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Abstract

We deepen the study of the relations previously established by Mayer, Lewis and Zagier, and the
authors, among the eigenfunctions of the transfer operators of the Gauss and the Farey maps, the
solutions of the Lewis-Zagier three-term functional equation and the Maass forms on the modular surface
PSL(2,Z)\H. In particular we introduce an “inverse” of the integral transform studied by Lewis and
Zagier, and use it to obtain new series expansions for the Maass cusp forms and the non-holomorphic
Eisenstein series restricted to the imaginary axis. As corollaries we obtain further information on the
Fourier coefficients of the forms, including a new series expansion for the divisor function.

1 Introduction

One of the most interesting objects in the mathematics literature are the Maass forms on the full modular

group PSL(2,Z). Letting ∆ := −y2
(
∂2

∂x2 + ∂2

∂y2

)
denote the hyperbolic Laplacian, Maass forms are smooth

PSL(2,Z)-invariant complex functions φ defined on the upper half-plane H = {z = x+ iy : y > 0}, increas-
ing less than exponentially as y → ∞, and satisfying ∆φ = λφ for some λ ∈ C. Maass forms divide into
cusp and non-cusp forms according to their behaviour at the cusp of the modular surface PSL(2,Z)\H, and
into even and odd forms according to whether φ(−x+ iy) = ±φ(x+ iy).
Despite their importance, Maass cusp forms remain mysterious objects. No explicit construction exists and
all basic information about their existence comes from the Selberg trace formula. Much more is known for
the non-cusp forms, which are generated by the non-holomorphic Eisenstein series. The standard approach
to Maass forms uses the methods of harmonic analysis on H, which leads to the Fourier expansion of the
forms in terms of Whittaker function (see e.g. [14]).
In recent years, a new approach to Maass forms has been developed using the relation between the Selberg
zeta function Z(q) and the Fredholm determinant of the transfer operators Lq of the Gauss map (see [18, 6]),
also in connection with a functional approach introduced in [15, 16]. This connection becomes clearer if one
considers the transfer operators Pq of the Farey map, a “slow” version of the Gauss map, as shown by the
authors in [4], where we also studied the properties of the eigenfunctions of the operators Pq. In this paper
we continue the work set out in [4], by transferring the information on the eigenfunctions of Pq to Maass
forms. In particular we use the integral transform studied in [16] to obtain series expansions for the Maass
forms restricted to the imaginary axis that to our knowledge are entirely new. We first obtain expansions in
terms of Legendre functions Pµν . In Section 3 we prove the following

Theorem A. If u(x + iy) is an even Maass cusp form on PSL(2,Z) with eigenvalue q(1 − q), then there
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exists a sequence {an,q} satisfying lim supn |an,q|
1
n ≤ 1, such that

u(iy) =

∞∑
n=0

(−1)n an,q

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

uniformly in y on any compact interval in (0,+∞).

The non-holomorphic Eisenstein series E(x+ iy, q) can be written for x = 0 as a meromorphic function on
the half-plane <(q) > 0 as

E(iy, q) = ζ(2q)
(
yq + y−q

)
− 2 ζ(2q)

(
y

1 + y2

)q
+

+ 2q+
1
2 Γ

(
q +

1

2

) ∞∑
n=0

(−1)n bn,q

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

with

bn,q := (−1)n
Γ(n+ 2q)

(n+ 1)! Γ(2q)

n∑
i=0

(
n+ 1

i

)
Bi ζ(2q − 1 + i) ,

where {Bi} are the Bernoulli numbers and ζ(s) is the Riemann zeta function.

An analogous result is given in Theorem 3.10 for odd Maass cusp forms. Moreover, in Appendix B we show a
curious way of using the Legendre functions to expand yq, and then to write the non-holomorphic Eisenstein
series in terms of the Legendre functions.
Then in Section 4 we study the Fourier coefficients of Maass forms − which for the non-cusp case are related
to the divisor function σ`(n) − and obtain some results which can be summarized in the following

Theorem B. Let {cn,q} denote the coefficients of the Fourier expansion of an even Maass cusp form with
eigenvalue q(1− q). Then we have, up to a constant depending on q,

cn,q = 2nq−
1
2

∞∑
k=1

(−1)ka2k,q

Γ(2k + 2q)
(2πn)2k

where {an,q} is the sequence introduced in Theorem A.

In the case of non-cusp forms we prove that for n ≥ 1 and <(q) > 0 it holds

σ2q−1(n) = n2q−1
∞∑
k=1

(−1)k Ã2k,q

(2k)!
(2πn)2k

with

Ãk,q :=
1

k + 1

k∑
i=2

(
k + 1

i

)
Bi ζ(2q − 1 + i) .

In Remark 4.2 we show that the series expansion for the divisor function can be considered an extension of
the Ramanujan expansion.
Finally, in Section 5 we exploit the properties of the Legendre function to obtain new series expansions for
the Maass forms. In the cusp case these are only formal since we don’t have control on the coefficients,
whereas in the non-cusp case we prove
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Theorem C. For q with <(q) > 0 it holds

E(iy, q) = 2

(
y

1 + y2

)q [
ζ(2q − 1) 2F1

(
1, q ;

3

2
;

1

1 + y2

)
+ ζ(2q − 1) 2F1

(
1, q ;

3

2
;

y2

1 + y2

)]
+

+ 4

(
y

1 + y2

)q ∞∑
s=1

2s
Γ(s+ q)

s! Γ(q)

(
s∑

k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k ζ(2q − 1 + s+ k)

)
1 + y2s

(1 + y2)s

uniformly in y on any compact interval in (0,+∞).

We believe that these new series expansions will turn useful in the study of Maass forms and their Fourier
coefficients, as they involve the coefficients {an,q} which come from the totally different approach described
below. In particular we hope that this will stimulate new numerical investigations of the coefficients {an,q}
(see also Remark 3.6).

For the benefit of the reader we now briefly recall the main steps of the approach to the Maass forms as
developed by Mayer, Lewis, Zagier and the authors in [18, 16, 4].
In [18] Mayer used the definition of the Selberg zeta function Z(q) as a product over the length spectrum
of PSL(2,Z)\H to prove a relation between Z(q) and the Smale-Ruelle zeta function for the geodesic flow
on the modular surface. We recall that the length spectrum of PSL(2,Z)\H is the set of lengths of the
closed geodesics on PSL(2,Z)\H, and the closed geodesics appear in the definition of the Smale-Ruelle zeta
function. The aforementioned relation together with results in [17] entails the main result of [18], the equality

Z(q) = det(1− Lq) det(1 + Lq) , q ∈ C . (1.1)

Here “det” indicates the determinant in the sense of Fredholm, and Lq denotes the meromorphic extension
to q ∈ C of the family of nuclear of order zero endomorphisms defined by

(Lqh) (z) =

∞∑
n=1

1

(z + n)2q
h

(
1

z + n

)
for <(q) > 1

2 , on the space H(D) of holomorphic functions in the disk D =
{
z ∈ C : |z − 1| < 3

2

}
. The

connection (1.1) comes from the arithmetic properties of the length spectrum of PSL(2,Z)\H and the fact
that the endomorphisms Lq are the transfer operators of the Gauss map, which generates a dynamical system
related to the continued fractions expansion of a real number. Combining Mayer’s equality (1.1) sharpened
by Efrat in [9] with the known positions of the zeroes of Z(q) as implied by the Selberg trace formula, one
can state the following

Theorem 1.1 ([9],[18]). Let q = ξ + iη be a complex number with ξ > 0 and q 6= 1
2 . Then:

(i) there exists a nonzero h ∈ H(D) such that Lqh = h if and only if q is either an even spectral parameter
of Γ, that is there exists an even Maass cusp form u such that ∆u = q(1 − q)u, or 2q is a non-trivial
zero of the Riemann zeta function, or q = 1;

(ii) there exists a nonzero h ∈ H(D) such that Lqh = −h if and only if q is an odd spectral parameter of
Γ, that is there exists an odd Maass cusp form u such that ∆u = q(1− q)u.

In the papers [15, 16] Lewis and Zagier introduced a three-term functional equation whose solutions are
in one-to-one correspondence with the Maass cusp and non-cusp forms. Using the results for the spectral
parameters of PSL(2,Z)\H and for the Maass non-cusp forms, they proved the following result.

Theorem 1.2 ([16]). There is an isomorphism between the Maass cusp forms with eigenvalue q(1− q) and
the space of real-analytic solutions of the three-term functional equation

ψ(x) = ψ(x+ 1) + (x+ 1)−2qψ

(
x

x+ 1

)
, x ∈ R+ (1.2)
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with the conditions
ψ(x) = O(1) as x→ 0+ , ψ(x) = O(1/x) as x→ +∞ (1.3)

Moreover, the Maass non-cusp forms, which for any given q lie in a one-dimensional space generated by the
non-holomorphic Eisenstein series E(z, q), are in one-to-one correspondence with the functions

ψ+
q (x) =

ζ(2q)

2

(
1 + x−2q

)
+
∑
m,n≥1

1

(mx+ n)2q
, <(q) > 1 (1.4)

which, when multiplied by Γ(2q)
Γ(q−1) , can be analytically continued to q ∈ C as solutions of (1.2).

In [16] the solutions of equation (1.2) are called period functions because of an analogy, explored in the paper,
with the classical Eichler-Shimura-Manin period polynomials of the holomorphic cusp forms. Moreover, the
period functions associated to a Maass forms are divided into even and odd functions.
Putting together Theorems 1.1 and 1.2 we have the following situation for the zeroes of the Selberg zeta
function Z(q):

• if q is an even spectral parameter with ξ = 1
2 , then there exist a nonzero h ∈ H(D) such that Lqh = h

and an even real-analytic function ψ(x) which satisfies (1.2) with conditions (1.3);

• if q is an odd spectral parameter with ξ = 1
2 , then there exist a nonzero h ∈ H(D) such that Lqh = −h

and an odd real-analytic function ψ(x) which satisfies (1.2) with conditions (1.3);

• if 2q is a non-trivial zero of the Riemann zeta function, then there exist a nonzero h ∈ H(D) such that
Lqh = h and (1.2) has solutions given by multiples of the analytic continuation of the function ψ+

q ;

• if q = 1 then there exist a nonzero h ∈ H(D) such that Lqh = h, in fact we have h(x) = 1
x+1 , and

(1.2) has solutions given by multiples of the function ψ+
1 (x) = 1

x .

Moreover there is an explicit relation between the eigenfunctions of the operator Lq and the period functions
relative to the same q. Namely h(x) = ψ(x+1), and the same holds on D, where ψ(z+1) is the holomorphic
extension of ψ to C \ (−∞, 0].
The beauty of Mayer’s result lies in the displaying of the power of the theory of transfer operators for
dynamical systems, but the spectral properties of the operators Lq turned out to be difficult to study, see [6]
and [1]. On the other side, Lewis and Zagier approach has the advantage of introducing a relation of Maass
forms with solutions of an equation with a finite number of terms, which might be easier to handle.
These two aspects are combined in our paper [4], where we used a family of signed transfer operators P±q
for the Farey map, a “slow” version of the Gauss map, defined for ξ = <(q) > 0 by

(P±q f)(z) = (P0,qf)(z)± (P1,qf)(z) :=

(
1

z + 1

)2q

f

(
z

z + 1

)
±
(

1

z + 1

)2q

f

(
1

z + 1

)
where z ∈ B =

{
z ∈ C : |z − 1

2 | <
1
2

}
and f ∈ H(B). We studied the problem of existence of eigenfunctions

for P±q and proved the following

Theorem 1.3 ([4]). (a) If f ∈ H(B) satisfies P+
q f = λf with λ 6= 0 then f ∈ H({<(z) > 0}) and we call

it even in the sense that Iqf = f , where

(Iqf)(z) :=
1

z2q
f

(
1

z

)
(1.5)

Moreover it satisfies

λf(z) = f(z + 1) + (z + 1)−2qf

(
z

z + 1

)
, <(z) > 0 . (1.6)
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(b) If f ∈ H(B) satisfies P−q f = λf with λ 6= 0 then f ∈ H({<(z) > 0}) and we call it odd in the sense that
Iqf = −f . Moreover it satisfies (1.6).

(c) If f ∈ H({<(z) > 0}) satisfies (1.6) for λ 6= 0, then P±q (f ± Iqf) = λ(f ± Iqf).

(d) If f ∈ H(B) satisfies P+
q f = λf with λ 6∈ [0, 1) then there exists φ ∈ L2((0,+∞), t2ξ−1e−tdt) such that

f can be written as

f(z) = c
λ

1
z

z2q
+ b

Γ(2q − 1)

Γ(2q)

1

z
+

1

z2q

∫ ∞
0

e−
t
z φ(t) t2q−1 dt , <(z) > 0 , (1.7)

where c, b ∈ C, φ(0) is finite and φ(t) − φ(0) = O(t) as t → 0+, and the last term is bounded as <(z) → 0.
Moreover if λ 6= 1 then b = 0.

