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Abstract: Novel, multipurpose terpolymers based on styrene (PS), tert-butyl methacrylate (tBMA)
and glycidyl methacrylate (GMA), have been synthesized via Atom Transfer Radical Polymerization
(ATRP). Post-synthetic modification with 1-pyrenemethylamine (AMP) allows non-covalent
functionalization of carbon nanotubes, eventually yielding a conductive nanocomposite materials
capable of interacting with different Volatile Organic Compounds (VOCs) by electrical resistance
variation upon exposure. Moreover, facile hydrolysis of the tBMA group yields polyelectrolytic
macrosurfactants with remarkable thickening properties for promising applications in water solution,
such as Enhanced Oil Recovery (EOR).

Keywords: atom transfer radical polymerization; multifunctional polymers; polymeric surfactants;
VOC sensors; carbon nanotubes nanocomposites; solution rheology

1. Introduction

The study and development of functional polymeric materials has attracted growing interest in
the scientific and industrial world over the last twenty years, thanks to their wide applicability in many
fields of science [1,2]. Their ability to react to different stimuli and conditions from the surrounding
environment is surely an appealing feature that drastically improves the versatility for many
areas of application, including bio-medical, electronics, catalysis, sensoristics and engineering [3–5].
By modifying the monomers composition and the polymerization procedure, it is possible to obtain
very different properties and morphologies; in addition, further post-polymerization modification can
greatly differentiate the scope for which the polymer was initially meant. In this regard, copolymers
play a crucial role. The possibility to link together two or more, monomeric units with different
chemical and physical properties and, more interestingly, bearing specific functional moieties, has led
researchers to create self-assembly, stimuli-responsive materials [6–10].

The great variety of well-defined morphologies and compositions that could be achieved in
polymer science in the last two decades, owe their success to the controlled radical polymerization
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techniques [11,12], among which Atom Transfer Radical Polymerization (ATRP) is one of the most
versatile and robust.

One of the most interesting building blocks in this context is certainly glycidyl methacrylate
(GMA). Its epoxide group can be functionalized by ring opening reactions in mild condition using
a wide range of nucleophiles like amines, thiols, azides, alcohols, while the acrylic backbone
copolymerize quite easily via radical processes with other acrylic monomers [13–16]. Several polymeric
architectures can be obtained by reaction with compounds with different degrees of functionalization,
to yield, for example, star and linear polymers [17,18]. Polymeric derivatives of GMA were found
able to interact with metal ions, polar and non-polar biomolecules, allowing the construction of drug
delivery system with controlled release as function of external stimuli [19,20]. Cross-linked GMA
micelles were used as reactors for the synthesis of nanoparticles [21]. Recently, GMA epoxide rings
have been functionalized with fluorophores to enable investigation by light emission stimuli-induced
structural modifications. Pyrene, Coumarin and Rhodamine B were successfully used to grant to
various GMA derivatives emitting properties [16,19–21]. Among those, pyrene derivatives has been
widely investigated as molecular probes in micellar aggregates or even in the investigation of structural
and conformation changes in proteins [22], as a result of its aggregation-induced quenched fluorescence.
In addition to the use of pyrene as a probe for structural and conformational changes in-solution, one
can take advantage of this moiety to interact with highly conjugated systems, like graphene or carbon
nanotubes, thus conferring novel properties to the polymeric system.

The initial aim of this work is to synthesize terpolymers based on diblock poly(styrene-b-tert-butyl
methacrylate), coupled with a GMA portion that opens to a large amount of possibility in terms of
functionalization and chemical structure. The rationale of such design is that, along with the already
discussed possibility to functionalize the epoxy group of GMA, the tert-butyl methacrylate moiety can
be easily hydrolysed to methacrylic acid, allowing for applications in water solution and increasing
the versatility of the system (Scheme 1).
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After synthesis of the terpolymers, pyrene modification of the epoxide ring was performed,
to study the ability of the novel functionalized materials to interact and stabilized nanostructured
conductive fillers such as multi walled carbon nanotubes and eventually test their use as sensors for
volatile organic compound (VOCs). Polymer properties can be modified inherently by changing their
chemical composition or by adding functional groups but it is also possible to add fillers, making a
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composite or nanocomposite material. Carbon nanotubes (CNT) are among the most investigated
fillers, as they can enhance the mechanical properties of polymeric materials and, notably, confer
electrical and thermal conductivity to the polymer itself. Pyrene moieties have been intensively studied
because of their pronounced conjugation that is found to effectively stabilized solutions of CNT in
several solvent [23–26]. Electrical conductivity is of course of great interest among other properties
and can be achieved by reaching a critical condition, known as the percolation threshold, where
a continuous flow of current passes throughout the whole material, as the concentration of filler
reaches a certain needed amount. In these systems, the polymeric matrix can reversibly swell vapour
of organic solvents, altering the percolation pattern and thus increasing the resistance through the
passage of current. Sensors based on CNT were found to be effective in the detection of the vapour
of several organic and inorganic molecules. CNT-based composite materials are extensively used for
electrochemical sensing and for VOC detectors and the presence of pyrene can contribute to a good
dispersion and stability of the graphitic filler [27–29].

Herein, we present a simple, fast and reliable procedure to make polymeric nanocomposite for
vapours sensing, using a versatile and easy to synthesize terpolymer that can be furtherly investigated
for multiple applications.

To further expand the scope of the materials presented in this work, the pyrene functionalized
terpolymers were hydrolysed to achieve novel macrosurfactants-fluorescent-probes that, in principle,
could be used as traceable displacing fluids by fluorescent emission monitoring. In addition, the
pristine non functionalized terpolymer were hydrolysed as well in order to test their rheological
properties for possible applications in water, such as enhanced oil recovery (EOR). The obtained
hydrolysed terpolymers structurally resembles diblock copolymers already proposed for EOR
applications by our research group [30–33], with the additional presence of non-charged glycidyl
functional groups. This should reduce the polyelectrolyte character of the polymer, providing a better
salinity resistance, which is beneficial for the mentioned application. However, this investigation is left
at a preliminary stage.

