c: alarm_cause, s:severity): bool

severity(d: node_id, c: alarm_cause): severity_t

The alarm function is true if device d is in the condition described by c, with

severity level s. The latter is obtained by function severity, whose value depends

both on the affected device and on the cause of the alarm.

The following function, from the network theory, checks if node n is discon-

nected, by analyzing the network graph in the current state. The actual definition of

the function will be specified by axioms.

node_disconn(s: network_state,

g: network_graph, n: node_id): bool

The following axioms from the comm netwk reqmts theory specify the above

stated requirement:

dev_disconn: AXIOM

FORALL (d: device):

FORALL (s: network_state):

FORALL (g: network_graph):

node_disconn(s, g, dev2node(d))

=> disconnected(d)

disconn_alarm: AXIOM

FORALL (d: device):

LET n = dev2node(d)

IN disconnected(d)

=> alarm(n, disconnection,

severity(n, disconnection))

The above discussion shows that PVS language is well suited to specifying such

a complex system as an ICE. The modular composability of PVS theories and the

flexibility of the type system make it possible to structure the overall specification

in a set of interrelated theories, each devoted to a specific (sub)domain or level of

abstraction. Such a specification can be analyzed for consistency using verification
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tools whenever an update is necessary, e.g., in case of changes of regulations or

introduction of new equipment or therapies.

6 Verification

This chapter is focused on the formal specification of requirements for integrated

clinical environments. To integrate this discussion, this section hints at the applica-

tion of formal specification as a basis for verification.

An advantage of the approach used in this work is its ability to describe a sys-

tem at different levels of abstraction. A number of different versions of the theories

can be developed for each component, each one at a different level of detail. The

most abstract theories provide the declarations of the basic set of interface functions

(i.e., functions meant to be used in other theories) and types. More detailed theo-

ries can be derived from the abstract definitions by specifying the definition of the

functions and by extending types. If different versions of a theory provide the same

declarations for interface functions and types, they are interchangeable, hence, when

building the model, the minimal set of details needed for analysis can be used, by

importing the appropriate version of the theory.

For example, consider the high-level definition of the protocol type in Section 5.3

above. An instance of that type is a function defining the sequence of actions per-

formed by a generic node. Actions may depend on the content of received packets

(e.g., the sender address of a received packet) and on the state of the node (e.g., the

value of patient physiological data).

Verification is accomplished by producing a formal model of the implementa-

tion to be verified. Then a verification theory can be built, where the axioms from

the requirements theories are expressed as theorems on the implementation model,

as shown in the following schema, where the no loop requirement is taken as an

example:

implementation_theory: THEORY BEGIN

IMPORTING protocol_theory, ...

init_state: network_state = (# ... #)

transm pkts(p: packet,

l: [node_id -> finite_sequence[packet]],

n: node_id): bool =

% a predicate depending on

% the protocol

...

END implementation_theory

verification_theory: THEORY BEGIN

IMPORTING implementation_theory ...

...

no_loop_property(ns, pk_star): bool =
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FORALL (i: sensor_id):

LET tp = transm pkts(pk_star)(net_log(ns), i)

IN empty?(tp) OR singleton?(tp)

...

no_loop_thm: THEOREM

FORALL(n: nat):

no_loop_property(t(n)‘state, pk_star)

...

END verification_theory

The implementation theory contains assumptions on the implemented network,

including structural and behavioral properties, including the definition of, or as-

sumption on, the initial state, and how a packet is transmitted through a given pro-

tocol. In the verification theory, it is then possible to prove that the chosen protocol

satisfies the above requirement.

Figure 5 shows a simplified view of the dependencies among theories related to

an ICE communication network.

device

interactions

communication

communication_reqmts

specification

network_graph

routing_table

nodes

protocol

packet

network

comm_netwk_reqmts

implementation

digraphs

verification

nasalib

Fig. 5 Dependencies among theories.