(e) If f ∈ H(B) satisfies P−q f = λf with λ 6∈ [0, 1) then there exists φ ∈ L2((0,+∞), t2ξ−1e−tdt) such that
f can be written as

f(z) = c
λ

1
z

z2q
+

1

z2q

∫ ∞
0

e−
t
z φ(t) t2q−1 dt , <(z) > 0 , (1.8)

where c ∈ C, φ(0) is finite and φ(t)− φ(0) = O(t) as t→ 0+, and the last term is bounded as <(z)→ 0.

Using the operators P±q we introduced a generalization of the transfer operators Lq, namely the two variable
operator-valued function Lq,w formally defined as

Lq,w = wP1,q(1− wP0,q)
−1

We proved that as operators acting on the Banach space H∞(Dε) of functions holomorphic on Dε ={
z ∈ C : |z − 1| < 3

2 − ε
}

and bounded on Dε, they are nuclear of order zero for <(q) > 0 and w ∈ C\(1,∞).
Moreover the function q 7→ Lq,w is analytic in <(q) > 0 for any w ∈ C\[1,∞) and is meromorphic in <(q) > 0
for w = 1 with a simple pole at q = 1

2 . Analogously the function w 7→ Lq,w is analytic in w ∈ C \ [1,∞)
for any q with <(q) > 0. Hence we can compute the Fredholm determinants of the operators (1±Lq,w) and
define the two-variable Selberg zeta function

Z(q, w) := det(1− Lq,w) det(1 + Lq,w)

for <(q) > 0 and w ∈ C \ (1,∞). For w = 1 the function Z(q, 1) is meromorphic in <(q) > 0 with a simple
pole at q = 1

2 and coincides with the Selberg zeta function Z(q).
Finally we obtained a relation between the eigenfunctions of Lq,w and those of P±q , and therefore, thanks to
Theorem 1.3-(a,b), a relation between the solutions of the generalized three-term functional equation (1.6)
and the zeroes of the function Z(q, w). More precisely, using [4, Theorem 3.6] and [4, Corollary 3.7], and the
definition of Z(q, w), together with the spectral characterisation of the zeroes of the Selberg zeta function
given in Theorem 1.1, it follows

Theorem 1.4 ([4]). (a) Let w = 1. Then:

• q is an even spectral parameter with ξ = 1
2 if and only if there exists an even f ∈ H(B) such that

P+
q f = f , f satisfies (1.6) with λ = 1 (or (1.2)) and it can be written as in (1.7) with c = b = 0;

• q is an odd spectral parameter with ξ = 1
2 if and only if there exists an odd f ∈ H(B) such that

P−q f = f , f satisfies (1.6) with λ = 1 (or (1.2)) and it can be written as in (1.8) with c = 0;

• 2q is a non-trivial zero of the Riemann zeta function if and only if there exists an even f ∈ H(B) such
that P+

q f = f , f satisfies (1.6) with λ = 1 (or (1.2)) and it can be written as in (1.7) with c = 0 and
b 6= 0;

• q = 1 is a zero of Z(q, 1) since f(z) = 1
z satisfies P+

1 f = f .
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(b) Let w ∈ C \ [1,∞). Then:

• q is an “even” zero of Z(q, w) if and only if there exists an even f ∈ H(B) such that P+
q f = 1

wf , f

satisfies (1.6) with λ = 1
w and it can be written as in (1.7) with c = b = 0;

• q is an “odd” zero of Z(q, w) if and only if there exists an odd f ∈ H(B) such that P−q f = 1
wf , f

satisfies (1.6) with λ = 1
w and it can be written as in (1.8) with c = 0.

Since by Theorem 1.3-(a,b), eigenfunctions of P±q satisfy a three-term equation which is a generalization of
the Lewis-Zagier equation (1.2), we call the functions f of Theorem 1.4 generalized period functions (gpf)
associated to the zeroes of the zeta function Z(q, w), even and odd according to whether they correspond to
even or odd zeroes. In addition we distinguish the two classes of gpf with b = 0, which we call 0-gpf, and
b 6= 0, which we call b-gpf. In the w = 1 case the 0-gpf correspond to the Maass cusp forms and the b-gpf to
the non-cusp forms. On the contrary in the w 6= 1 case the set of b-gpf is empty.
In Section 3 we consider the general case w ∈ C \ (1,∞), so we find a series expansion as in Theorem A
also for functions uw corresponding to 0-gpf with w 6= 1. However it is not clear if these functions play a
role in the spectral theory of hyperbolic surfaces. The original aim of this research was exactly to find a
characterization for general uw, and even if we don’t achieve this result in this paper, we believe this is an
interesting problem to be studied.

Finally we would like to point out that this paper includes one possible extension of the works [16, 18].
Other directions can be found in [8, 7, 19], where the authors study the relation between period functions
and Maass wave forms for subgroups of PSL(2,Z), and in [20, 22], where the role of the “slow” dynamics
and its advantage of introducing a transfer operator with finitely many terms is studied in relation to the
cohomological approach of [5].

2 Notations for special functions and integral transforms

We use standard notations: 2F1(a, b; c;x) for the hypergeometric function; Jν(z) for the Bessel functions
of first kind; Kν(z) for the modified Bessel functions of the third kind; Lνn(t) for the generalized Laguerre
polynomials; Γ(ν) for the Gamma function; ζ(q) for the Riemann zeta function; Pµν for the Legendre functions
in the real interval (−1, 1).
In the following we use the following integral transforms:

• Laplace transform

L [ϕ](z) :=

∫ ∞
0

e−zt ϕ(t) dt

• Symmetric Hankel transform

Hν [ϕ](z) :=

∫ ∞
0

Jν(tz)
√
tz ϕ(t) dt

• Asymmetric Hankel transform

Jν [ϕ](z) :=

∫ ∞
0

J2ν(2
√
tz)

(
t

z

)ν
ϕ(t) dt

• Borel generalized transform

Bν [ϕ](z) :=
1

z2ν

∫ ∞
0

e−
t
z t2ν−1ϕ(t) dt

• Mellin transform

M [ϕ](ρ) :=

∫ ∞
0

ϕ(t) tρ−1 dt
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The asymmetric Hankel transform has been introduced in [15], and the Borel generalized transform in [13].
For the other transforms see [11] and [12]. For the convergence of the Hankel transforms, we recall that the

Bessel function Jν(t) satisfies the estimates Jν(t) = O(tν) as t→ 0+, and Jν(t) = O(t−
1
2 ) as t→∞ (see [10,

vol. II]).
We also use the notation

χα(t) := tα and expα(t) := eαt , α ∈ C

and write q = ξ + iη, with ξ > 0 and η ∈ R. Moreover we write f(z)
.
= g(z) for two functions f, g which

coincides up to a non-vanishing multiplication constant possibly depending only on q.

3 From gpf to Maass forms on the imaginary axis

To study the set of gpf, we used in [4] the integral transform Bq on the spaces of functions Lp(mq) in R+

with mq(dt) = t2ξ−1 e−t dt. Letting

Lp(mq) :=

{
φ : R+ → C :

∫ ∞
0

|φ(t)|p t2ξ−1e−t dt <∞
}

with the norm

‖φ‖p :=

(∫ ∞
0

|φ(t)|p t2ξ−1e−t dt

) 1
p

,

it is immediate to check that
L1(mq) 3 φ 7→ Bq[φ] ∈ H(B)

and that Bq is continuous on L1(mq) with values on H(B) with the standard topology induced by the family
of supremum norms on compact subsets of B. Moreover, since mq(0,∞) = Γ(2ξ), one has Lp(mq) ⊂ L1(mq)
for all p ∈ [1,∞].
We also need to introduce the linear operators M and Nq defined by

M(φ)(t) := e−t φ(t)

Nq(φ)(t) := Jq− 1
2
[exp−1 φ](t) =

∫ ∞
0

J2q−1(2
√
st)
(s
t

)q− 1
2

e−s φ(s) ds .

In [4] it is proved that
L2(mq) 3 φ 7→ Nq[φ] ∈ L2(mq) .

The same is clearly true also for M . Moreover in [4, Proposition 2.5], it is proved that the transfer operators
of the Farey map P±q has a particularly nice behaviour with respect to the Borel generalized transform. In
particular for all φ ∈ L2(mq) it holds

P±q
(
Bq [χ−1 + φ]

)
(z) = Bq

[
(M ±Nq) (χ−1 + φ)

]
(z) . (3.1)

Finally, putting together Theorem 2.8 and Corollary 2.10 in [4], we have

Proposition 3.1 ([4]). If f is a generalized period function associated to a zero q and to the eigenvalue
λ = 1

w , then there exist b ∈ C and a function ϕ ∈ L2(mq) such that

f(z) = Bq

[
b

Γ(2q)
χ−1 + ϕ

]
(z) (3.2)

and

(M ±Nq)
(

b

Γ(2q)
χ−1 + ϕ

)
= λ

(
b

Γ(2q)
χ−1 + ϕ

)
,
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where the signs “+” and “-” correspond to the case of even or odd gpf respectively. Moreover, there exists a
sequence {an,q}n≥0 with lim sup |an,q|

1
n ≤ 1 such that: in the even case, for w = 1

ϕ(t) =
e−t

1− e−t
∞∑
n=1

(−1)nan,q t
n

Γ(n+ 2q)
+

a0,q

Γ(2q)

(
e−t

1− e−t
− 1

t

)
(3.3)

with a0,q = b, and for w ∈ C \ [1,∞),

ϕ(t) =
we−t

1− we−t
∞∑
n=0

(−1)nan,q t
n

Γ(n+ 2q)
; (3.4)

in the odd case, for all w ∈ C \ (1,∞), the constant b in (3.2) vanishes and the function ϕ can be written as
in (3.4).
Finally, the invariance under the involution Iq defined in (1.5), implies that if b = 0

Bq[ϕ] = ±L [χ2q−1ϕ] (3.5)

where again the signs “+” and “-” correspond to the case of even or odd gpf respectively.

3.1 The even case for 0-gpf

In [15] and [16] it is proved that the set of even period functions, that is even 0-gpf with w = 1, is in
one-to-one correspondence with the set of even Maass cusp forms. This correspondence is proved using the
Fourier series expansions of the even cusp forms given by

u(x+ iy) = y
1
2

∑
n≥1

cn,qKq− 1
2
(2πny) cos(2πnx) (3.6)

where the coefficients cn,q have at most polynomial growth. In particular the correspondence is given in [15]
in terms of the Laplace and Hankel transforms as

ψ(z) = L
[
χqHq− 1

2
[u(iy)]

]
(z) . (3.7)

Since the gpf f(z) of Proposition 3.1 coincides with ψ(z) up to a multiplication constant, using (3.2) with
b = 0 and (3.5), we obtain

L
[
χqHq− 1

2
[u(iy)]

]
(z)

.
= L [χ2q−1ϕ](z)

from which we obtain an integral correspondence between cusp forms and the eigenfunctions ϕ of Proposition
3.1, namely

ϕ(t)
.
= t1−q Hq− 1

2
[u(iy)](t) (3.8)

see [16, equation (2.27)].

Remark 3.2. We have used the notation
.
= here and in the following to denote an equality up to a multi-

plicative constant between cusp forms and the eigenfunctions ϕ. However, once this constant has been fixed
it remains the same in all the equations where

.
= appears. The known constants have been written explicitly.

In particular, if one chooses the right constant so that (3.8) is an equality, then all the other equations where
.
= appears become equalities by using the same constant.

We would like to use the involution property of the Hankel transform to introduce the inverse relation of
(3.8). Unfortunately we are outside the standard functional spaces where the involution property is valid,
since for example an eigenfunction ϕ of Proposition 3.1 satisfies ϕ(t) = O(eεt) as t→∞ for all ε > 0. Hence
we first explicitly construct the Hankel transform of the term χq−1ϕ.

8



Definition 3.3. For any q with <(q) > 0 and w ∈ C \ (1,∞), define the one-parameter family of functions

uβ(iy) := Hq− 1
2
[exp−β χq−1 ϕ](y) , <(β) > 0 (3.9)

for functions ϕ : (0,+∞)→ C which make the integral converge.

Thanks to the properties of the Bessel function recalled in Section 2, the integral in (3.9) is absolutely
convergent if ϕ is as in Proposition 3.1, that is ϕ is in L2(mq), satisfies (M +Nq)ϕ = 1

wϕ and can be written
as in (3.3) with a0,q = b = 0 for w = 1, and as in (3.4) for w ∈ C \ [1,∞). In fact by definition ϕ satisfies
ϕ(t) = O(1) as t→ 0+ and ϕ(t) = O(eεt) as t→∞ for all ε > 0.