2. Materials and Methods

2.1. Materials

Styrene monomer (Sigma Aldrich, 99.9%, CAS 100-42-5), N,N,N′,N′′,N′′ pentamethyldiethylenetriamine
(PMDETA, Sigma Aldrich, 99%, CAS 3030-47-5), methyl 2-bromopropionate (2-MBP, Sigma Aldrich, 98%,
CAS 5445-17-0) were used as received. Tert-butyl methacrylate (tBMA, Sigma Aldrich, 98%, 200 ppm
monomethyl ether hydroquinone as inhibitor, CAS 585-07-9) and glycidyl methacrylate (Sigma Aldrich,
97%, 100 ppm monomethyl ether hydroquinone as inhibitor, CAS 106-91-2) were passed through a
basic alumina column and stored under nitrogen before use. Hydrochloric acid (HCl, Sigma Aldrich,
37%, CAS 7647-01-0), toluene (Sigma Aldrich, anhydrous, 99.8%, CAS 108-88-3), methanol (MeOH,
Sigma Aldrich, anhydrous, 99.8%, CAS 67-56-1), tetrahydrofuran (THF, Sigma Aldrich, anhydrous,
99.9%, CAS 109-99-9), anisole (Sigma Aldrich, anhydrous, 99.7%, CAS 100-66-3), ethanol (EtOH, Sigma
Aldrich, reagent grade, CAS 64-17-5), ethyl acetate (EtOAc, Sigma Aldrich, anhydrous, 99.8%, CAS
141-78-6), hexane (HEX, Sigma Aldrich, anhydrous, 95%, CAS 110-54-3) glacial acetic acid (Sigma
Aldrich, natural, 99.5%, CAS 64-19-7), diethyl ether (Sigma Aldrich, anhydrous, 99.7%, CAS 60-29-7),
1,4-dioxane (Sigma Aldrich, anhydrous, 99.8%, CAS 123-91-1), dichloromethane (DCM, Sigma Aldrich,
anhydrous, 99.8%), chloroform-d (Sigma Aldrich, 99.8 atom % D, CAS 865-49-6), trifluoroacetic acid
(TFA, Sigma Aldrich, 99%), sodium carbonate (Sigma Aldrich, 99%), aluminium oxide (Alumina,
Sigma Aldrich, neutral and basic, CAS 1344-28-1), ammonium hydroxide (NH4OH, Sigma Aldrich,
CAS 1336-21-6), multi-walled carbon nanotubes C-150-P (Bayern Material Science, diameter 6–9 nm,
length 500 nm, 95%) were used as received. CuBr and CuCl catalysts were stirred in glacial acetic acid
at room temperature for 6 h. After a given time, the grey-powdery solid was collected on filter paper
using a Buchner apparatus, then washed three times with several mL of acetic acid, ethanol and ethyl
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acetate and dried under vacuum for 15 h and stored at −16 ◦C. 1-pyrenemethylamine hydrochloride
was converted to the primary amine through a neutralization process with NH4(OH) followed by
liquid-liquid extraction. Methanol was used as the solvent and toluene as the extractor: a bright yellow
solid was recovered after drying in rotary evaporator.

2.2. Synthetic Procedure, Functionalization, Hydrolysis and Neutralization of Terpolymers

2.2.1. Synthesis of Polystyrene Macroinitiator (PS-Br)

PS-Br macroinitiator was synthesized according to a reported procedure [30]. The controlled
radical polymerization was carried out in bulk or in THF solvent at 100 ◦C for 3 h. The preparation
of PS1 in bulk is reported as an example: 20 mL of styrene and 0.83 g of CuBr were poured under
nitrogen in a 100 mL three neck round bottomed flask with a magnetic stirring bar, previously purged
with nitrogen. Then 0.64 mL of 2-BMP were added and the apparatus was put in an oil bath set to
a temperature of 100 ◦C. After few minutes, 0.38 mL of PMDETA ligand was added with a syringe
to start the polymerization. After the given time, the reaction was stopped by cooling down and
addition of 10 mL of fresh THF. Then the mixture was passed through a neutral alumina column to
remove the catalyst and eventually precipitated two times in a twenty-fold excess of methanol. The
white solid was dried at 70 ◦C under vacuum for at least 24 h. Characterization was performed with
Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR) and
gel permeation chromatography (GPC); yield was calculated by gravimetric analysis as weight %.

2.2.2. Synthesis of Terpolymer polystyrene-block-(glycidyl methacrylate-co-tert-butyl methacrylate),
PS-b-(GMA-r-tBMA)

Chain extension of the PS macroinitiator were performed based on a reported procedure [30,31].
All synthesis was carried out in anisole as the solvent (25–50% v/v of anisole, see result and discussion
section). A molar ratio of 300:1 between total amount of monomers and macroinitiator was used
for almost all polymerization. The relative ratio between monomers was adjusted from 9:1 to 7:3.
In a typical experiment, 0.33 g of PS-Br macroinitiator were put in a three neck round bottomed
flash, previously purged with 3 cycles of vacuum/nitrogen, with 9 mg of CuCl catalyst. Then anisole
was added under flux of nitrogen and the whole mixture was stirred until complete dissolution of
the macroinitiator. Addition of 6 mL of tBMA and 1.7 mL of GMA was performed with a syringe
under nitrogen flux. After a few minutes of stirring, the apparatus was put in an oil bath set to 90 ◦C
and finally 0.06 mL of PMDETA initiator was added. After a given time, heating was stopped and
10 mL of THF were added into the flask, then the solution was passed through a neutral alumina
column and precipitated in a twentyfold excess of methanol: to the ratios reported in the results and
discussion section. milliQ-water 2:1 or n-hexane. The obtained polymers were filtered on paper with a
Buchner apparatus, washed several times with hexane and eventually dried at 50 ◦C under vacuum
for at least 24 h. Characterization was performed with IR, 1H-NMR and GPC; yield was calculated by
gravimetric analysis as weight %. For other experiments, the amounts of reactants and reagents were
varied, according.

2.2.3. Kinetic Experiments

The monomer conversion and molecular weights variations during polymerization were assessed
via 1H-NMR and GPC respectively. A sample of 0.05 mL of the reaction mixture was taken under
nitrogen with a syringe at a given time. For the 1H-NMR analysis, this amount was diluted in 1.3 mL of
CDCl3 and cooled down with liquid nitrogen. For the GPC analysis the same procedure was followed
using THF instead of CDCl3.
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2.2.4. Functionalization of PS-b-(GMA-r-tBMA)

The epoxide ring of the GMA portion of the previously synthesized polymers was functionalized
by nucleophilic substitution by two amine-derivate compound such phenethylamine (PEA) (model
compound) and 1-aminomethylpyrene (1-AMP). Functionalization with PEA. Reactions were tested in
THF and dimethylacetamide (DMA) at temperatures of 60 ◦C and 90 ◦C. Eventually, DMA at 90 ◦C
was found to be optimal for our purpose. Around 0.5–1 g of terpolymer was dissolved in THF or DMA
in a three neck round bottom flask and afterwards the apparatus was purged from oxygen with three
cycles of vacuum/nitrogen. PEA (0.09–1 mL) was added in the reaction flask in different molar excess
to the amount of GMA functional groups present in the corresponding terpolymer. Molar excesses of
10:1, 5:1, 2.5:1 and 1:1 were tested. After a given time, ranging from 24–72 h, the reaction was stopped
by cooling down and the solution was precipitated in a tenfold excess of milliQ-water. Then the solid
was filtered with a Buchner apparatus and washed three times with milliQ-water. The recovered
solid was dried under vacuum at 60 ◦C for 48 h. Characterization was performed with EA (Elemental
Analysis), FT-IR and 1H-NMR.

2.2.5. Functionalization with 1-AMP

Reaction was carried out using 100 mL of DMA as solvent in a round-bottomed flash, under
nitrogen atmosphere. A small amount of silica gel has been used as catalyst to improve the ring
opening reaction on the GMA portion. Approximately 0.13–1.8 g of terpolymer, 0.02–0.3 g of 1-AMP
and silica gel (0 to 15% weight of silica over weight of polymer) were added into the reaction flash
followed by three cycles of vacuum/nitrogen to purge from oxygen. Then 5–15 mL of DMA was
added under nitrogen flux. Following the complete dissolution of both solid, the flask was heated at
90 ◦C for the needed time. Finally, the solution was precipitated two times in a tenfold excess of acidic
water and filtered on a Buchner funnel. The yielded solid was washed several times with some mL
of acidic water and dried 60 ◦C under vacuum for 48 h. The obtained solid (yellow solid flakes) was
strongly emissive under UV irradiation at 366 nm. Characterization of the functionalized polymers
(called TP-AMP) was performed with EA, FT-IR and 1H-NMR, UV-VIS, Fluorescence spectroscopy,
DSC, TGA.