6.1 Verification of the Surge protocol

As an example of a concrete protocol verification, let us consider the Surge proto-

col (Levis et al, 2003a) often used in mobile wireless networks. This protocol routes

packets along the branches of a spanning tree embedded in the network topology
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and rooted in a base station. In the Surge protocol, the spanning tree can change

dynamically to accommodate for changes of topology caused by node mobility. Dy-

namic routing could create loops in the path of some packets. Such loops could

pose safety threats in an ICE where the network must deliver alarms or control

commands. Surge identifies routing loops by inspecting the source address of pack-

ets, and suppresses routing loops by dropping packets that revisit their origin (Levis

et al, 2003b). This design decision is simplistic and is due to the fact that WSNs

packets cannot contain a field that reports a list of all traversed nodes (control in-

formation included in the packets must be as limited as possible to keep the packet

size small in order to save energy). Each node should avoid to forward packets al-

ready transmitted, including those originated at different nodes. In this verification

example, a loop-free version (SurgeNL) of the original protocol is confirmed to be

actually loop-free. The reader should be aware that this protocol, however, does not

guarantee packet delivery and has been chosen only as a conveniently simple proof

of concept for protocol verification.

In the SurgeNL protocol, each node alternates between reception and transmis-

sion phases whose durations are left unspecified in the most general network model

(they would be specified by a scheduler theory for each given application). In the

transmission phase, a node x executes a protocol step: (i) if the node’s receive buffer

is empty, the node idles, i.e., returns to the reception phase; otherwise, (ii) it ex-

amines the packets in the receive buffer; (iii) if any of them originates from x, all

received packets are dropped; otherwise, (iv) the received packets are forwarded

along with a new packet to be used in further steps for loop detection.

The protocol step is defined by the following function:

surgeNL(x: sensor_id)

(net: network_state, g: network_graph)

(rt:

{rt: routing_table | valid_routing_table?(rt, g)}):
network_state =

LET received_pks = net_receive_buffer(net)(x),

next_hop = next_hop(x, network_controller)(g, rt)

IN

IF empty?(received_pks)

THEN idle(x)(net, g, rt)

ELSE

IF EXISTS (pk: {pk: packet | received_pks(pk)}):
source_addr(pk) = x

THEN

drop(received_pks, next_hop) (x)(net, g, rt)

ELSE

LET t = net_time(net)(x),

originated_pk = new_packet(t, x)

IN inject_and_forward(originated_pk,

received_pks, next_hop)

(x)(net, g, rt)
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ENDIF

ENDIF

Functions idle, drop, and inject and forward are low-level single-hop communi-

cation primitives from the network theory. Function next hop is declared in a rout-

ing table theory (not shown).

The theorem can be proved with the strategy of configuration diagrams (Rushby,

2000), based on the construction of intermediate lemmas of the form configuration⇒
invariant, where configuration is a predicate defining a particular state of a system

and invariant is a property to be proved. In our case, the invariant is no loop property

and the configurations are base, injected, and preLoop, representing the situations

where, respectively, a packet pk* has not yet been injected in the network by a

scheduled node (base), the packet has been injected and it is not in the receive

buffer of nodes already visited by the packet (injected), and the injected packet is in

the receive buffer of a node that had already transmitted the packet (preLoop). The

configuration diagram is shown in Figure 6.

injected

does not inject pk*]
[scheduled node

base
injects pk*]
[scheduled node

pk* transmitted by scheduled node]
[pk* in receive buffer of scheduled node and

preLoop

[pk* transmitted by scheduled node
implies pk* not in receive buffer
of scheduled node]

and pk* transmitted by best next−hop
[pk* in receive buffer of scheduled node

of scheduled node]

pk* not transmitted by best next−hop of scheduled node]
[pk* not in receive buffer of scheduled node or

Fig. 6 Configuration diagram used to prove noLoop property.

Lemma base implies noLoop and invariant noLoop property below are shown as

an example of the intermediate lemmas.

base_implies_noLoop : LEMMA

base(ns, pk) => noLoop_property(ns, pk)

where

noLoop_property(ns, pk): bool =

FORALL (i: sensor_id):

LET tp = transmitted(pk)(net_log(ns), i)

IN empty?(tp) % packet not yet transmitted

OR singleton?(tp) % or a single copy exists

% in the network
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After proving the above lemmas and invariants, the proof of the main theorem

reduces to performing simple sequent transformations, as shown in the following

subsection.