Theorem 3.4. For any q with <(q) > 0 and any w ∈ C\ (1,∞), and for ϕ as in Proposition 3.1 with b = 0,
the function uβ(iy) can be extended for all y > 0 as an analytic function of β to a small domain containing
the origin. Moreover u0(iy) satisfies

u0(iy) = w

[
g(y) + g

(
1

y

)]
, ∀ y > 0 (3.10)

where

g(y) = Hq− 1
2
[exp−1 χq−1 ϕ](y) =

∞∑
n=0

(−1)n an,q
yn+q

(1 + y2)
n
2 + q

2 + 1
4

P
−q+ 1

2

n+q− 1
2

(
y

(1 + y2)
1
2

)
,

and {an,q} is given in (3.3) with a0,q = 0 for w = 1, and in (3.4) for w ∈ C \ [1,∞).

Proof. Let us fix y > 0. Using the functional equation (M +Nq)ϕ = 1
wϕ, we can write

uβ(iy) = wHq− 1
2
[exp−β χq−1Mϕ](y) + wHq− 1

2
[exp−β χq−1Nqϕ](y) (3.11)

since the first integral on the right hand side is absolutely convergent. Moreover we can change the order of
integration in the second integral, that is

Hq− 1
2
[exp−β χq−1Nqϕ](y) =

∫ ∞
0

Jq− 1
2
(ty)
√
ty e−βttq−1

∫ ∞
0

J2q−1(2
√
st)
(s
t

)q− 1
2

e−sϕ(s) ds dt =

=

∫ ∞
0

e−s sq−1
√
sϕ(s)

∫ ∞
0

Jq− 1
2
(ty)
√
ty J2q−1(2

√
st) e−βt t−

1
2 dt ds

since again the two-variable integral is absolutely convergent under the assumption <(β) > 0. Hence,
applying [11, vol. II, eq. 8.12.(17), p. 58], we get

Hq− 1
2
[exp−β χq−1Nqϕ](y) =

∫ ∞
0

Jq− 1
2

(
sy

y2 + β2

)
√
sy e

−s− sβ

y2+β2
sq−1√
y2 + β2

ϕ(s) ds .

The integral on the right hand side is absolutely convergent if

<
(

1 +
β

y2 + β2

)
> 0

hence the left hand side can be extended as an analytic function of β to a small domain containing the origin.
In particular we find that

Hq− 1
2
[exp−β χq−1Nqϕ]

∣∣∣
β=0

(y) = Hq− 1
2
[exp−1 χq−1 ϕ]

(
1

y

)
. (3.12)

Coming back to (3.11), the first term

Hq− 1
2
[exp−β χq−1Mϕ](y) =

∫ ∞
0

Jq− 1
2
(ty)
√
ty e−βttq−1 e−t ϕ(t) dt

9



is absolutely convergent for <(β) > −1, hence again can be extended as an analytic function of β to
<(β) > −1, satisfying

Hq− 1
2
[exp−β χq−1Mϕ]

∣∣∣
β=0

(y) = Hq− 1
2
[exp−1 χq−1 ϕ](y) . (3.13)

Hence, putting together (3.13) and (3.12), we have proved that uβ(iy) can be extended, as an analytic
function of β, to a small domain containing the origin for all y > 0, and

u0(iy) = wHq− 1
2
[exp−1 χq−1 ϕ](y) + wHq− 1

2
[exp−1 χq−1 ϕ]

(
1

y

)
. (3.14)

This establishes (3.10) with g = Hq− 1
2
[exp−1 χq−1 ϕ]. We now use the power series expansion for ϕ to

obtain the series representations for g.

First we write g(y) = G(y, β)
∣∣∣
β=0

where

G(y, β) := Hq− 1
2
[exp−(1+β) χq−1 ϕ](y)

for y > 0 and <(β) > −1, the integral on the right hand side being absolutely convergent by the estimates
used to justify the convergence in (3.9). Then we use the identity

w e−t

1− w e−t
=

1

1− w e−t
− 1

in the definition of G(y, β) to obtain

G(y, β) =

∫ ∞
0

Jq− 1
2
(ty)
√
y e−(1+β)t w e−t

1− w e−t
∞∑
n=0

(−1)n an,q t
n+q− 1

2

Γ(n+ 2q)
dt =

=
1

w

∫ ∞
0

Jq− 1
2
(ty)
√
y
w e−(1+β)t

1− w e−t
∞∑
n=0

(−1)n an,q t
n+q− 1

2

Γ(n+ 2q)
dt−

∫ ∞
0

Jq− 1
2
(ty)
√
y e−(1+β)t

∞∑
n=0

(−1)n an,q t
n+q− 1

2

Γ(n+ 2q)
dt =

=
1

w
uβ(iy)−

∫ ∞
0

Jq− 1
2
(ty)
√
y e−(1+β)t

∞∑
n=0

(−1)n an,q t
n+q− 1

2

Γ(n+ 2q)
dt .

Using [10, vol II, p. 14], it holds

|Jq− 1
2
(ty)| ≤

√
π

|Γ(q)|

(
1

2
ty

)<(q− 1
2 )

, ∀ t, y > 0

hence
sup
t∈R+

∣∣∣Jq− 1
2
(ty) e−(1+β)t tn+q− 1

2

∣∣∣ ≤ const.(w, q, y) sup
t∈R+

∣∣∣e−(1+β)t tn+2q−1
∣∣∣

where const.(w, q, y) denotes a constant only depending on w, q and y. Since

sup
t∈R+

∣∣∣e−(1+β)t tn+2q−1
∣∣∣ ≤ e−n−2<(q)+1

∣∣∣∣n+ 2q − 1

<(1 + β)

∣∣∣∣n+2<(q)−1

we find

lim sup
n→∞

(
sup
t∈R+

∣∣∣∣ an,q
Γ(n+ 2q)

e−(1+β)t tn+2q−1

∣∣∣∣) 1
n

≤ 1

<(1 + β)
< 1 , for <(β) > 0

where we also used that lim supn |an,q|
1
n ≤ 1. Hence we can write

G(y, β) =
1

w
uβ(iy)−

∞∑
n=0

(−1)n an,q
Γ(n+ 2q)

Hq− 1
2

[
exp−(1+β) χn+q−1

]
(y) , for <(β) > 0 .
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Using now the proved analytic extension for uβ , we can write for the second term on the right hand side

∞∑
n=0

(−1)n an,q
Γ(n+ 2q)

Hq− 1
2

[
exp−1 χn+q−1

]
(y) =

1

w
u(iy)−G(y, 0) = g

(
1

y

)
. (3.15)

Moreover, using [11, vol. II, eq. 8.6.(6), p. 29], we obtain

g

(
1

y

)
=

∞∑
n=0

(−1)n an,q
y

1
2

(1 + y2)
n
2 + q

2 + 1
4

P
−q+ 1

2

n+q− 1
2

(
1

(1 + y2)
1
2

)
and the proof is complete.

We have thus proved the validity of the following expansion for y ∈ (0,∞)

u0(iy) = w

∞∑
n=0

(−1)n an,q

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

. (3.16)

Moreover, letting y = tanϑ with ϑ ∈ (0, π2 ) in (3.16), we get

u0(iy) = w (sinϑ cosϑ)
1
2

∞∑
n=0

(−1)n an,q

[
(cosϑ)n+q− 1

2 P
−q+ 1

2

n+q− 1
2

(cosϑ) + (sinϑ)n+q− 1
2 P
−q+ 1

2

n+q− 1
2

(sinϑ)
]
,

(3.17)
and from the integral representation valid for ξ > 0 (see [10, vol. I, eq. (27), p. 159])

P
−q+ 1

2

n+q− 1
2

(cosϑ) =

√
2 (sinϑ)−q+

1
2

√
π Γ(q)

∫ ϑ

0

cos((n+ q)t)

(cos t− cosϑ)1−q dt

and the similar one for P
−q+ 1

2

n+q− 1
2

(sinϑ), we see that the convergence in (3.17) is uniform on any compact

interval contained in (0, π2 ). Hence the convergence in (3.16) is uniform on any compact interval contained
in (0,∞).

Corollary 3.5. Letting w = 1 and {an,q} as in (3.3) with a0,q = 0, the function u0(iy) in (3.16) is the
restriction to the imaginary axis of an even Maass cusp form.

Proof. It follows from the fundamental theorem of Maass (see [24, Theorem 2, p. 234] and [15, Proposition
2.1]) that even Maass cusp forms are uniquely determined as functions with restriction on the imaginary
axis of the form (3.6) for x = 0 and coefficients {cn,q} which make the series (3.6) satisfy u(iy) = u(i 1

y ).

By definition we have that the function u0(iy) in (3.10) corresponds to an eigenfunction ϕ of the operator
M +Nq as explained in Proposition 3.1, and by (3.8) and the involution property of the Hankel transform,
it admits a Fourier expansion as in (3.6). Moreover by the properties of u0(iy) found in Theorem 3.4 it also
satisfies u0(iy) = u0(i 1

y ). Hence the proof is finished.

Remark 3.6. A consequence of this result is that Maass Theorem can be reformulated by saying that even
Maass cusp forms are uniquely determined as functions with restriction on the imaginary axis of the form
(3.16) and coefficients {an,q} which satify lim supn |an,q|

1
n ≤ 1 and the identity

∞∑
n=1

an,q z
n =

∞∑
n=1

an,q

(
(z − 1)n − (−1)n

(z + 1)2q+n

)
(3.18)

for all z where the series converge. This identity follows from Proposition 3.1 and [4].
As far as numerical computations are concerned, we also remark that (3.18) has been reduced in [2, 3] to
a linear algebra identity for infinite matrices in the case q real. The same can be done for general complex
values of q with positive real part (unpublished notes).
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3.2 The even case for b-gpf

We now extend Theorem 3.4 to the case of even b-gpf, which do exist only for w = 1. We recall that
non-cuspidal Maass forms of eigenvalue λ form a one-dimensional subspace which is spanned by the non-
holomorphic Eisenstein series defined for ξ > 1 as

E(z, q) = ζ(2q) yq
(

1 +
1

|z|2q

)
+ 2

∑
c,d≥1

(
y

|cz + d|2

)q
, z = x+ iy , (3.19)

and extended to C as a meromorphic function with a simple pole at q = 1 with residue the constant function
π
2 , by the Fourier series expansions

E(x+ iy, q) = ζ(2q) yq +
π

1
2 Γ(q − 1

2 )

Γ(q)
ζ(2q − 1) y1−q + y

1
2

∑
n≥1

c̃n,qKq− 1
2
(2πny) cos(2πnx) (3.20)

where

c̃n,q =
4πq

Γ(q)
n

1
2−q

∑
d|n

d2q−1 .

Notice that the extension of E(x + iy, q) to C has no pole at q = 1
2 since the contribution from the term

ζ(2q) is cancelled by the contribution of the term containing Γ(q − 1
2 ). Moreover it is proved in [6] and [16]

(see the proof of equation (2.30) and page 243) that the function ψ+
q defined in (1.4) for ξ > 1, which is an

eigenfunction of P+
q with eigenvalue λ = 1, satisfies

ψ+
q (z) =

ζ(2q)

2

(
1 + z−2q

)
+

2−q−
1
2

Γ(q + 1
2 )

L
[
χq Hq− 1

2
[Ẽ(iy, q)]

]
(z) (3.21)

where

Ẽ(iy, q) = 2
∑
c,d≥1

(
y

c2y2 + d2

)q
. (3.22)

It is shown in [16] that the function Γ(2q)
Γ(q−1) ψ

+
q can be analytically continued to C, we give here a proof of

this fact for {ξ > 0} using the Bq transform.

Theorem 3.7. The equation

ψ+
q (z) = Bq

[
ζ(2q)

2

δ0(t)

t2q−1
+

e−t

1− e−t
∞∑
n=0

(−1)nan,q t
n

Γ(n+ 2q)

]
(z) (3.23)

where1  a0,q = ζ(2q − 1)

an,q = (−1)n Γ(n+2q)
n! Γ(2q)

(
ζ(2q)

2 + 1
n+1

∑n
i=0

(
n+1
i

)
Bi ζ(2q − 1 + i)

)
, n ≥ 1

defines a meromorphic extension of ψ+
q (z) to {ξ > 0} with simple pole at q = 1 and residue the function 1

2z ,
which is the density of the invariant measure of the Farey map, up to a multiplicative constant.

Proof. We first show that expression (3.23) coincides with the definition (1.4) of the function ψ+
q for ξ > 1.

Then we show the meromorphic extension of (3.23) to the half-plane {ξ > 0}.
We first use [4, Remark 2.6] and in particular

Bq

[
ζ(2q)

2

δ0(t)

t2q−1

]
(z) =

ζ(2q)

2
z−2q (3.24)

1Here by δ0 we denote the Dirac delta function at 0, and we use its definition when it is used as argument of an integral
transform.
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to obtain the second term on the right hand side of (1.4). The first term is obtained by

ζ(2q)

2
= Bq

[
ζ(2q)

2 Γ(2q)

]
(z) = Bq

[
ζ(2q)

2 Γ(2q)

e−t

1− e−t
∞∑
n=1

tn

n!