2.2.6. Hydrolysis and Neutralization of PS-b-(GMA-r-tBMA) and TP-AMP

Tert-butyl and epoxy groups of the prepared terpolymers have been hydrolysed to achieve the
desired solubility in water. Two different hydrolysis reactions have been carried out as reported
in previous works [30,31]; using TFA in DCM solvent and HCl in 1,4-Dioxane solvent. Both acids
were added in a large molar excess (10:1) compared to the molar amounts of tert-butyl groups in
each polymer. A tenfold excess of both solvents was used as well. About 0.1–0.5 g of polymer was
dissolved in 5–50 mL of DCM or 1,4-Dioxane in a 50 mL round bottomed flask under stirring. For
the HCl/Dioxane procedure, a reflux condenser was used. Around 0.5–5 mL of TFA or HCl was
carefully added to the flask and the reaction was left proceeding at room temperature for 10–16 h for
the TFA/DCM reaction and at 100 ◦C for 3–6 h for the HCl/Dioxane. In the TFA/DCM procedure,
the precipitation might happen during a reaction caused by change in solubility [31]; the solid was
recovered by filtration in a Buchner apparatus and washed three times with fresh DCM. In the
HCl/Dioxane procedure, the solution were precipitated in a twentyfold excess of milliQ-water as the
polymer are not readily soluble in neutral water in their electrolytic form [31]. The solid was filtered
in a Buchner apparatus and washed several times with fresh milliQ-water. Finally, the polymers
were dried under vacuum at 40 ◦C for about 48 h. The products (called HYD-TP/HCLDIOX or
HYD-TP-PEA/HCLDIOX or HYD-TP-AMP/HCLDIOX) were obtained as sticky white solid and were
characterized via 1H-NMR and FT-IR. The newly formed acid chains were neutralized to increase
solubility in water and to enhance the thickening property of the polymers [1,3,33] by addition of an
inorganic base followed by dialysis to remove the excess. About 0.1–3.0 g of polymer was added in a
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250 mL flask with a magnetic stirring bar and then a large excess of milliQ-water saturated with sodium
carbonate was added. To help dissolution, the flask was put in an oil bath set to 75 ◦C of temperature
for about 16–24 h. After the given time, dialysis was performed putting the sealed membrane inside
the largest possible excess of dialysing solvent (milliQ-water in our case) with a gentle stirring for
4 days. Dialysing solvent was changed every 8 h. After this procedure, the dialysed polymer was
recovered by freeze drying for 72 h. The polymer, yielded as a white soft foam-like solid, was stored at
room temperature without any further treatment.

For rheology measurements, the polymers were dissolved in milliQ water to a given concentration.
The mixture was left stirring for 10–16 h to achieve full dissolution of the polymer.

2.3. Nanocomposite and VOC Exposure Setup Preparation

About 20 mg of AMP-TP were added to 1.5 mL of chloroform into a vial. To facilitate polymer
dissolution each sample was ultrasonicated for 10 min at 400 W and 24 kHz with a probe sonicator
model UP 400 S by Hielscher Ultrasound. An H3 probe with titanium tip of 3 mm diameter and
100 mm length was used. An ice bath was used to prevent solvent evaporation during sonication.
Then, the required amount of MWCNT was poured into the vial and ultrasonicated a second time
for 10 min, with the same procedure mentioned above. Eventually, the solution was left to stand for
24 hours. The mixture was then centrifuged with an IEC (model CWS 4236, ThermoFisher Scientific,
Hillsboro, OR, USA) machine for 1 h, 4500 rpm at room temperature. The supernatant liquid was then
recovered with a Pasteur pipette and eventually transferred into a test tube and sealed.

VOC sensors were fabricated by casting the dispersion onto gold electrodes supported on an
integrated device provided by Cad Line (Pisa, Italy). The device is composed of glass fibres woven
into an epoxide resin, which grants chemical inertia. In each case, the dispersion was left to evaporate
under a fume hood and then dried under vacuum in a Schlenk tube for 4–6 h. This step was repeated
between each test to ensure complete solvent removal. The solid dispersions were connected to a
digital multimeter (KEITHLEY 2010, Tektronix, Beaverton, OR, USA) and the measured resistances
were obtained as a mean from one hundred measurements as allowed by the multimeter settings. The
percolation threshold of the composite was assessed using dispersions with different wt.% MWCNTs
content. The resistance response of the MWCNT-AMP-TP composite to VOCs was tested with an
apparatus built in the laboratory. Sealing of the chambers was allowed by rubber stripes glued to the
movable door. Two small holes on backside and top of the chamber permitted the connection wires to
pass through the wall (backside) and the solvent to be dropped inside (top). The device bearing the
dispersion was stuck to the inside back wall, with the circuit exposed to the interior space. The room
volume was set to 4.6 L in all measurements. In the kinetic measurement, the deposition was exposed
to a large excess of organic solvent, until complete saturation of the chamber and then resistance
values were taken every five minutes for 1 h. A control measurement was performed, prior to every
experiment, by measuring the resistance without the presence of solvent. For each deposition three
solvent were tested: THF, CHCl3 and Hexane. In the first sets of experiments, the desired amount,
usually 200 mL, was put in a beaker and placed inside the closed chamber to test the response over
time in a saturated environment. To account for the sensitivity of the devices, dispersions were exposed
to an increasing amount of solvent. Around 23 µL of solvent (equal to 5 ppm to the chamber volume)
was dropped from the top hole using a Gilson pipette and quickly the hole was closed with a rubber
septum. Resistance values were taken every minute for a total of twenty and afterwards a new addition
of 5 ppm was done until 100 ppm was reached.

2.4. Characterization and Instruments

Proton nuclear magnetic resonance (1H-NMR) spectra were recorded using a Varian Mercury
Plus 400 MHz spectrometer (Varian Inc, Palo Alto, CA, USA).

Fourier transform infrared spectroscopy (FT-IR) spectra were recorded with a Perkin Elmer
Spectrum 2000, in Attenuated Total Reflection (ATR) mode.
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UV-Vis absorbance spectra were recorded with a Perkin Elmer Lambda 650. This analysis was
used to estimate the amount of 1-AMP reacted with the terpolymer. Dilute solutions of free 1-AMP
were prepared at different molar concentrations ranging from 10−3 to 10−7. A calibration curve was
built by plotting the absorbance value at 345 nm versus molarity (mol/L) for each solution; eventually
a linear behaviour was fitted. The molar amount of 1-AMP reacted was calculated by putting the
registered absorbance value (345 nm) into the calibration curve by extrapolating the related molarity
value. The conversion level of the GMA epoxide group was evaluated by subtracting the moles of
1-AMP reacted to the initial moles of GMA present in the polymer.

Fluorescence measurements were collected using Fluorolog Horiba Jobin Yvon spectrophotometer
(Horiba Jobin Yvon, Kyoto, Japan) equipped with a 450 W xenon arc lamp and single and
double-grating excitation and emission monochromators, respectively.

Thermal degradation of the materials and functionalized amount of MWCNT in the
AMP-functionalized polymers were analysed via thermogravimetric analysis (TGA) with a TA Q
5000 instrument (TA Instruments, New Castle, DE, USA) under nitrogen flux. All samples were tested
in the temperature range of 25 ◦C to 700 ◦C with a scan rate of 10 ◦C/min.

Differential Scanning Calorimetry (DSC) was used to determine the glass transition temperature
of some TP and AMP-TP. A TA-Instruments Q1000 DSC system was used for these measurements
under a nitrogen flux. Each sample was firstly heated from 20 ◦C to 150 ◦C and backwards in order to
remove the thermal history of the polymer, at a rate of 10 ◦C/min.