6.2 Interactive proof

The proof is carried out under the hypothesis of reliable single-hop communication,

i.e., if a node i transmits a packet pk to a node j in communication range, then j will

eventually receive packet pk.

The PVS interface presents the theorem to be proved as a sequent without an-

tecedents, that the user simplifies by instantiating the universal quantifier with arbi-

trary constants, using the skosimp* (Skolemize and simplify) rule:

noLoop_property :

|-------

{1} FORALL (pk_star: packet,

t: Trace[State, init_states, surge_transition],

n: nat):

noLoop_property(t(n)‘state, pk_star)

Rule?: (skosimp*)

noLoop_property :

|-------

{1} noLoop_property(t!1(n!1)‘state, pk_star!1)

Then, rule use introduces lemma config diagram closed as an antecedent, finds

appropriate instantiations for the lemma and produces the new sequent. The previ-

ously proved lemma config diagram closed ensures that for each configuration the

disjunction of the transition conditions covers all possible cases.

Rule?: (use "config_diagram_closed")

noLoop_property :

{-1} LET ns = t!1(n!1)‘state IN

base(ns, pk_star!1) OR

injected(ns, pk_star!1) OR

preLoop(ns, pk_star!1)

|-------

[1] noLoop_property(t!1(n!1)‘state, pk_star!1)

Rule beta replaces ns with its definition provided by the LET clause:

Rule?: (beta *)
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noLoop_property :

{-1} base(t!1(n!1)‘state, pk_star!1) OR

injected(t!1(n!1)‘state, pk_star!1) OR

preLoop(t!1(n!1)‘state, pk_star!1)

|-------

[1] noLoop_property(t!1(n!1)‘state, pk_star!1)

Rule prop splits the disjunction and produces three subgoals, where the first one

is always noLoop property.1:

Rule?: (prop)

noLoop_property.1 :

{-1} base(t!1(n!1)‘state, pk_star!1)

|-------

[1] noLoop_property(t!1(n!1)‘state, pk_star!1)

This subgoal and the other two are solved by invoking a lemma and simplifying

with the ground rule, which applies automatically a series of simplifications:

Rule?: (use "base_implies_noLoop")

noLoop_property.1 :

{-1} base(t!1(n!1)‘state, pk_star!1) =>

noLoop_property(t!1(n!1)‘state, pk_star!1)

[-2] base(t!1(n!1)‘state, pk_star!1)

|-------

[1] noLoop_property(t!1(n!1)‘state, pk_star!1)

Rule?: (ground)

This completes the proof of noLoop_property.1.

...

This completes the proof of noLoop_property.3.

Q.E.D.

Figure 7 shows the corresponding proof tree.

7 Conclusions

In a typical clinical setting, several disparate devices are used both for monitor-

ing patient conditions and for administering therapy. Each device normally operates
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(beta *)

(prop)

(use "config_diagram_closed")

(use "injected_implies_noLoop")

(ground)

(use "base_implies_noLoop")

(ground)
(use "preLoop_implies_noLoop")

(ground)

Fig. 7 Proof tree for noLoop property.

independently of other devices and offers its own interface to patients and clini-

cians. Smart integrated clinical environments aim at improving patient care by co-

ordinating and supervising medical devices and providing support to clinicians. The

development of these environments poses many challenges, as they must face the

complexity of socio-technical systems and satisfy strict safety requirements. In par-

ticular, rigorous requirements specification is an essential basis for development.

In this chapter, an approach to the formalization of system requirements for inte-

grated clinical environments is proposed. The fundamental feature of this approach

is the use of a higher-order logic language, provided by the PVS theorem-proving

environment.

The approach has been illustrated by providing and discussing short excerpts of

logical theories describing concepts of, and requirements on, different aspects of

communication networks for clinical environments, at different abstraction levels.

The examples are meant to support the thesis that logic-based formal specification is

a useful tool in the development of complex, safety-critical systems, including inte-

grated clinical environments, as it enables developers to produce modular, detailed,

and flexible specifications, which can then be used for verification and validation

activities necessary to gain confidence that a medical system complies with safety

requirements.
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