]
(z) . (3.25)

For the other terms we argue as follows∑
m,n≥1

1

(mz + n)2q
=

1

z2q

∑
m,n≥1

1

n2q
(
m
n + 1

z

)2q =
1

Γ(2q) z2q

∑
m,n≥1

1

n2q
L
[
t2q−1e−

m
n t
](1

z

)
=

=
1

Γ(2q)

∑
m,n≥1

1

n2q
Bq

[
e−

m
n t
]

(z) = Bq

 1

Γ(2q)

∑
m,n≥1

e−
m
n t

n2q

 (z) = Bq

 1

Γ(2q)

∑
n≥1

1

n2q

e−
t
n

1− e− t
n

 (z) .

Since ξ > 1, we can write

∑
n≥1

1

n2q

e−
t
n

1− e− t
n

=
e−t

1− e−t
∑
n≥1

1

n2q

et − 1

e
t
n − 1

=
e−t

1− e−t
∑
n≥1

1

n2q

n−1∑
j=0

(e
t
n )j =

=
e−t

1− e−t

∑
n≥1

1

n2q
+
∑
k≥0

∑
n≥2

n−1∑
j=1

jk

n2q+k

 tk

k!

 =
e−t

1− e−t
∑
k≥0

Ak,q
tk

k!

with

A0,q = ζ(2q) +
∑
n≥2

n− 1

n2q
= ζ(2q − 1)

and in general

Ak,q =
∑
n≥2

Sk(n− 1)

n2q+k
, k ≥ 1

where Sk(n−1) =
∑n−1
j=1 jk. Notice that Sk(n−1) ≤ nk+1, thus for ξ > 1 the sum defining Ak,q is convergent

and |Ak,q| ≤ ζ(2ξ − 1) for all k ≥ 1. Hence the series
∑
k≥0Ak,q

tk

k! converges for t ∈ R and

∑
m,n≥1

1

(mz + n)2q
= Bq

 1

Γ(2q)

e−t

1− e−t
∑
k≥0

Ak,q
tk

k!

 (z) . (3.26)

Moreover, we recall that

Sk(n) =
1

k + 1
nk+1 +

1

2
nk +

1

k + 1

k∑
i=2

(
k + 1

i

)
Bi n

k+1−i

where Bi are the Bernoulli numbers. Hence for ξ > 1 and k ≥ 1

Ak,q =
∑
n≥2

Sk(n)− nk

n2q+k
=
∑
n≥2

Sk(n)− 1
k+1 n

k+1 − 1
2 n

k

n2q+k
+

1

k + 1

(
ζ(2q − 1)− 1

)
− 1

2

(
ζ(2q)− 1

)
=

=
1

k + 1

(
ζ(2q − 1)− 1

)
− 1

2

(
ζ(2q)− 1

)
+

1

k + 1

k∑
i=2

(
k + 1

i

)
Bi

(
ζ(2q − 1 + i)− 1

)
=

=
1

k + 1

k∑
i=0

(
k + 1

i

)
Bi

(
ζ(2q − 1 + i)− 1

)
=

1

k + 1

k∑
i=0

(
k + 1

i

)
Bi ζ(2q − 1 + i) ,
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using the identity
∑n
i=0

(
n+1
i

)
Bi = 0. These expressions for Ak,q are holomorphic in {ξ > 0} for all k ≥ 0

except for simple poles at q = 1
2 and q = 1. Moreover, using∣∣∣∣Sk(n)− 1

k + 1
nk+1 − 1

2
nk
∣∣∣∣ ≤ const k2 nk−1 , k ≥ 1 (3.27)

which is proved in the Appendix A, we have that∣∣∣∣∣∣
∑
n≥2

Sk(n)− 1
k+1 n

k+1 − 1
2 n

k

n2q+k

∣∣∣∣∣∣ ≤ const k2
∑
n≥2

nk−1

n2ξ+k
= const k2 ζ(2ξ + 1)

for all q in {ξ > 0}, hence |Ak,q| = O(k2) for all q in {ξ > 0}. This implies that (3.26) is valid for ξ > 0, and
putting together (3.24), (3.25) and (3.26), we get for ξ > 0

ψ+
q (z) = Bq

[
ζ(2q)

2

δ0(t)

t2q−1
+

e−t

1− e−t
∞∑
n=0

(−1)nan,q t
n

Γ(n+ 2q)

]
(z)

where  a0,q = ζ(2q − 1)

an,q = (−1)n Γ(n+2q)
n! Γ(2q)

(
ζ(2q)

2 +An,q

)
, n ≥ 1

which are holomorphic except for a simple pole at q = 1.

There is also a pole at q = 1
2 in the coefficient ζ(2q)

2 of the first term in the argument of the Bq transform.

However, when applying the Bq, we obtain that ψ+
q can be written as in (1.7) with c = ζ(2q)

2 and b = ζ(2q−1),
so the first two terms are given by

ζ(2q)

2

1

z2q
+
ζ(2q − 1) Γ(2q − 1)

Γ(2q)

1

z

so that there is no pole at q = 1
2 , as it happens for the Eisenstein series in (3.20).

Finally we can compute the residue for ψ+
q at q = 1 using (3.23). The only contributing terms are those

containing ζ(2q − 1), which has residue 1
2 . Hence Resq=1(an,q) = (−1)n

2 and

Resq=1

[
ζ(2q)

2

δ0(t)

t2q−1
+

e−t

1− e−t
∞∑
n=0

(−1)nan,q t
n

Γ(n+ 2q)

]
=

e−t

1− e−t
∞∑
n=0

tn

2 Γ(n+ 2)

which gives

Resq=1(ψ+
q ) = B1

[
e−t

1− e−t
∞∑
n=0

tn

2 Γ(n+ 2)

]
(z) = B1

[
1

2t

]
(z) =

1

2z
.

This concludes the proof.

By Theorem C-(a), the function ψ+
q satisfies the equation Iqψ+

q = ψ+
q , as is easily verified using the definition

(1.4). Then, using (3.26) and (3.21) it follows that the function

ϕ̃(t) :=
1

Γ(2q)

e−t

1− e−t
∑
k≥0

Ak,q
tk

k!
(3.28)

satisfies

Bq[ϕ̃] = L [χ2q−1 ϕ̃] =
2−q−

1
2

Γ(q + 1
2 )

L
[
χq Hq− 1

2
[Ẽ(iy, q)]

]
,
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from which we get the analogue of (3.8)

ϕ̃(t) =
2−q−

1
2

Γ(q + 1
2 )
t1−q Hq− 1

2
[Ẽ(iy, q)](t) , (3.29)

for Ẽ(iy, q) defined in (3.22). From this we get an analytic continuation of E(iy, q) different from the Fourier
series expansion (3.20).

Theorem 3.8. The function U(iy) defined by

U(iy) := ζ(2q)
(
yq + y−q

)
− 2 ζ(2q)

(
y

1 + y2

)q
+

+ 2q+
1
2 Γ

(
q +

1

2

) ∞∑
n=0

(−1)n bn,q

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

(3.30)

with

bn,q = (−1)n
Γ(n+ 2q)

(n+ 1)! Γ(2q)

n∑
i=0

(
n+ 1

i

)
Bi ζ(2q − 1 + i) ,

gives an analytic continuation of the Eisenstein series E(iy, q) in (3.19) to q ∈ C with a simple pole at q = 1
with residue the constant function π

2 .

Proof. Writing the Eisenstein series E(iy, q) as in (3.19)

E(iy, q) = ζ(2q)
(
yq + y−q

)
+ Ẽ(iy, q) ,

we proceed as in Theorem 3.4 to invert the relation (3.29).
The proof follows the same lines as that of Theorem 3.4 with some modifications. The first is that the
function ϕ̃ satisfies the functional equation

((M +Nq)ϕ̃)(t) = ϕ̃(t)− ζ(2q)

Γ(2q)
e−t . (3.31)

This follows by applying P+
q to ψ+

q (z) = ζ(2q)
2 (1 + z−2q) + Bq[ϕ̃](z). Indeed ϕ̃ is of the right form to apply

(3.1), hence

ψ+
q (z) = (P+

q ψ
+
q )(z) = P+

q

(
ζ(2q)

2
(1 + z−2q)

)
+ (P+

q Bq[ϕ̃])(z) =

=
ζ(2q)

2
(1 + z−2q) + ζ(2q) (1 + z)−2q + Bq[(M +Nq)ϕ̃)](z) .

Using

(1 + z)−2q =
1

Γ(2q)
z−2q

∫ ∞
0

e−t(1+ 1
z ) t2q−1 dt =

1

Γ(2q)
Bq[e

−t](z)

we obtain (3.31).
Letting now

Ũβ(iy) := 2q+
1
2 Γ

(
q +

1

2

)
Hq− 1

2
[exp−β χq−1 ϕ̃](y) , <(β) > 0

we get from (3.31)

Ũβ(iy) = 2q+
1
2 Γ

(
q +

1

2

) (
Hq− 1

2
[exp−β χq−1 (M +Nq)ϕ̃](y) +

ζ(2q)

Γ(2q)
Hq− 1

2
[exp−β−1 χq−1](y)

)
.
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For the first term on the right hand side, for ξ > 1
2 we can repeat the arguments of the proof of Theorem

3.4 leading to (3.14), to get

Hq− 1
2
[exp−β χq−1 (M +Nq)ϕ̃]

∣∣
β=0

(y) = Hq− 1
2
[exp−1 χq−1 ϕ̃](y) + Hq− 1

2
[exp−1 χq−1 ϕ̃]

(
1

y

)
,

whereas the second term is absolutely convergent for β = 0, thus we simply have

Hq− 1
2
[exp−β−1 χq−1]

∣∣
β=0

(y) = Hq− 1
2
[exp−1 χq−1](y) .

Hence we obtain the continuation of Ũβ to a neighborhood of β = 0, and define Ũ(iy) := Ũ0(iy) by

Ũ(iy) = 2q+
1
2 Γ

(
q +

1

2

) (
Hq− 1

2
[exp−1 χq−1 ϕ̃](y)+Hq− 1

2
[exp−1 χq−1 ϕ̃]

(
1

y

)
+
ζ(2q)

Γ(2q)
Hq− 1

2
[exp−1 χq−1](y)

)
.

(3.32)
To finish the proof, we use (3.28) to write ϕ̃ as

ϕ̃(t) =
e−t

1− e−t
∞∑
n=0

(−1)nbn,q t
n

Γ(n+ 2q)

with bn,q = (−1)n Γ(n+2q)
n! Γ(2q) An,q, hence{

b0,q = ζ(2q − 1)

bn,q = (−1)n Γ(n+2q)
(n+1)! Γ(2q)

∑n
i=0

(
n+1
i

)
Bi ζ(2q − 1 + i) , n ≥ 1

Then we define as in the proof of Theorem 3.4 the function g̃(y) = G̃(y, β)
∣∣∣
β=0

with

G̃(y, β) := Hq− 1
2
[exp−(1+β) χq−1 ϕ̃](y)

and repeat the same argument used in the proof of Theorem 3.4 to prove (3.15), to show that

∞∑
n=0

(−1)n bn,q
Γ(n+ 2q)

Hq− 1
2

[
exp−1 χn+q−1

]
(y) =

2−q−
1
2

Γ(q + 1
2 )
Ũ(iy)− G̃(y, 0) = g̃

(
1

y

)
+R(y) ,

with R(y) := ζ(2q)
Γ(2q)Hq− 1

2
[exp−1 χq−1](y). The above equation can be used to obtain an expression for g̃

(
1
y

)
and the analogous for g̃(y), that when substituted in (3.32) finally give

2−q−
1
2

Γ(q + 1
2 )
Ũ(iy) =

∞∑
n=0

(−1)n bn,q
Γ(n+ 2q)

Hq− 1
2

[
exp−1 χn+q−1

]
(y)+

∞∑
n=0

(−1)n bn,q
Γ(n+ 2q)

Hq− 1
2

[
exp−1 χn+q−1

](1

y

)
−R

(
1

y

)
.