The viscoelastic behaviour of some hydrolysed polymers in water solution was evaluated via
rheology measurements. Dynamic viscosity response to different shear rate was tested at room
temperature. Temperature sweep tests were done at constant stress to determine the viscosity response
to temperature in the range of 20 ◦C to 90 ◦C. Oscillation frequency sweep tests were done at a constant
stress to establish the regime of viscoelastic response. Instrument Haake Mars III rotational rheometer
was used to perform the test.

Gel permeation chromatography (GPC) measurements were carried out with a HP1100
machine (Agilent Technologies, Waldbronn, Germany) from Hewlett Packard equipped with three
300 mm × 7.5 mm PLgel 3 µm MIXED-E columns in series equipped with a GBC LC 1240 RI (refractive
index) detector (GBC Scientific Equipment Pty Ltd, Victoria, Australia). The samples were eluted with
THF at a rate of 1 mL/min, at 140 bar of pressure and 40 ◦C. Molecular weights and PI were determined
using the software PSS WinGPC Unity from Polymer Standard Service. Polystyrene standards were
used for calibration.

Scanning electron microscope (SEM) analysis was performed using a SEM with environmental
mode FEI Quanta 450 ESEM FEG (ThermoFisher scientific, Hillsboro, OR, USA) with an accelerating
voltage of 30 kV. The MWCNTs/polymer samples were ultrasonically dispersed in chloroform for
analysis. The suspensions were deposited on a gold-coated silicon wafer and allowed to dry in a vacuum
system overnight. The wafer was then mounted onto a stainless steel sample holder using carbon tape.

3. Results and Discussion

3.1. ATRP Synthesis of PS-b-(tBMA-co-GMA) Terpolymer

The polymers synthesized in this work were designed to have a short PS block and a variable
block containing tBMA and GMA in a random distribution (assuming similar reactivity of the two
acrylic monomers), with different lengths and compositions. The reaction scheme is reported in
Figure 1. First, preparation of the polystyrene macroinitiator was carried out using CuBr and PMDETA
as the catalytic system and methyl 2-bromopropionate as the initiator. A degree of polymerization
of 30 monomeric units was targeted by using of a 30:1 molar ratio between monomer and all other
components; this allows to achieve small hydrophobic chains useful for forming micellar-like structure,
for the intended application in water. Table 1 indicates the experimental conditions and reagents used
for polystyrene ATRP synthesis.
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Table 1. Conditions used for ATRP synthesis of two poly(styrene) macroinitiator.

Sample [Sty]:[I]:[C]:[L] Sty (mL) Solvent (mL) Mn 1 (g/mol) Time (h) Yield (%) Sty Unit PDI

PS1 30:1:1:1 20 Bulk 3700 1.5 55 33 1.1
PS2 30:1:1:1 40 20 (toluene) 2500 3 45 21 1.1

1: Determined by GPC.

Characterization via 1H-NMR of macroinitiator PS1 is shown in Figure 2a: characteristic peaks
associated with benzene rings occur from 6.25 ppm to 7.20 ppm and two peaks at 1.4 ppm and
2.8 ppm relative to the polymer aliphatic backbone confirm the styrene polymerization. The presence
of the ATRP initiator is demonstrated by the 3.4 ppm peak that represents the α-methyl group of
its ester moieties. Degree of polymerization was calculated by GPC analysis, showing the typical
bell-shaped curve with no presence of shoulders of any sort, suggesting a simultaneous chain growth
(See Supporting Info, Figure S1). The fact is also asserted by the low polydispersity index of around
1.1. A number average molecular weight of around 3700 g/mol was obtained for sample PS1 which
eventually confirm the presence of 33 repeating unit in the polymer. A lower molecular weight for
sample PS2 was obtained as consequence of solvent dilution, needed to control the development of
heat reaction as high volume of monomer was used. According to these results, sample PS1 was used
as macroinitiator for the ATRP chain extension reactions with mixtures of tert-butyl methacrylate and
glycidyl methacrylate. For the chain extension reaction, a molar ratio of 300:1 of total GMA and tBMA
monomers related to all other reactants was used for all experiments except for sample TP9 (Table 2),
where a 150:1 ratio was tested. Proper reaction conditions needed to be found in order to have good
conversion of both monomers and good control over the polymerization. The temperature proved to
be a critical parameter. Different temperatures of 30 ◦C, 60 ◦C and 90 ◦C were used while finding the
best reaction condition for our purpose. A summary is shown in Table 2. The reaction performed at
90 ◦C yielded insoluble polymers in most common organic solvents (THF, CHCl3, acetone, toluene)
probably because of the possible formation of cross-links, either via ring opening of the epoxide
groups or chain transfer reactions [34]. On the other hand, reaction performed at 30 ◦C yield a ready
soluble polymer due to the milder conditions, as can be seen by the 1H-NMR of Figure 2b with the
presence of two typical sharp peaks of epoxide rings proton at 2.63 and 2.84 ppm for the methylene,
at 3.22 ppm for the methane group and finally at 3.80 ppm and 4.28 ppm for the methylene protons.
However, almost no sign of the diagnostic peak at 1.44 ppm for the tBMA is present, suggesting a
too low reactivity at that temperature. Eventually, the reaction at 60 ◦C was found to deliver a more
balanced molar composition to the polymer, as can be seen from Figure 2c which shows a rather
intense peak for the tert-butyl group of the tBMA. Degree of polymerization was calculated by use
of an 1H-NMR procedure reported elsewhere [35]. For all polymers, aromatics peaks of polystyrene
were used as reference, because the number of repeating units of the macroinitiator was known in
advance from GPC. For GMA calculation, peaks at 2.63 ppm and 2.84 ppm where taken, while the
peak at 1.44 ppm was considered for tBMA. Table 2 shows the results of these calculation. However,
we should consider here that due to overlapping of NMR signals, presence of impurities and inherent
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NMR errors, this estimate is not sufficiently accurate, especially for polymers with higher amounts
of tBMA. Indeed, for some entries there is a big discrepancy between GPC and NMR data. The GPC
data should be considered as the most accurate and will be used for comparisons among polymer
samples. Experiment performed at 90 ◦C of temperature show a predominance of tBMA on the overall
molar composition and high polydispersity index higher than those generally observed with ATRP,
suggesting a not perfect control. Reducing the temperature to 60 ◦C was found to be the best option,
as a remarkable reduction on the PDI is achieved along all performed synthesis.
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Figure 2. 1H-NMR (CDCl3-d solvent) of macroinitiator PS1 (a), terpolymer TP6 (b) and terpolymer
TP8 (c).

Table 2. Summary of ATRP chain extension reactions performed using PS1 as macroinitiator and
average numeral molecular weight calculation.

Polymer Molar
Ratio 1

Solvent
(Anisole)

Volume %
Time (h) T (◦C)

Mn
(GPC)
g/mol

Mn
(NMR)
g/mol

PDI 2 Sty-GMA-TBMA
Units

TP1 1:1:1:270:30 25 18 90 26,400 23,000 1.2 33-27-239
TP2 1:1:1:270:30 25 4 90 18,700 41,300 1.6 33-23-155
TP3 1:1:1:210:90 25 2 90 11,800 45,500 1.85 33-99-197
TP4 1:1:1:210:90 25 1 90 14,700 17,200 1.59 33-52-45
TP5 1:1:1:210:90 25 0.5 90 11,300 19,650 1.47 33-21-39
TP6 1:1:1:270:30 50 48 30 12,900 20,200 1.36 33-109-9
TP7 1:1:1:270:30 50 5 60 35,100 29,700 1.09 33-33-152
TP8 1:1:1:270:30 50 15 60 31,900 118,000 1.13 33-57-531
TP9 1:1:1:210:90 50 5 60 29,600 12,400 1.25 33-37-26

TP10 1:1:1:255:45 50 5 60 24,400 27,150 1.1 33-23-144
TP11 1:1:1:105:45 50 10 60 15,400 18,700 1.67 33-31-85
TP12 1:1:1:210:90 50 8 60 30,700 48,900 1.15 33-133-196
TP13 1:1:1:210:90 50 8 60 32,500 27,450 1.12 33-63-116
TP14 1:1:1:210:90 50 5 60 30,900 24,500 1.14 33-49-106

1: [I]:[CuCl]:[PMDETA]:[tBMA]:[GMA]; 2: Polydispersity Index.
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3.2. Kinetic Analysis

Kinetic studies were carried out to evaluate the extent of control of the polymerization process
in our optimal conditions at 60 ◦C. Samples were taken from the reaction mixture and conversion
of the monomers was calculated by 1H-NMR, while molecular weight was monitored by GPC. For
calculation via 1H-NMR the monomers double bonds peaks (around 5.45 to 6.20 ppm) area decrease
was monitored as the reaction proceeded. Areas were normalized compared to the area of anisole
methyl group (3.82 ppm). Sample TP9 and TP11 were tested as a different monomer-to-reactant ratios
were used, of 300:1 and 150:1, respectively. Figure 3a,b shows, for terpolymer TP9, that the monomer
conversion follows in good approximation a first-order kinetics, in accordance with common ATRP
synthesis of methacrylic monomers [36]. Using each GPC chromatogram report, PDI and average
number molecular weight were plotted as function of conversion, as shown in Figure 3c. the PDI
increases with time and the values are somewhat higher than those expected by an ATRP process.
This can be due to incomplete initiation of the macroinitiator. Molecular weight shown a fairly linear
increase, except for the last data point, at the highest conversion.
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A kinetic experiment with a lower monomer to initiator ratio of 150:1 was done for sample TP11;
a faster pace in the chains grow can be expected, causing higher conversion and higher PDI. Figure 3d,e
show the conversion for both GMA and tBMA monomers respectively. Within the first two hours, both
monomers reacted very fast and overall without showing a linear behaviour, except that in the early
stages of polymerization. Conversion and PDI values, as expected, are higher compared to the higher
300:1 molar ratio. Figure 3f shows the PDI and average number molecular weight plotted versus
monomer conversion: molecular weight increases sharply before two hours of reaction but no linear
behaviour is present. In addition, the PDI values obtained for this experiment shows a variation from
1.03 to 1.08, which seem too low for the present case, thus they should not be considered as reliable
data. In conclusion, high monomer to initiator ratio of 300:1, along with a reaction temperature of
60 ◦C, lead to an overall better control on the polymerization. A further investigation on the effect of
an even higher molar to initiator ratio was behind the aim of this work.

3.3. Functionalization with 1-Pyrenemethylamine (1-AMP)

Several terpolymers were functionalized at 90 ◦C using DMA as the solvent; these conditions
were found to be optimal in experiment performed on a model compound such as phenylethylamine
(PEA). To facilitate the ring opening reaction of GMA, different amounts of silica gel were used as
catalyst [37]. The results are shown in Table 3. The reaction proceeds without any excess of 1-AMP
and in presence of small amount of silica gel as catalyst in 24 and 48 h. Interestingly, the reaction
seems to not proceed without use of silica gel, as confirmed by samples TP9-PYR(0) and TP9-PYR(1).
The incorporation of pyrene was confirmed by 1H-NMR (Supporting info, Figure S6) and visually by
shining a UV light on the polymers. In order to quantify the reacted 1-AMP, elemental analysis was
carried out, along with an UV-VIS quantitative method (see Supporting Info).

Table 3. AMP functionalization reaction carried out in DMA solvent.

Sample GMA Molar Amount
in the Polymer

AMP: Polymer
(Molar Ratio)

SiO2 w/w on
Polymer Reaction Time (h)

TP9-PYR(0) 36% 1.0 0% 48 1

TP9-PYR (1) 36% 2.5 0% 48 1

TP7-PYR (2) 16% 1.5 10% 48
TP9-PYR(3) 39% 1.5 5% 24

TP11-PYR(4) 24% 1.0 10% 24
TP11-PYR(5) 24% 1.0 7.5% 48
TP9-PYR(6) 39% 1.0 7.5% 48

TP13-PYR(7) 31% 1.0 7.5% 48
TP13-PYR(8) 31% 1.0 7.5% 48
TP14-PYR(9) 28% 1.0 5% 48

1: no reaction.

Spectroscopic characterization of the novel AMP-functionalized polymer in solution was carried
out by fluorescence spectroscopy, using dilute solution of the polymer in toluene. Polymer TP9-PYR(6)
was selected for most of our experiments, being the sample with the highest amount of functionalized
1-AMP. In Figure 4a peaks assigned to pyrene monomer emission are present at 375 nm and 396 nm,
related with the S2→S0 and S1→S0 pyrene transition respectively and also a significant red-shifted band
at 480 nm is present at all concentrations with the highest intensity recorded at 10−6 M and attributed to
the formation of excimers [38,39]. More concentrated solutions (10−4 to 10−5 M) show quenched emission
possibly due to the aggregation-caused quenching behaviour of the pyrene chromophore [40,41]. In
Figure 4b, normalized spectra by their maximum value display how different bands change in intensity
with molarity. Notably, the progressive increase of molar concentration causes the prevalence of the
excimer band with respect to that of pyrene monomers as also is clearly visible in Figure 4c, where the
ratio between excimer and monomer emission (taken respectively at 470 nm and 348 nm) is plotted
versus the molarity [42].
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dimensional graphitic layer produces a strong light scattering, proportional to the amount of CNTs 
dispersed [43]. Several dispersions with different weight concentrations of CNT ranging from 3% to 
13%, as well with a solution with the pristine polymer, were tested. A nearly linear behaviour is 
observed by plotting the absorbance versus the CNTs charge at a fixed wavelength of 450 nm (Figure 
6). TGA was also used to estimate the effective amount of non-covalently functionalized CNTs by 
comparing the residue at 700 °C of each dispersion with the one of the pristine polymer. The residual 
amount correlates well with the CNT concentration. The amount of CNT estimated by TGA are 
reported in Table 5. 

Figure 4. (a) Overlay of fluorescent emission spectra at different molarities of TP9-PYR(6) in toluene.
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of molarity.

Absolute quantum yields as high as 6.6% were also calculated, thus confirming the
aggregation-caused quenching behaviour of the pyrene labelled polymer samples gathered from
emission spectra.

3.4. CNTs Dispersion and Stabilization by AMP-Functionalized Terpolymer

Dispersions of CNTs in AMP-functionalized polymer TP9-PYR(6) (26% mol AMP) in chloroform
were made at different weight concentrations of CNT and a fixed amount of polymer (20 mg/1.5 mL).
As shown in Figure 5, the dispersion remains stable for at least one month, suggesting an effective
interaction between polymer and nanotubes. UV-Vis analysis was carried out as the mono dimensional
graphitic layer produces a strong light scattering, proportional to the amount of CNTs dispersed [43].
Several dispersions with different weight concentrations of CNT ranging from 3% to 13%, as well with
a solution with the pristine polymer, were tested. A nearly linear behaviour is observed by plotting
the absorbance versus the CNTs charge at a fixed wavelength of 450 nm (Figure 6). TGA was also used
to estimate the effective amount of non-covalently functionalized CNTs by comparing the residue at
700 ◦C of each dispersion with the one of the pristine polymer. The residual amount correlates well
with the CNT concentration. The amount of CNT estimated by TGA are reported in Table 4.
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Table 4. CNTs effective charge registered from the two-dispersion sequences.