The last step of the proof consists of the calculations of the Hankel transforms. The first one is the same as
in Theorem 3.4, that is

∞∑
n=0

(−1)n bn,q
Γ(n+ 2q)

Hq− 1
2

[
exp−1 χn+q−1

]
(y) =

∞∑
n=0

(−1)n bn,q
y

1
2

(1 + y2)
n
2 + q

2 + 1
4

P
−q+ 1

2

n+q− 1
2

(
1

(1 + y2)
1
2

)
,

and the second one is

R(y) =
ζ(2q)

Γ(2q)

2q−
1
2 Γ(q)

π
1
2

(
y

1 + y2

)q
= ζ(2q)

2−q+
1
2

Γ(q + 1
2 )

(
y

1 + y2

)q
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where we have used [11, vol. II, eq. 8.6.(5), p. 29] and Γ(2q) = π−
1
2 22q−1 Γ(q) Γ(q + 1

2 ).
In the proof of Theorem 3.7 we proved that |An,q| = O(n2), hence arguing as in (3.17), we obtain that the
expansion (3.30) is well defined for all q ∈ C, except q = 1

2 and q = 1, and for all y > 0. Moreover it is
uniformly convergent in y on any compact interval contained in (0,∞).
We now first show that the expression (3.30) has no pole at q = 1

2 . It is enough to show that the term
multiplying ζ(2q) vanishes at q = 1

2 , indeed

lim
q→ 1

2

(2q − 1)U(iy) = y
1
2 + y−

1
2 − 2

(
y

1 + y2

) 1
2

−
∞∑
n=1

y
1
2 Pn

(
1

(1+y2)
1
2

)
+ yn+ 1

2 Pn

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + 1

2

where Pn are the Legendre polynomials. Using equation (see [21, eq. 18.12.11, p. 449])

∞∑
n=0

Pn(α)βn = (1− 2αβ + β2)−
1
2

for α ∈ (0, 1) and |β| < 1, we obtain

∞∑
n=1

y
1
2 Pn

(
1

(1+y2)
1
2

)
+ yn+ 1

2 Pn

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + 1

2

=

(
y

1 + y2

) 1
2

(
(1 + y2)

1
2

y
+ (1 + y2)

1
2 − 2

)
,

hence
lim
q→ 1

2

(2q − 1)U(iy) = 0 .

At q = 1, the expression (3.30) has instead a pole with a residue that can be computed using Resq=1(bn,q) =
(−1)n

2 . Letting y = tanϑ as above we find

Resq=1(U)(iy) = 2
1
2 Γ

(
3

2

)
(sinϑ cosϑ)

1
2

∞∑
n=0

[
(cosϑ)n+ 1

2 P
− 1

2

n+ 1
2

(cosϑ) + (sinϑ)n+ 1
2 P
− 1

2

n+ 1
2

(sinϑ)
]

Using [21, eq. 14.5.12, p. 359] we get

(sinϑ)
1
2 (cosϑ)n+1 P

− 1
2

n+ 1
2

(cosϑ) =
1

n+ 1

(
2

π

) 1
2

(cosϑ)n+1 sin ((n+ 1)ϑ)

Hence
∞∑
n=0

(sinϑ)
1
2 (cosϑ)n+1 P

− 1
2

n+ 1
2

(cosϑ) =

(
2

π

) 1
2

=

( ∞∑
n=0

1

n+ 1

(
1 + exp(2iϑ)

2

)n+1
)

=

=

(
2

π

) 1
2

=
(
− log

(
1− exp(2iϑ)

2

))
= −

(
2

π

) 1
2

arctan

(
− sin(2ϑ)

1− cos(2ϑ)

)
=

(
2

π

) 1
2

arctan
1

y

recalling that y = tanϑ. Hence finally

Resq=1(U)(iy) = 2
1
2 Γ

(
3

2

) (
2

π

) 1
2 (

arctan y + arctan
1

y

)
=
π

2

recalling Γ( 3
2 ) = 1

2 π
1
2 .
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3.3 The odd case for 0-gpf

Here we are going to repeat the approach of Section 3.1 for odd period functions, which in the case w = 1
are in one-to-one correspondence with the set of odd Maass cusp forms, as shown in [16]. Also in this case
it is fundamental to use the Fourier series expansion for the odd cusp forms given by

u(x+ iy) = y
1
2

∑
n≥1

cn,qKq− 1
2
(2πny) sin(2πnx) , (3.33)

with cn,q having at most a polynomial growth. The integral correspondence between even cusp forms and
even period functions proved in [15] is extended to the odd case in [16, Section II.1]. We can formally proceed
as for (3.7) by applying [15, Proposition 4.3] to get2

ψ(z) = −1

z
L
[
χq−1Hq− 3

2
[y ux(iy)]

]
(z) ,

where ux = ∂
∂xu, and find by (3.5) that

1

z
L
[
χq−1Hq− 3

2
[y ux(iy)]

]
(z)

.
= L [χ2q−1ϕ] (z)

for a function ϕ ∈ L2(mq) satisfying (M −Nq)ϕ = ϕ, with expansion as in (3.3) with a0,q = 0. From this we
obtain the analogous of (3.8) and [16, equation (2.27)] for odd Maass cusp forms. By [11, vol. I, eq. 4.1.(9),
p. 130, and vol. II, eq. 8.1.(6), p. 5] we finally have3

ϕ(t)
.
= t1−2q

∫ t

0

τ q−1 Hq− 3
2
[y ux(iy)](τ) dτ = t−q Hq− 1

2
[ux(iy)](t) . (3.34)

Notice that the Hankel transform in (3.34) is absolutely convergent for ξ > 0 thanks to the rapid decay
properties of Maass forms.
We now make use of the involution property of the Hankel transform as in Section 3.1 and repeat the proof
of Proposition 3.4. We first define the “modified” inverse of (3.34)

Definition 3.9. For any q with <(q) > 0 and w ∈ C \ (1,∞), define the one-parameter family of functions

vβ(iy) := Hq− 1
2
[exp−β χq ϕ](y) , <(β) > 0 (3.35)

for functions ϕ : (0,+∞)→ C which make the integral converge.

Then we show that if ϕ is an eigenfunction of (M −Nq) then we can put β = 0 in (3.35).

Theorem 3.10. For any q with <(q) > 0, any w ∈ C\(1,∞), and any ϕ as in Proposition 3.1 with a0,q = 0,
the function vβ(iy) can be extended for all y > 0 as an analytic function of β to a small domain containing
the origin. Moreover v0(iy) satisfies

v0(iy) = w

[
g(y)− 1

y2
g

(
1

y

)]
, ∀ y > 0 (3.36)

where

g(y) = Hq− 1
2
[exp−1 χq ϕ](y) =

∞∑
n=1

(−1)n (n+ 2q − 1) an−1,q
yn+q−2

(1 + y2)
n
2 + q

2 + 1
4

P
−q+ 1

2

n+q− 1
2

(
y

(1 + y2)
1
2

)
,

and {an,q} is given in (3.4) with a0,q = 0.

2Proposition 4.3 in [15] can be applied only for ξ > 3
2

.
3See Remark 3.2.
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Proof. Let us fix y > 0. Using the functional equation (M −Nq)ϕ = 1
wϕ, we can write

vβ(iy) = wHq− 1
2
[exp−β χqMϕ](y)− wHq− 1

2
[exp−β χqNqϕ](y) (3.37)

since the first integral on the right hand side is absolutely convergent. Moreover we can change the order of
integration in the second integral, that is

Hq− 1
2
[exp−β χqNqϕ](y) =

∫ ∞
0

Jq− 1
2
(ty)
√
ty e−βttq

∫ ∞
0

J2q−1(2
√
st)
(s
t

)q− 1
2

e−sϕ(s) ds dt =

=

∫ ∞
0

e−s sq−1
√
sϕ(s)

∫ ∞
0

Jq− 1
2
(ty)
√
ty J2q−1(2

√
st) e−βt t

1
2 dt ds

since again the two-variable integral is absolutely convergent. Now we use [11, vol. I, eq. 4.1.(6), p. 129,
and eq. 4.14.(38), p. 186] to write∫ ∞

0

Jq− 1
2
(ty)
√
ty J2q−1(2

√
st) e−βt t

1
2 dt = −√y d

dβ

∫ ∞
0

Jq− 1
2
(ty) J2q−1(2

√
st) e−βt dt =

= −√y d

dβ

[
e
− sβ

y2+β2 (y2 + β2)−
1
2 Jq− 1

2

(
sy

y2 + β2

)]
,

and consequently

Hq− 1
2
[exp−β χqNqϕ](y) = −

∫ ∞
0

e−s sq−1
√
sϕ(s)

√
y
d

dβ

[
e
− sβ

y2+β2 (y2 + β2)−
1
2 Jq− 1

2

(
sy

y2 + β2

)]
ds .

Computing all the terms in the previous derivative, we see as in the proof of Theorem 3.4 that all the addends
of the integral are absolutely convergent for

<
(

1 +
β

y2 + β2

)
> 0 .

Hence we can again set β = 0 and it turns out that there is only one non-vanishing term, so

Hq− 1
2
[exp−β χqNqϕ]

∣∣∣
β=0

(y) =
1

y2
Hq− 1

2
[χqMϕ]

(
1

y

)
.

So we argue as in Theorem 3.4 and from (3.37) we get (3.36) with

g(y) = Hq− 1
2
[exp−1 χqϕ](y) .

The proof is finished as in Theorem 3.4 since we can write g = Hq− 1
2
[exp−1 χq−1ϕ̃] with ϕ̃(t) = tϕ(t). Hence

ϕ̃(t) =
we−t

1− we−t
∞∑
n=1

(−1)n−1an−1,q t
n

Γ(n+ 2q − 1)

and at the end we get

− 1

y2
g

(
1

y

)
=

∞∑
n=1

(−1)n−1 (n+ 2q − 1) an−1,q
y

1
2

(1 + y2)
n
2 + q

2 + 1
4

P
−q+ 1

2

n+q− 1
2

(
1

(1 + y2)
1
2

)
.

This finishes the proof.

As in the even case, one can show that the expansion for v0(iy) obtained in Theorem 3.10 is uniformly
convergent on any compact interval of (0,∞). Moreover we have the following
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Corollary 3.11. Letting w = 1, the function v0(iy) in (3.36) is the restriction to the imaginary axis of the
x-derivative of an odd Maass cusp form.

Proof. It follows from the fundamental theorem of Maass (see [24, Theorem 2 and Exercise 6, p. 234]) that
odd Maass cusp forms are uniquely determined by their restriction on the imaginary axis, and correspond
to coefficients {cn,q} which make the series (3.33) satisfy ux(iy) = −y2 ux(i 1

y ).

By definition we have that the function v0(iy) in (3.36) satisfies v0(iy) = −y2 v0(i 1
y ). Then the proof is

finished by using (4.8) and [16, Chap. II, Section 3], to show that (3.34) is a bijection between odd Maass
cusp forms and the eigenfunctions of M −Nq as in Proposition 3.1.

4 From gpf to Fourier coefficients of Maass forms

We now use equations (3.8), (3.29) and (3.34), to obtain relations between the coefficients of the power series
expansions of the eigenfunctions ϕ introduced in Proposition 3.1, and the Fourier coefficients of the Maass
forms. In the case of the non-holomorphic Eisenstein series, this approach brings interesting results for the
divisor function σα(n). The results are summarized in Theorem B in the Introduction.
The main equality we need is the symmetric Hankel transform of the Bessel functions Kν , which is given in
[11, vol. II, eq. 8.13.(2), p. 63], namely

Hν

[
y

1
2 Kν(ay)

]
(t) = a−ν

tν+ 1
2

t2 + a2
, <(a) > 0 , <(ν) > −1 . (4.1)

4.1 Maass cusp forms

Let u(x+ iy) be an even Maass cusp form, we can then use its Fourier series expansion

u(x+ iy) = y
1
2

∑
n≥1

cn,qKq− 1
2
(2πny) cos(2πnx)

in
ϕ(t)

.
= t1−q Hq− 1

2
[u(iy)](t) ,

from which using term-by-term (4.1) with a = 2πn and ν = q − 1
2 , one obtains (see [16, equation (2.28)])

ϕ(t)
.
=
∑
n≥1

n
1
2−q cn,q

t

t2 + (2πn)2
=

∞∑
k=0

(−1)k

(4π2)k+1
Lu

(
q + 2k +

3

2

)
t2k+1 (4.2)

where Lu(ρ) is the Dirichlet L-series associated to u, namely

Lu(ρ) :=
∑
n≥1

cn,q n
−ρ . (4.3)

This shows that ϕ is an odd function, and gives a relation between the coefficients {ak,q} in

ϕ(t) =
e−t

1− e−t
∞∑
k=1

(−1)kak,q t
k

Γ(k + 2q)

and {cn,q}. Indeed, recalling that
e−t

1− e−t
=
∑
i≥0

Bi
ti−1

i!
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where {Bi} are the Bernoulli numbers, we find4

∑
i≥−1, j≥1, i+j=n

(−1)j
Bi+1 aj,q

(i+ 1)! Γ(j + 2q)

.
=

 (−1)
n−1
2

(2π)n+1 Lu

(
q + n+ 1

2

)
, if n is odd

0 , if n is even
(4.4)

The equality (4.2) can be further used to find an even more direct expression for the cn,q in terms of the
{an,q}. Following a suggestion first given in [15] (see also [16]), let us introduce the interpolating function
gq, defined as

gq(t) =

∞∑
k=1

ak,qt
k

Γ(k + 2q)
≡
∞∑
k=1

βk,qt
k

k!
(4.5)

where we have set

βk,q =
k!