Sample CNTs Feed (%) Average Residue (%) CNTs Average Effective Charge (%)

TP9-PYR(6) 0% 7.3 0
D3 3% 9.8 2.4
D6 6% 13.0 5.6

D75 7.5% 13.9 6.5
D8 8% 14.9 7.5
D9 9% 16.0 8.5

D10 10% 15.9 8.5

3.5. Scanning Electron Microscopy (SEM) Analysis of CNTs Dispersion

To investigate the quality of CNTs’ exfoliation, the dispersion with the highest loading of CNT
(D10, Table 4) was analysed by SEM. Micrographs in Figure 7 show secondary electron images of
the dispersion confirming an effective exfoliation of the nanotubes provided by the interaction with
the polymer matrix and with no sign of detectable aggregation. Moreover, the average length of
multi-walled carbon nanotubes MWCNTs is comparable to their nominal length (1–10 mm), thus
suggesting that the CNTs are not severely damaged by the exfoliation process.
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3.6. Percolation Threshold Calculation

The electrical behaviour of the composite was evaluated by depositing the dispersion via solution
casting over an electrical circuit. The device was then connected to a digital multimeter with a data
logger. Only resistance was measured, as the thickness affected by a substantial error. The graph
regarding the percolation threshold (Figure 8) was made as follows: the sample with infinite resistance
(no conduction) was assigned to a value of 1 MOhm and placed on top of the Y axis. The percolation
threshold was determined at a concentration in weight of about 6–7%. Notwithstanding this value
appearing higher than those of the state of the art dispersions in acrylic functionalized polymers [44,45],
the designed system proposed in this work appears to provide a faster and cheaper procedure for
promptly investigating the resistive features of the electrically-conductive composites. Samples with
concentrations of 7.5% and 10% exhibit resistances of 184 kOhm and 33 kOhm, respectively, and
suggest the formation of an effective percolation pathway within the polymer matrix.
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3.7. Volatile Organic Compound (VOCs) Exposure Experiments

Electrically conductive MWCNTs/ TP9PYR(6) polymer dispersions were used as a small sensing
device for three different VOCs with diverse affinities with acrylates-based materials. As soon as
VOC molecules reached the sensing surface, polymer matrix swelling occurs thus yielding a potential
variation of the CNTs percolation pathways and a variation of the composite resistance with the
exposure time. As can be seen in Figure 9a, exposure to CHCl3 and THF for a device containing 7 wt.%



Nanomaterials 2019, 9, 458 15 of 21

of CNTs produce a sensible increase of resistance. The effect is more pronounced in the first 10–20 min
after the exposure. Then, after an initial quick increase, saturation is reached and the resistance levelled
off reaching a plateau [46]. As expected, HEX exposure did not provide any sensible variation. A
comparison between CHCl3 and THF is reported in Figure 9b, with the former showing a resistance
increasing of 2.5%, compared to the 1.7% by using the latter as VOC. This was expected as CHCl3 is a
better swelling solvent for the acrylic polymeric matrix [47]. The same experiments were carried out
on the device with 10% wt.% of CNTs (Figure 9c–d). In this case, the higher concentration of CNTs
inside the polymer forms a more stable percolation pathway that is less perturbed by solvent exposure.
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Figure 9. (a) Resistance of 7 wt.% MWCNTs/ TP9PYR(6) dispersion with the exposure time towards 
saturated atmospheres of chloroform, tetrahydrofuran and hexane for 1 h and (b) relative resistance 
variation (%) towards saturated atmosphere of chloroform and tetrahydrofuran; (c) the same of a) but 
testing 10 wt.% MWCNTs/ TP9PYR(6) dispersion; (d) the same of b) but testing 10 wt.% 
MWCNTs/TP9PYR(6) dispersion. 

Figure 9. (a) Resistance of 7 wt.% MWCNTs/ TP9PYR(6) dispersion with the exposure time towards
saturated atmospheres of chloroform, tetrahydrofuran and hexane for 1 h and (b) relative resistance
variation (%) towards saturated atmosphere of chloroform and tetrahydrofuran; (c) the same of
a) but testing 10 wt.% MWCNTs/ TP9PYR(6) dispersion; (d) the same of b) but testing 10 wt.%
MWCNTs/TP9PYR(6) dispersion.

The sensibility of the sensor containing 7 wt.% of CNTs was then investigated by using progressive
amount of solvents up to 100 ppm. Notably, for both THF and CHCl3 the device starts to become
sensitive for VOC concentration higher than 30–40 ppm. After the first exposure to VOCs, the vapours
were desorbed and the system was then analysed to determine possible variation of the resistance
response. A comparison between two successive exposure cycles of CHCl3 is displayed in Figure 10a,
with the first cycle giving an overall variation in resistance of about 3%, while the second display a
slightly lower variation of 1.6%, both determined at the maximum vapours concentration (100 ppm).
Same experiments were performed using THF as the solvent, as shown in Figure 10b, resulting in
a similar trends in terms of reduced resistance variation for the second cycle, thus suggesting a
loss of sensitivity after the first VOC exposure according to similar nanocomposite devices already
investigated in the literature [48]. Nevertheless, the system is able to discriminate different VOCs,
according to the solvent affinity with the polymer matrix.
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3.8. Hydrolysis and Neutralization of TP and AMP-Functionalized Polymers

To investigate the versatility of the prepared polymers for applications in water solution,
hydrolysis of the tert-butyl group was performed according to two procedures described in the
experimental section. The procedure with HCl in 1,4-Dioxane was preferred due to an easier recovery
of the polymer after precipitation. The completeness of the reaction was confirmed by 1H-NMR in
d6-DMSO (Supporting info, Figure S3), that shows disappearance of the t-butyl group and formation
of a broad peak ascribed to OH groups formed by opening of the epoxide ring. FT-IR also clearly
shows peaks for the OH groups (Supporting Info, Figure S4). 1H-NMR also shows that pyrene groups
are still attached to the polymer (Supporting Info, Figure S5).

Acidic chains of the hydrolysed polymers were neutralized using a base as described in
the experimental section, then solutions were prepared to test the rheological properties. The
pyrene-functionalized polymers, however, despite showing good solubility (see Figure 11) did not
show the desired thickening ability upon dissolution in water.
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Most likely, the presence of an easy aggregating moiety like pyrene can induce an intramolecular
folding of the extended, soluble, chains. Formation of π-π stacking interaction between different
pyrene molecules or with the internal styrene units could hinder the gelation process by causing
a collapsed micellar structure. Even at a relatively high concentration of polymer (up to 3 wt.%)
the polymer solution did not present a significantly high viscosity. This explanation is partially
confirmed by the fluorescence emission data registered previously, showing a high level of pyrene
aggregation at low concentrations in a good solvent like toluene. It is then reasonable suggesting that
aggregation phenomena can even more easily happen in a hydrophilic environment. However, deeper
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investigations are needed to confirm these suggestions. However, hydrolysed terpolymer without
pyrene groups effectively showed the desired thickening behaviour, along with a quick solubility
in water.

3.9. Rheological Measurements

Rheological measurements were carried out on several neutralized-hydrolysed (Na-HYD)
polymers. Shear viscosity at different weight concentrations, ranging from 1% to 5%, were measured,
the results are reported in the Supporting Info, Figures S6–S9. As shown in Figure 12a, the investigated
polymer present good thickening properties, with viscosity much higher than water at all concentration
and along the whole investigated range of shear. All solutions show shear thinning behaviour and
no Newtonian plateau in the observed range. This is in line with what observed for analogous
systems [30–32]. It was not possible to investigate the behaviour at lower frequencies, to see if
Newtonian regime would ever occur, due to limitations of the rheometer in the low-frequencies
range. The shear thinning is more pronounced at higher concentrations. In the investigated range,
the molecular weight seems to have little to no effect on the viscosity of the measured samples.
Analogous block copolymers not containing the GMA moieties, exhibit high viscosity already at 1 wt.%
concentration [30–32] As expected, the presence of neutral monomers in the hydrophilic block causes
a comparably lower degree of stretching in solution, lowering the viscosity. On the other hand, these
systems should be less sensitive to salinity (not tested in this work).

Nanomaterials 2019, 9, x FOR PEER REVIEW 17 of 21 

 

Figure 11. AMP-functionalized polymer dissolved in a dialysis membrane under the excitation at 366 
nm. 

3.9. Rheological Measurements 

Rheological measurements were carried out on several neutralized-hydrolysed (Na-HYD) 
polymers. Shear viscosity at different weight concentrations, ranging from 1% to 5%, were measured, 
the results are reported in the Supporting Info, Figure S6–9. As shown in Figure 12a, the investigated 
polymer present good thickening properties, with viscosity much higher than water at all 
concentration and along the whole investigated range of shear. All solutions show shear thinning 
behaviour and no Newtonian plateau in the observed range. This is in line with what observed for 
analogous systems [30–32]. It was not possible to investigate the behaviour at lower frequencies, to 
see if Newtonian regime would ever occur, due to limitations of the rheometer in the low-frequencies 
range. The shear thinning is more pronounced at higher concentrations. In the investigated range, 
the molecular weight seems to have little to no effect on the viscosity of the measured samples. 
Analogous block copolymers not containing the GMA moieties, exhibit high viscosity already at 1 
wt.% concentration [30–32] As expected, the presence of neutral monomers in the hydrophilic block 
causes a comparably lower degree of stretching in solution, lowering the viscosity. On the other hand, 
these systems should be less sensitive to salinity (not tested in this work). 

Figure 12b displays the apparent viscosity versus concentration reported at a frequency of 1 
sec−1. Comparing samples at different molecular weights and similar compositions (TP11 vs TP13 and 
TP14), it can be observed that the hydrophilic chain’s length does not seem to have a significant 
influence. Contrarily, the ratio between acrylic acid and glycidyl groups has a major effect: polymer 
NaHYD-TP8, having the highest relative amount of acrylic acid units (almost 10:1), shows a 
significantly higher viscosity at the same concentration, compared to all the other studied polymers. 

Viscosity values are slightly higher than water (10−3 Pa*sec at 20 °C) even at very low 
concentration eventually suggesting a possible use in EOR application. Frequency sweep 
measurements were made to test the double, elastic and viscous, response of the materials. Tested 
samples (Figure 12c) have G’ > G’’ in the whole range of investigation, showing the formation of a 
strong viscoelastic gel at concentration of 0.1 wt.%. In addition, the elastic modulus is almost 
independent from the frequency, indicating a pronounced solid-like material [49,50]. As observed for 
viscosity, at lower frequencies the limit of the instrument is reached and the data points become more 
scattered, so it is not possible to observe a crossover frequency, which in this case will be very low, 
indicating a long relaxation time. Further results on frequency sweep are reported in the Supporting 
Info, Figure S10–12. As shown in Figure 12d, viscosity response to temperature produces a steep and 
constant reduction on the viscosity. Notably, concentration does not affect the behaviour of the 
materials as all curves show the same variation with temperature.  

1E-3 0.01 0.1 1 10 100 1000 10000
1E-3

0.01

0.1

1

10

100

1000

10000
Viscosity vs shear rate
Na-HYD-TP13 (Mw = 30000 g/mol) 

 1%
 2.5%
 3%
 5%

η(
Pa

*s
ec

)

γ(sec-1)

a

 

0.01 0.1 1 10 100
1E-3

0.01

0.1

1

10

100

1000
Apparent viscosity at 1 /sec shear rate
for various polymer

η ap
p

Weight (%)

 Na-HYD-TP7 D.P 150 
 Na-HYD-TP8 D.P 500 
 Na-HYD-TP11 D.P 90 
 Na-HYD-TP13 D.P 116 
 Na-HYD-TP14 D.P 100 

b

 Nanomaterials 2019, 9, x FOR PEER REVIEW 18 of 21 

 

0.1 1 10 100 1000
10

100

1000
Na-HYD-TP8

G
'',G

' (
Pa

)

W (rad/s)

 G''
 G'

c

20 40 60 80

0.1

1

η(
Pa

*s
ec

)

T (°C)

 0.5%
 0.7%
 1.5%heating

cooling

d

Figure 12. Shear viscosity measurements for various polymer: a) Na-HYD-TP13 and b) apparent 
viscosity taken at 1 sec−1 for all analysed polymers; c) oscillation frequency sweep for Na-HYD-TP8 
and d) viscosity dependence of temperature in range 20 °C to 90 °C for polymer NaHYD-TP8 at 
different weight concentration. 

4. Conclusions 

In this work, the synthesis of multipurpose terpolymers, based on styrene, tert-butyl 
methacrylate and glycidyl methacrylate, is reported. Block copolymers, constituted by a hard 
hydrophobic block of polystyrene and a soft, hydrolysable, acrylate block, were prepared via ATRP, 
which allowed the obtaining of polymers with different compositions and molecular weights and a 
narrow molecular weight distribution. Kinetic studies showed good control over the polymerization 
of the two acrylate monomers on the PS macroinitiator. 

The presence of epoxy groups from the glycidyl methacrylate allowed an easy post-synthetic 
modification with 1-pyrenemethylamine. These polymers showed a good non-covalent interaction 
with MWCNTs and the derived solid dispersions provided electrically-conductive nanocomposite 
materials, with the characteristic of a selective electrical sensor for volatile organic compounds. 
Moreover, facile hydrolysis of the tert-butyl and glycidyl groups yielded polyelectrolytic 
macrosurfactants with remarkable thickening properties for promising application in Enhanced Oil 
Recovery (EOR). The relative amount of free carboxylic groups and glycidyl groups affected the 
thickening ability of the investigated polymers, apparently to a larger extent than the molecular 
weight. The pyrene-functionalized polymers did not lose the fluorescent group upon hydrolysis, 
making them suitable as fluorescent probes in water, for example to track polymer adsorption during 
oil recovery processes. However, they did not display good thickening ability in water solution after 
hydrolysis, probably due to chain collapse in solution, caused by the strong hydrophobic interactions 
of the pyrene groups. Overall, the presented results evidenced the versatility of the prepared 
polymers, both for dry and wet smart applications. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: GPC of 
macroinitiator PS1; Figure S2: UV-Vis spectra, registered in toluene solvent, used for the calibration curve 
method; Figure S3: Calibration curve made from free pyrene dilute solution; Figures S3 and S4: 1H-NMR and 
FT-IR for hydrolysed terpolymer HYD-TP11; Figure S5: 1H-NMR spectrum of a hydrolysed AMP-based 
terpolymer; Figure S6-9: Shear viscosity measurements for various polymers; Figure S10-12. Loss and Storage 
moduli in oscillatory frequency sweep of polymers solutions; Table S1: Conversion of GMA moiety from both 
UV-Vis method and EA methods 

Author Contributions: Federico Di Sacco performed all experiments at the University Of Groningen and at the 
University of Pisa and wrote the first draft of the paper. Andrea Pucci coordinated the research and supervising 
the student performing the experiments at the University of Pisa. Patrizio Raffa coordinated the research and 
supervising the student performing the experiments at the University of Groningen. 