Γ(k + 2q)
ak,q

One readily sees that gq is entire of exponential type and, moreover, we find

gq(−t) =

∞∑
k=1

(−1)kβk,qt
k

k!
= (et − 1)ϕ(t)

Now, since (the meromorphic continuation of) ϕ is odd, we have gq(t) = (1 − e−t)ϕ(t). We thus see that
gq satisfies the functional equation gq(−t) = etgq(t). The name of the function gq comes from the following
fact: taking the limit t→ ±2πin in (4.5), using the first identity of (4.2) and observing that

lim
t→±2πin

t(et − 1)

t2 + (2πn)2
= lim
t→±2πin

t(et − 1)

(t+ 2πin)(t− 2πin)
=

1

2

we obtain the following formula for the Fourier coefficients of u:

cn,q
.
= 2nq−

1
2 gq(±2πin) , n ≥ 1 (4.6)

In order to better understand the consequences of this formula we have to study the behavior of the entire
function gq on the imaginary axis. For the moment we just put the above formula in a more explicit form,
using (4.5) and (4.6),

cn,q
.
= 2nq−

1
2

∞∑
k=1

βk,q
k!

(±2πin)k , n ≥ 1

The symmetry with respect to the change of sign yields∑
k≥0

β2k+1,q

(2k + 1)!
(2πin)2k+1 = 0 , ∀n ≥ 1

so that we can finally write

cn,q
.
= 2nq−

1
2

∞∑
k=1

(−1)kβ2k,q

(2k)!
(2πn)2k = 2nq−

1
2

∞∑
k=1

(−1)ka2k,q

Γ(2k + 2q)
(2πn)2k , n ≥ 1 (4.7)

and finish the proof of Theorem B for even Maass cusp forms.
Finally, we remark that the functional equation gq(−t) = etgq(t) gives

∞∑
k=1

(−1)k
βk,q
k!

tk =

∞∑
k=1

(
k∑
`=1

β`,q
`!(k − `)!

)
tk

4See Remark 3.2.
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and therefore
k∑
`=1

(
k

`

)
β`,q = (−1)kβk,q , k ≥ 1

which (for k even) is akin to the recursive property of the Bernoulli numbers.
In the odd case, everything works similarly. Using (3.33) and integrating term-by-term we get the analogous
of (4.2), namely

ϕ(t)
.
= t−q

∑
n≥1

n cn,q Hq− 1
2

[
χ 1

2
(y)Kq− 1

2
(2πny)

]
(t)

.
=
∑
n≥1

n−q−
1
2 cn,q

( 1

( t
2πn )2 + 1

− 1
)

+ Lu

(
q +

1

2

)
=

∞∑
k=0

(−1)k

(2π)2k
Lu

(
q + 2k +

1

2

)
t2k

(4.8)

where in the second line we have used [11, vol. II, eq. 8.13.(2), p. 63], the definition of the L-series Lu in
(4.3) and their analytic extensions. It follows that ϕ is an even function and the analogous of (4.4) and (4.7)
are immediate.

4.2 Non-holomorphic Eisenstein series

Analogous computations can be performed starting from (3.29) and applying (4.1) term-by-term. In this
case however the coefficients are known, hence we obtain explicit equalities. Letting

ϕ̃(t) :=
1

Γ(2q)

1

et − 1

∑
k≥0

Ak,q
tk

k!

with

Ak,q =
1

k + 1

k∑
i=0

(
k + 1

i

)
Bi ζ(2q − 1 + i) , k ≥ 0 ,

where Bi are the Bernoulli numbers, we first rewrite it with

Ãk,q := Ak,q −
ζ(2q − 1)

k + 1
+
ζ(2q)

2
=

1

k + 1

k∑
i=2

(
k + 1

i

)
Bi ζ(2q − 1 + i) k ≥ 2 ,

from which we obtain

ϕ̃(t) =
ζ(2q − 1)

Γ(2q)

1

t
− ζ(2q)

2 Γ(2q)
+

1

Γ(2q)

1

et − 1

∑
k≥2

Ãk,q
tk

k!
.

Then writing

Ẽ(iy, q) =
π

1
2 Γ(q − 1

2 )

Γ(q)
ζ(2q − 1) y1−q − ζ(2q) y−q +

4πq

Γ(q)
y

1
2

∑
n≥1

n
1
2−q σ2q−1(n)Kq− 1

2
(2πny)

where σα(n) :=
∑
d|n d

α is the divisor function, equality (3.29) gives

ϕ̃(t) =
ζ(2q − 1)

Γ(2q)

1

t
− ζ(2q)

2 Γ(2q)
+

2

Γ(2q)

∑
n≥1

n1−2q σ2q−1(n)
t

t2 + (2πn)2
,

where we have used [11, vol. II, eq. 8.5.(7), p. 22], (4.1) and the equality 21−2q π
1
2 Γ(2q) = Γ(q) Γ(q + 1

2 ),
hence

1

et − 1

∑
k≥2

Ãk,q
tk

k!
= 2

∑
n≥1

n1−2q σ2q−1(n)
t

t2 + (2πn)2
= 2

∞∑
k=0

(−1)k

(4π2)k+1
Lσ

(
2q + 2k + 1

)
t2k+1 (4.9)
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where now Lσ(ρ) is the Dirichlet L-series

Lσ(ρ) :=
∑
n≥1

σ2q−1(n)n−ρ .

Arguing as above, from (4.9) we obtain the analogous of (4.4) and (4.7)

∑
i≥−1, j≥1, i+j=n

Bi+1 Ãj,q
(i+ 1)! j!

=

 (−1)
n−1
2

2n πn+1 Lσ

(
2q + n

)
, if n is odd

0 , if n is even
(4.10)

and

σ2q−1(n) = n2q−1
∞∑
k=1

(−1)k Ã2k,q

(2k)!
(2πn)2k , ∀n ≥ 1 . (4.11)

for all q with ξ > 0. The convergence on the right hand side of (4.11) is absolutely since |Ãk,q| ≤
const k2 ζ(2ξ + 1), as we prove in Theorem 3.7. This finishes the proof of Theorem B.

From (4.11) we can obtain a new formulation also for the partial sums of
σ2q−1(n)
n2q−1 . Using

N∑
n=1

n2k =
1

2k + 1
(B2k+1(N)−B2k+1)

where Bn(x) are the Bernoulli polynomials, we get

N∑
n=1

σ2q−1(n)

n2q−1
=

∞∑
k=1

(−1)k (2π)2k Ã2k,q

(2k + 1)!

(
B2k+1(N)−B2k+1

)
.

Notice that the function

F (x) :=

∞∑
k=1

(−1)k (2π)2k Ã2k,q

(2k + 1)!

(
B2k+1(x)−B2k+1

)
is uniformly convergent on any compact interval of the real line.

Remark 4.1. Equation (4.10) is equivalent to the formulas ζ(2k) = (−1)k+1 B2k(2π)2k

2(2k)! and Lσ(2q+ 2k+ 1) =

ζ(2q+ 2k+ 1) ζ(2k+ 2), with k ≥ 0. In particular assuming one of the two formulas and (4.10), one obtains
the other formula.

Remark 4.2. By using the expansion

Ã2k,q =
∑
`≥2

S2k(`)− 1
2k+1 `

2k+1 − 1
2 `

2k

`2q+2k
− 1

2k + 1
+

1

2

for <(q) > 1 one can change the order of summation in (4.11), and use the expression cr(n) =
∑

(i,r)=1 , i≤r cos
(
2π irn

)
for the Ramanujan’s sums to write

σ2q−1

n2q−1
=

∞∑
k=1

(−1)k Ã2k,q

(2k)!
(2πn)2k = T1 + T2 + T3 + T4 + T5

where

T2 = −
∞∑
k=1

 1

2k + 1

∑
`≥2

`2k+1

`2q+2k

 (−1)k

(2k)!
(2πn)2k = −

(
ζ(2q − 1)− 1

) sin t− t
t

∣∣∣
t=2πn

= ζ(2q − 1)− 1
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T3 = −
∞∑
k=1

1

2

∑
`≥2

`2k

`2q+2k

 (−1)k

(2k)!
(2πn)2k = −1

2

(
ζ(2q)− 1

)
(cos t− 1)

∣∣∣
t=2πn

= 0

T4 = −
∞∑
k=1

1

2k + 1

(−1)k

(2k)!
(2πn)2k = − sin t− t

t

∣∣∣
t=2πn

= 1

T5 =

∞∑
k=1

1

2

(−1)k

(2k)!
(2πn)2k = (cos t− 1)

∣∣∣
t=2πn

= 0

and for the first term one gets

T1 =

∞∑
k=1

∑
`≥2

∑̀
j=1

j2k

`2q+2k

 (−1)k

(2k)!
(2πn)2k =

∑
`≥2

1

`2q

∑̀
j=1

( ∞∑
k=1

(−1)k

(2k)!

(
2π

j

`
n

)2k
)

=

=
∑
`≥2

1

`2q

∑̀
j=1

(
cos

(
2π

j

`
n

)
− 1
)

= −ζ(2q − 1) + 1 +
∑
`≥2

1

`2q

∑̀
j=1

cos

(
2π

j

`
n

)
=

= −ζ(2q − 1) +
∑
`≥1

1

`2q

∑̀
j=1

cos

(
2π

j

`
n

)
= −ζ(2q − 1) +

∑
`≥1

1

`2q

∑
r|`

cr(n) =

= −ζ(2q − 1) + ζ(2q)
∑
`≥1

c`(n)

`2q

where in the last equality we have used Dirichlet multiplication to write
∑
r|` cr(n) = (c(n) ? u)(`), where

u(k) = 1 for all k ≥ 1. We have thus obtained Ramanujan’s expansion for the divisor function for <(q) > 1
(see [23]), namely

σ2q−1

n2q−1
=

∞∑
k=1

(−1)k Ã2k,q

(2k)!
(2πn)2k = ζ(2q)

∑
`≥1

c`(n)

`2q
,

We remark that Ramanujan expansion is known to hold only for <(q) > 1
2 , where the Dirichlet series is

absolutely convergent, for q = 1
2 where the convergence of the Dirichlet series is equivalent to the Prime

Number Theorem, and can be extended to <(q) ∈
(

1
4 ,

1
2

]
assuming Riemann Hypothesis. On the other hand,

expansion (4.11) holds for <(q) > 0.

5 Power series expansions for Maass forms on the imaginary axis

Equations (3.16) and (3.30) provide series expansions for Maass forms in terms of the Legendre functions Pµν .
Moreover, in the case of non-cusp forms we have explicit expressions for the coefficients bn,q of the series. We
now use properties of the Legendre functions to obtain different expansions in terms of rational functions.
The functions involved are Pµν with ν = n + q − 1

2 and µ = −q + 1
2 , so that µ + ν = n is an integer.

Consequently, using [21, eq. 14.3.11, p. 354], we get

P
−q+ 1

2

n+q− 1
2

(t) =


(−1)

n
2

2−q+1
2 Γ(n+1

2 )

Γ(n+1
2 +q)

(1− t2)
q
2−

1
4

2
F

1

(
−n2 ,

n
2 + q; 1

2 ; t2
)
, if n is even

(−1)
n−1
2

2−q+1
2 Γ(n2 +1)

Γ(n2 +q) t (1− t2)
q
2−

1
4

2
F

1

(
−n−1

2 , n+1
2 + q; 3

2 ; t2
)
, if n is odd

where 2F1 is the scaled hypergeometric function. Moreover, since the first variable of 2F1 is in both case a
non-positive integer, then the hypergeometric function is a polynomial in t2, more precisely for k ∈ N and
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c 6= 0,−1,−2, . . . , it holds

2F1(−k, b; c; t2) =

k∑
j=0

(−1)j
(
k

j

)
Γ(b+ j)

Γ(b) Γ(c+ j)
t2j .

It follows that for the terms in (3.16) and (3.30), we get

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

=


(−1)

n
2

2−q+1
2 Γ(n+1

2 )

Γ(n+1
2 +q) Γ(n2 +q)

(
y

1+y2

)q ∑n/2
j=0 (−1)j

(
n/2
j

) Γ(n2 +q+j)

Γ( 1
2 +j)

1+yn+2j

(1+y2)
n
2

+j , if n is even

(−1)
n−1
2

2−q+1
2 Γ(n2 +1)

Γ(n+1
2 +q) Γ(n2 +q)

(
y

1+y2

)q ∑(n−1)/2
j=0 (−1)j

(
(n−1)/2

j

) Γ(n+1
2 +q+j)

Γ( 3
2 +j)

1+yn+1+2j

(1+y2)
n+1
2

+j
, if n is odd

(5.1)
Notice that each term of the finite sums is invariant with respect to the transformation y 7→ 1

y .

We now substitute (5.1) into (3.16) and (3.30) and get, with αn,q being equal to an,q and bn,q respectively,

∞∑
n=0

(−1)nαn,q

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

=

=

∞∑
k=0

α2k,q (−1)k
2−q+

1
2 Γ( 2k+1

2 )

Γ( 2k+1
2 + q) Γ(k + q)

(
y

1 + y2

)q k∑
j=0

(−1)j
(
k

j

)
Γ(k + q + j)

Γ( 1
2 + j)

1 + y2(k+j)

(1 + y2)k+j
+

+

∞∑
h=0

(−1)α2h+1,q (−1)h
2−q+

1
2 Γ( 2h+1

2 + 1)

Γ(h+ 1 + q) Γ( 2h+1
2 + q)

(
y

1 + y2

)q h∑
j=0

(−1)j
(
h

j

)
Γ(h+ q + j + 1)

Γ( 3
2 + j)

1 + y2(h+1+j)

(1 + y2)h+1+j

where we have split the sum in one with even indices and one with odd indices. At this point we can group

together all the coefficients multiplying terms of the form 1+y2s

(1+y2)s and get

∞∑
n=0

(−1)nαn,q

y
1
2 P
−q+ 1

2

n+q− 1
2

(
1

(1+y2)
1
2

)
+ yn+q P

−q+ 1
2

n+q− 1
2

(
y

(1+y2)
1
2

)
(1 + y2)

n
2 + q

2 + 1
4

= 2−q+
1
2

(
y

1 + y2

)q ∞∑
s=0

(−1)s ηs,q
1 + y2s

(1 + y2)s

where the coefficients ηs,q are a given by a finite sum. In particular

ηs,q :=

{ ∑s
i=0 αs+i,q γs+i,q δs+i, s2−b

i+1
2 c,q

, s even∑s
i=0 αs+i,q γs+i,q δs+i, s−1

2 −b
i
2 c,q

, s odd
(5.2)

with

γ2k,q =
Γ( 2k+1

2 )

Γ( 2k+1
2 + q) Γ(k + q)

and γ2k+1,q =
Γ( 2k+1

2 + 1)

Γ( 2k+1
2 + q) Γ(k + q + 1)

δ2k,j,q =

(
k

j

)
Γ(k + q + j)

Γ( 1
2 + j)

and δ2k+1,j,q =

(
k

j

)
Γ(k + q + j + 1)

Γ( 3
2 + j)

Introducing the notation βn,q := (−1)n n! Γ(2q)
Γ(n+2q) αn,q in (5.2) we get

ηs,q = (−1)s 2s
Γ(s+ q)

s! Γ(q + 1
2 ) Γ(q)

s∑
i=0

(−1)i 2−i βs+i,q

(
s

i

)
. (5.3)

We have thus proved
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Proposition 5.1. An even Maass cusp form with eigevalue q(1−q), can be formally written when restricted
to the imaginary axis as

u(iy) = 2−q+
1
2

(
y

1 + y2

)q ∞∑
s=0

(−1)s ηs,q
1 + y2s

(1 + y2)s

with ηs,q as in (5.3) and βn,q = (−1)n n! Γ(2q)
Γ(n+2q) an,q, where {an,q} is given in (3.3).

When writing the same expansion for the non-cusp forms U(iy) as in (3.30), we can use the explicit
expression for the coefficient {bn,q}, which are defined in terms of the {An,q} of Theorem 3.7. We first get

U(iy) = ζ(2q)
(
yq + y−q

)
+ 2

(
y

1 + y2

)q [
−ζ(2q) +

∞∑
s=0

2s
Γ(s+ q)

s! Γ(q)

(
s∑
i=0

(
s

i

)
(−1)iAs+i,q

2i

)
1 + y2s

(1 + y2)s

]
(5.4)

then recalling

An,q =
1

n+ 1

n∑
`=0

(
n+ 1

`

)
B` ζ(2q − 1 + `) ,

we obtain for s ≥ 1

s∑
i=0

(
s

i

)
(−1)iAs+i,q

2i
=

s∑
i=0

s+i∑
`=0

B` ζ(2q − 1 + `)

(
s+ i+ 1

`

)(
s

i

)
(−1)i

2i (s+ i+ 1)
=

=

s∑
`=0

(
s∑
i=0

(
s+ i+ 1

`

)(
s

i

)
(−1)i

2i (s+ i+ 1)

)
B` ζ(2q − 1 + `)+

+

2s∑
`=s+1

(
s∑

i=`−s

(
s+ i+ 1

`

)(
s

i

)
(−1)i

2i (s+ i+ 1)

)
B` ζ(2q − 1 + `)

Moreover for ` ≥ 2

s∑
i=0

(
s+ i+ 1

`

)(
s

i

)
(−1)i

2i (s+ i+ 1)
=

1

`

(
s

`− 1

) s∑
i=0

(
s

i

)
Γ(s+ i+ 1) Γ(s+ 2− `)
Γ(s+ 1) Γ(s+ i+ 2− `)

(
−1

2

)i
=

=
1

`

(
s

`− 1

)
2F1

(
− s, s+ 1; s+ 2− `; 1

2

)
=

1

`

(
s

`− 1

)
π

1
2 Γ(s+ 2− `)

2s+1−` Γ(1− `
2 ) Γ(s+ 3−`

2 )

where in the last equality we have used [21, eq. 15.4.30, p. 387]. Notice that the last expression vanishes for
` even because of the poles of the term Γ(1− `

2 ), and since B` = 0 for ` ≥ 2 and odd, we obtain

s∑
`=0

(
s∑
i=0

(
s+ i+ 1

`

)(
s

i

)
(−1)i

2i (s+ i+ 1)

)
B` ζ(2q − 1 + `) =

= B0 ζ(2q − 1)

s∑
i=0

(
s

i

)
(−1)i

2i (s+ i+ 1)
+B1 ζ(2q)

s∑
i=0

(
s

i

)
(−1)i

2i
=

π
1
2

2s+1

Γ(s+ 1)

Γ(s+ 3
2 )
ζ(2q − 1)− 1

2s+1
ζ(2q) .

Similarly, letting k = `− s ≥ 1, we have

s∑
i=k

(
s+ i+ 1

s+ k

)(
s

i

)
(−1)i

2i (s+ i+ 1)
=

(−1)k

2k−1 (s+ k)

(
s

k − 1

)
− (−1)k π

1
2 (s+ k + 1)

(s+ k) (s− k + 1)

(
s

k

)
Γ(k + 1)

Γ(k−s2 ) Γ( s+k+3
2 )
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whose second term vanishes for s− k even, that is for ` = s − k + 2k even, and since B` = 0 for ` ≥ 2 and
odd, we obtain for s ≥ 1

2s∑
`=s+1

(
s∑

i=`−s

(
s+ i+ 1

`

)(
s

i

)
(−1)i

2i (s+ i+ 1)

)
B` ζ(2q − 1 + `) =

=

s∑
k=1

(
s∑
i=k

(
s+ i+ 1

s+ k

)(
s

i

)
(−1)i

2i (s+ i+ 1)

)
Bs+k ζ(2q − 1 + s+ k) =

=

s∑
k=1

(−1)k

2k−1 (s+ k)

(
s

k − 1

)
Bs+k ζ(2q − 1 + s+ k) .

We have thus shown that for s ≥ 1

s∑
i=0

(
s

i

)
(−1)iAs+i,q

2i
=
π

1
2

2s+1

Γ(s+ 1)

Γ(s+ 3
2 )
ζ(2q − 1)− 1

2s+1
ζ(2q)+

+

s∑
k=1

(−1)k

2k−1 (s+ k)

(
s

k − 1

)
Bs+k ζ(2q − 1 + s+ k)

(5.5)

Substituting (5.5) in (5.4), and using the identities

∞∑
s=0

Γ(s+ q)

s! Γ(q)
zs = (1− z)−q and

∞∑
s=0

Γ(s+ q)

Γ(s+ 3
2 ) Γ(q)

zs =
2

π
1
2

2
F

1

(
1, q ;

3

2
; z

)
,

we obtain that the Eisenstein series E(iy, q) defined in (3.19) can be formally written as

E(iy, q) = 2

(
y

1 + y2

)q [
ζ(2q − 1) 2F1

(
1, q ;

3

2
;

1

1 + y2

)
+ ζ(2q − 1) 2F1

(
1, q ;

3

2
;

y2

1 + y2

)]
+

+ 4

(
y

1 + y2

)q ∞∑
s=1

2s
Γ(s+ q)

s! Γ(q)

(
s∑

k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k ζ(2q − 1 + s+ k)

)
1 + y2s

(1 + y2)s

(5.6)
We point out that in the previous expression there is no dependence on ζ(2q), hence there is no pole at
q = 1

2 , the only pole being at q = 1 due to the term ζ(2q − 1).

Theorem 5.2. For any q = ξ + iη with ξ > 0, the series in (5.6) is uniformly convergent for y in any
compact interval in (0,+∞).

Proof. We show that it is enough to prove that for all q = ξ + iη with ξ > 0 it holds

s∑
k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k ζ(2q − 1 + s+ k) = O

(
s6

2s

)
.

This estimate is proved in four steps. In the fifth and last step we conclude the proof of the theorem.

Step 1. We first show that for s ≥ 2 and even

2
(−1)

s
2−1

(2π`)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4π`)k
=

s!

2 (2π)s `s+
1
2

Js+ 1
2
(2π`) , ∀ ` ≥ 1 (5.7)
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For k even, we can write (−1)
k
2 as ik and let k′ = k − 1, hence

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4π`)k
=

s−1∑
k=0

k odd

(
s

k

)
(s+ k)!

(
i

4π`

)k+1

=

=
1

2

i

4π`

( s∑
k=0

(
s

k

)
(s+ k)!

(
i

4π`

)k
−

s∑
k=0

(
s

k

)
(s+ k)! (−1)k

(
i

4π`

)k )
=

=
1

2

i

4π`

( s∑
k=0

(
s

k

)
(s+ k)!

(
i

4π`

)k
−

s∑
k=0

(
s

k

)
(s+ k)!

(
i

4π`

)k)
=

= − 1

4π`
=
( s∑
k=0

(
s

k

)
(s+ k)!

(
i

4π`

)k )
We now recall that using [21, eq. 10.39.6, p. 255 and eq. 13.2.8, p. 322], one can write

s∑
k=0

(
s

k

)
(s+ k)! zk =

s! e
1
2z

√
πz

Ks+ 1
2

(
1

2z

)
hence

2
(−1)

s
2−1

(2π`)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4π`)k
=

2 (−1)
s
2 s!

(2π)s+1 `s+
1
2

=
(
e−i

π
4 Ks+ 1

2
(−2πi`)

)
(5.8)

Finally, we use [21, eq. 10.27.8, p. 251], relating the modified Bessel function Kν to the Hankel function

H
(1)
ν , to write

e−i
π
4 Ks+ 1

2
(−2πi`) =

i (−1)
s
2 π

2
H

(1)

s+ 1
2

(2π`) ,

and the relation
H(1)
ν (z) = Jν(z) + i Yν(z) ,

where the Bessel functions of first and second kind Jν and Yν are real for real orders ν and positive real
argument z, to obtain

=
(
e−i

π
4 Ks+ 1

2
(−2πi)

)
=

(−1)
s
2 π

2
Js+ 1

2
(2π`) .

Using it in (5.8), we obtain (5.7).

Step 2. Following the same ideas as in Step 1, we show that for s ≥ 1 and odd

2
(−1)

s+1
2 −1

(2π`)s

s∑
k=1

k odd

(
s

k − 1

)
(−1)

k+1
2 (s+ k − 1)!

(4π`)k
=

s!

2 (2π)s `s+
1
2

Js+ 1
2
(2π`) , ∀ ` ≥ 1 (5.9)

Step 3. For all s ≥ 1 we have

∣∣∣ s∑
k=1

(
s

k − 1

)
(−1)k

(2m)k (s+ k)
Bs+k

∣∣∣ ≤ 4 s2ms

2s
, ∀m ≥ 1 (5.10)

We recall that Bernoulli numbers satisfy Bn = 0 for n ≥ 2 and odd, and the identity

B2n =
(−1)n−1 2 (2n)!

(2π)2n
ζ(2n) , ∀n ≥ 1 .
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Hence, we write the left hand side of (5.10) for s even, for which the only non-vanishing terms correspond
to k even, as

2
(−1)

s
2−1

(2π)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πm)k
ζ(s+ k) (5.11)

and for s odd, for which the only non-vanishing terms correspond to k odd, as

2
(−1)

s+1
2 −1

(2π)s

s∑
k=1

k odd

(
s

k − 1

)
(−1)

k+1
2 (s+ k − 1)!

(4πm)k
ζ(s+ k) (5.12)

In both cases, using the Euler-MacLaurin formula for the Riemann zeta function, we can write for all fixed
N ≥ 1

ζ(s+ k) =

N∑
n=1

1

ns+k
+Rs+k(N)

where |Rs+k(N)| ≤ 2 max{1, N
s+k−1}N

−s−k.
Let us first consider the case s even. From (5.11) we are reduced to study the sum

N∑
n=1

2
(−1)

s
2−1

(2πn)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πmn)k
+ 2

(−1)
s
2−1

(2π)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πm)k
Rs+k(N)

(5.13)
For the first term we apply Step 1, and applying (5.7) with ` = mn we find

ms
N∑
n=1

2
(−1)

s
2−1

(2πmn)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πmn)k
=

ms s!

2 (2π)s

N∑
n=1

1

(mn)s+
1
2

Js+ 1
2
(2πmn)

Since ∣∣∣Js+ 1
2
(2π`)

∣∣∣ ≤ (π`)s+
1
2

Γ(s+ 1)

we get ∣∣∣ms
N∑
n=1

2
(−1)

s
2−1

(2πmn)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πmn)k

∣∣∣ ≤ π
1
2 N ms

2s+1
, ∀N ≥ 1 . (5.14)

For the second term of (5.13), we apply the crude estimate∣∣∣2 (−1)
s
2−1

(2π)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πm)k
Rs+k(N)

∣∣∣ ≤ 4 (2s)! max{1, Ns }
(2πN)s

s∑
k=1

(
s

k − 1

)
1

(4πmN)k
=

=
2 (2s)! max{1, Ns }

(2πN)s+1m

(
1 +

1

4πmN

)s
From this and (5.14) it follows that for s even, we obtain the estimate∣∣∣2 (−1)

s
2−1

(2π)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4πm)k
ζ(s+ k)

∣∣∣ ≤ π
1
2 N ms

2s+1
+

2 (2s)! max{1, Ns }
(2πN)s+1m

(
1 +

1

4πmN

)s
(5.15)
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which holds for all N ≥ 1. Hence, choosing N = 2 s2 in (5.15) and applying standard estimates for the
factorial term we obtain∣∣∣2 (−1)

s
2−1

(2π)s

s∑
k=1

k even

(
s

k − 1

)
(−1)

k
2 (s+ k − 1)!

(4π)k
ζ(s+ k)

∣∣∣ ≤ 4 s2ms

2s

The case s odd follows exactly by the same argument using (5.9) in (5.12).

Step 4. For all q = ξ + iη with ξ > 0, we have

s∑
k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k ζ(2q − 1 + s+ k) = O

(
s6

2s

)
. (5.16)

In Step 3 we have an estimate for the left hand side with ζ(2q − 1 + s+ k) = 1. Using the formula

ζ(2q − 1 + s+ k) =

M∑
m=1

1

m2q−1+s+k
+R2q−1+s+k(M) , ∀M ≥ 1

where |R2q−1+s+k(M)| ≤ 2 max{1, M
|2q−2+s+k|}M

−2ξ+1−s−k, we have to estimate the sum

M∑
m=1

1

m2q−1+s

s∑
k=1

(
s

k − 1

)
(−1)k

(2m)k (s+ k)
Bs+k +

s∑
k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k R2q−1+s+k(M)

and we can use Step 3. For the first term we apply (5.10) to write∣∣∣ M∑
m=1

1

m2q−1+s

s∑
k=1

(
s

k − 1

)
(−1)k

(2m)k (s+ k)
Bs+k

∣∣∣ ≤ 4 s2

2s

M∑
m=1

1

m2ξ−1

For the second term, we use the classical estimate

|B2n| ≤ 5
√
πn
( n
πe

)2n

and write the crude estimate∣∣∣ s∑
k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k R2q−1+s+k(M)

∣∣∣ ≤ 5
√

2π max{1, M
s−2}

M2ξ+s−1

s∑
k=1

(
s

k − 1

)
(s+ k)s+k

(2M)k (2πe)s+k
√
s+ k

≤

≤
5
√

2π max{1, M
s−2}

M2ξ+s−1

(2s)2s

(2πe)s

s∑
k=1

(
s

k − 1

)
1

(4πeM)k
=

5
√

2π max{1, M
s−2} (2s)2s

M2ξ+s−1 (2πe)s

(
1 +

1

4πeM

)s
We have thus obtained that for s ≥ 3 and all q = ξ + iη with ξ > 0, the estimate∣∣∣ s∑
k=1

(
s

k − 1

)
(−1)k

2k (s+ k)
Bs+k ζ(2q−1+s+k)

∣∣∣ ≤ 4 s2

2s

M∑
m=1

1

m2ξ−1
+

5
√

2π max{1, M
s−2} s

2s

M2ξ+s−1

(
1 +

1

4πeM

)s
holds for all M ≥ 1. Choosing M = 2s2 the estimate (5.16) follows.

Step 5. The proof is finished by using (5.16) and the crude estimate

Γ(s+ q)

s!
= O(|s+ q|ξ) ,

since for all a, b > 0

sup
y∈[a,b]

1 + y2s

(1 + y2)s
≤ 1

(1 + a2)s
+

b2s

(1 + b2)s
.
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A Proof of (3.27)

Using the notation bxc and {x} for the integer and fractional part of a real number, we have

Sk(n)− 1

k + 1
nk+1 − 1

2
nk =

∫ n

0

[
(bxc+ 1)k − xk − 1

2
kxk−1

]
dx =

=

∫ n

0

 k∑
j=0

(
k
j

)
bxcj −

k∑
j=0

(
k
j

)
bxcj {x}k−j − 1

2
k

k−1∑
j=0

(
k − 1
j

)
bxcj {x}k−j−1

 dx =

=

∫ n

0

[
bxck

(
1− {x}k−k

)
+ bxck−1

(
k − k{x} − 1

2
k

)
+

+

k−2∑
j=0

bxcj
((

k
j

)
(1− {x}k−j)− 1

2
k

(
k − 1
j

)
{x}k−j−1

)]
dx =

=

n−1∑
h=0

∫ h+1

h

k bxck−1

(
1

2
− {x}

)
dx+

∫ n

0

k−2∑
j=0

(
k
j

)
bxcj

(
1− {x}k−j − k − j

2
{x}k−j−1

) dx =

=

n−1∑
h=0

∫ h+1

h

k hk−1

(
1

2
− x+ h

)
dx+

∫ n

0

k−2∑
j=0

(
k
j

)
bxcj

(
1− {x}k−j − k − j

2
{x}k−j−1

) dx =

=

∫ n

0

k−2∑
j=0

(
k
j

)
bxcj

(
1− {x}k−j − k − j

2
{x}k−j−1

) dx
We can then write ∣∣∣Sk(n)− 1

k + 1
nk+1 − 1

2
nk
∣∣∣ ≤ k ∫ n

0

k−2∑
j=0

(
k
j

)
bxcj dx =

=

∫ n

0

k2(k − 1)

k−2∑
j=0

1

(k − j)(k − j − 1)

(
k − 2
j

)
bxcj dx ≤

≤ k3

∫ n

0

k−2∑
j=0

(
k − 2
j

)
bxcj dx = k3

∫ n

0

(bxc+ 1)k−2 dx ≤ const k2 nk−1

B Spectral properties of the terms with Legendre functions

We now give some properties of the functions used in the series (3.16) in terms of the hyperbolic Laplacian

∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
. Using recurrence relations and the formulas for derivatives of the Legendre functions

which can be found in [10, vol. I], with the notation

Fq(n, y) :=
yn+q

(1 + y2)
n
2 + q

2 + 1
4

P
−q+ 1

2

n+q− 1
2

(
y

(1 + y2)
1
2

)
we find that for all n ≥ 0

−y2 ∂2

∂y2 [Fq(n, y)] =

= −(n+ q)(n+ q − 1)Fq(n, y) + 2(n+ 2q)(n+ q)Fq(n+ 1, y)− (n+ 2q)(n+ 2q + 1)Fq(n+ 2, y) .
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Hence for a series

Fq(y) :=

∞∑
n=0

(−1)nanFq(n, y) , y ∈ (0,∞)

with lim sup |an|
1
n ≤ 1, we find

−y2 ∂2

∂y2
Fq(y) =

∞∑
n=0

(−1)nbn Fq(n, y) (B.1)

where
b0 = q(1− q) a0

b1 = −q(1 + q) a1 − 4q2 a0

bn = −(n+ q)(n+ q − 1)an − 2(n+ 2q − 1)(n+ q − 1)an−1 − (n+ 2q − 2)(n+ 2q − 1)an−2, n ≥ 2
(B.2)

It follows that

Theorem B.1. For any q the function

Eq(y) =

∞∑
n=0

Γ(n+ 2q)

n! Γ(2q)
Fq(n, y)

satisfies ∆Eq(y) = q(1− q)Eq(y).

Proof. Using (B.1) and (B.2) we have to find a solution of the system
a0 ∈ C

a1 = −2q a0

an = −2 n+q−1
n an−1 − n+2q−2

n an−2, n ≥ 2

(B.3)

with lim sup |an|
1
n ≤ 1.

Consider the generating function

f(z) =
∑
n≥0

anz
n

with a0 = 1, of the solution of (B.3). From the recurrence relation of (an), it turns out that f satisfies{
(1 + z)2 f ′(z) + 2q(z + 1) f(z) = 0

f(0) = 1
(B.4)

We now want to show that the solution f of (B.4) is analytic for |z| < 1. Letting for any α ∈ C

(1 + z)α := exp
(
α log |1 + z|+ iαarg(1 + z)

)
with arg(1 + z) ∈ (−π, π], we have that (1 + z)α is well defined as a single-valued analytic function on the
cut plane C \ (−∞,−1], hence in particular for |z| < 1. It follows that

f(z) = (1 + z)−2q

is the solution of (B.4) and is analytic for |z| < 1. Hence for all n ≥ 0

an = (−1)n
Γ(n+ 2q)

n! Γ(2q)

is the solution of (B.3) with a0 = 1 and lim sup |an|
1
n ≤ 1.

32



It is interesting to notice that the functions Eq(y) have a much simpler formulation.

Theorem B.2. For all q we have

Eq(y) =
2−q+

1
2

Γ
(
q + 1

2

) yq ,
hence for <(q) > 1 it holds

Eq(z) :=
∑

(c,d)=1

Eq

(
y

|cz + d|2

)
= const.(q) E(z, q)

where E(z, q) is the non-holomorphic Einsenstein series.

Proof. We start from the expression for Eq found in Theorem B.1. Using the relation [21, eq. 14.3.21, p.
355]

Pµν (t) =
2µ Γ(1− 2µ) Γ(ν + µ+ 1)

Γ(ν − µ+ 1) Γ(1− µ) (1− t2)
µ
2

C
( 1
2−µ)
ν+µ (t)

in terms of the Gegenbauer functions C
(β)
α , we get

Eq(y) =
2−q+

1
2

Γ
(
q + 1

2

) ( y

1 + y2

)q ∞∑
n=0

(
y

(1 + y2)
1
2

)n
C(q)
n

(
y

(1 + y2)
1
2

)
Finally, the generating function [21, eq. 18.12.4, p. 449]

(1− 2t u+ u2)−β =

∞∑
n=0

un C(β)
α (t)

valid for |u| < 1, we conclude that

Eq(y) =
2−q+

1
2

Γ
(
q + 1

2

) yq .
The last statement is immediate from the definition of the non-holomorphic Eisenstein series.
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[11] A. Erdèly et al., “Tables of integral transforms”, Bateman manuscript project, vols. I-II, McGraw-Hill,
New York, 1954

[12] I. Gradshteyn, I. Ryzhik, “Tables of integrals, series, and products”, seventh edition, Academic Press,
2007

[13] S. Isola, On the spectrum of Farey and Gauss maps, Nonlinearity 15 (2002), 1521–1539

[14] H. Iwaniec, “Spectral methods of automorphic forms”, second edition, American Mathematical Society,
Providence, RI, 2002

[15] J.B. Lewis, Spaces of holomorphic functions equivalent to even Maass cusp forms, Invent. Math. 127
(1997), 271–306

[16] J.B. Lewis, D. Zagier, Period functions for Maass wave forms. I, Ann. Math. 153 (2001), 191–258

[17] D.H. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys. 130 (1990),
311–333

[18] D.H. Mayer, The thermodynamic formalism approach to Selberg’s zeta function for PSL(2Z), Bull.
Amer. Math. Soc. 25 (1991), 55–60

[19] D.H. Mayer, T. Mühlenbruch, F. Strömberg, The transfer operator for the Hecke triangle groups,
Discrete Contin. Dyn. Syst. 32 (2012), 2453–2484
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