Funding: This research received no external funding. 

Figure 12. Shear viscosity measurements for various polymer: (a) Na-HYD-TP13 and (b) apparent
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Figure 12b displays the apparent viscosity versus concentration reported at a frequency of 1 sec−1.
Comparing samples at different molecular weights and similar compositions (TP11 vs TP13 and TP14),
it can be observed that the hydrophilic chain’s length does not seem to have a significant influence.
Contrarily, the ratio between acrylic acid and glycidyl groups has a major effect: polymer NaHYD-TP8,
having the highest relative amount of acrylic acid units (almost 10:1), shows a significantly higher
viscosity at the same concentration, compared to all the other studied polymers.

Viscosity values are slightly higher than water (10−3 Pa*sec at 20 ◦C) even at very low
concentration eventually suggesting a possible use in EOR application. Frequency sweep
measurements were made to test the double, elastic and viscous, response of the materials. Tested
samples (Figure 12c) have G’ > G” in the whole range of investigation, showing the formation of
a strong viscoelastic gel at concentration of 0.1 wt.%. In addition, the elastic modulus is almost
independent from the frequency, indicating a pronounced solid-like material [49,50]. As observed for
viscosity, at lower frequencies the limit of the instrument is reached and the data points become more
scattered, so it is not possible to observe a crossover frequency, which in this case will be very low,
indicating a long relaxation time. Further results on frequency sweep are reported in the Supporting
Info, Figures S10–S12. As shown in Figure 12d, viscosity response to temperature produces a steep
and constant reduction on the viscosity. Notably, concentration does not affect the behaviour of the
materials as all curves show the same variation with temperature.

4. Conclusions

In this work, the synthesis of multipurpose terpolymers, based on styrene, tert-butyl methacrylate
and glycidyl methacrylate, is reported. Block copolymers, constituted by a hard hydrophobic block
of polystyrene and a soft, hydrolysable, acrylate block, were prepared via ATRP, which allowed the
obtaining of polymers with different compositions and molecular weights and a narrow molecular
weight distribution. Kinetic studies showed good control over the polymerization of the two acrylate
monomers on the PS macroinitiator.

The presence of epoxy groups from the glycidyl methacrylate allowed an easy post-synthetic
modification with 1-pyrenemethylamine. These polymers showed a good non-covalent interaction with
MWCNTs and the derived solid dispersions provided electrically-conductive nanocomposite materials,
with the characteristic of a selective electrical sensor for volatile organic compounds. Moreover,
facile hydrolysis of the tert-butyl and glycidyl groups yielded polyelectrolytic macrosurfactants
with remarkable thickening properties for promising application in Enhanced Oil Recovery (EOR).
The relative amount of free carboxylic groups and glycidyl groups affected the thickening ability
of the investigated polymers, apparently to a larger extent than the molecular weight. The
pyrene-functionalized polymers did not lose the fluorescent group upon hydrolysis, making them
suitable as fluorescent probes in water, for example to track polymer adsorption during oil recovery
processes. However, they did not display good thickening ability in water solution after hydrolysis,
probably due to chain collapse in solution, caused by the strong hydrophobic interactions of the pyrene
groups. Overall, the presented results evidenced the versatility of the prepared polymers, both for dry
and wet smart applications.
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S4: 1H-NMR and FT-IR for hydrolysed terpolymer HYD-TP11; Figure S5: 1H-NMR spectrum of a hydrolysed
AMP-based terpolymer; Figures S6–S9: Shear viscosity measurements for various polymers; Figures S10–S12.
Loss and Storage moduli in oscillatory frequency sweep of polymers solutions; Table S1: Conversion of GMA
moiety from both UV-Vis method and EA methods.

Author Contributions: F.D.S. performed all experiments at the University Of Groningen and at the University of
Pisa and wrote the first draft of the paper. A.P. coordinated the research and supervising the student performing
the experiments at the University of Pisa. P.R. coordinated the research and supervising the student performing
the experiments at the University of Groningen.

http://www.mdpi.com/2079-4991/9/3/458/s1


Nanomaterials 2019, 9, 458 19 of 21

Funding: This research received no external funding.

Acknowledgments: Federico Di Sacco would like to acknowledge the Erasmus exchange program for the financial
support in their exchange programme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ganesh, V.A.; Baji, A.; Ramakrishna, S. Smart functional polymers—A new route towards creating a
sustainable environment. RSC Adv. 2014, 4, 53352–53364. [CrossRef]

2. Mane, S. Functional Polymers: A Review. Can. Chem. Trans. 2016, 4, 316–327.
3. De las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical

applications. Chem. Soc. Rev. 2005, 34, 276–285. [CrossRef] [PubMed]
4. Zhang, Q.; Ko, N.R.; Oh, J.K. Recent advances in stimuli-responsive degradable block copolymer micelles:

Synthesis and controlled drug delivery applications. Chem. Commun. 2012, 48, 7542–7552. [CrossRef]
[PubMed]

5. Stuart, M.A.; Huck, W.T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.;
Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater.
2010, 9, 101–113. [CrossRef]

6. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58,
1655–1670. [CrossRef] [PubMed]

7. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug
and gene delivery. J. Control. Release 2008, 126, 187–204. [CrossRef]

8. Bae, Y.H.; Okano, T.; Hsu, R.; Kim, S.W. Thermo-sensitive polymers as on-off switches for drug release.
Die Makromol. Chemie Rapid Commun. 1987, 8, 481–485. [CrossRef]

9. Raffa, P.; Wever, D.A.Z.; Picchioni, F.; Broekhuis, A.A. Polymeric surfactants: Synthesis, properties, and links
to applications. Chem. Rev. 2015, 115, 8504–8563. [CrossRef]

10. Grubbs, R.B.; Sun, Z. Shape-changing polymer assemblies. Chem. Soc. Rev. 2013, 42, 7436–7445. [CrossRef]
11. Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.; Mayadunne, R.T.; Meijs, G.F.; Moad, C.L.;

Moad, G.; et al. Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:
The RAFT Process. Macromolecules 1998, 31, 5559–5562. [CrossRef]

12. Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP) Current Status and future perspectives.
Macromolecules 2012, 45, 4015–4039. [CrossRef]

13. Muzammil, E.M.; Khan, A.; Stuparu, M.C. Post-polymerization modification reactions of poly(glycidyl
methacrylate)s. RSC Adv. 2017, 7, 55874–55884. [CrossRef]

14. Iwakura, Y.; Kurosaki, T.; Ariga, N.; Ito, T. Copolymerization of Methyl Methacrylate with Glycidyl
Methacrylate and the Reaction of the Copolymer with Amines. Die Makromol. Chemie 1966, 97, 128–138.
[CrossRef]

15. Höhne, S.; Uhlmann, P. Synthesis of functional block copolymers and terpolymers containing polyglycidyl
methacrylate blocks. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 675–684. [CrossRef]

16. Kalal, J.; Švec, F.; Maroušek, V. Reactions of epoxide groups of glycidyl methacrylate copolymers. J. Polym.
Sci. Polym. Symp. 2007, 47, 155–166. [CrossRef]

17. Durmaz, H.; Dag, A.; Tunca, U.; Hizal, G. Synthesis and characterization of pyrene bearing amphiphilic
miktoarm star polymer and its noncovalent interactions with multiwalled carbon nanotubes. J. Polym. Sci.
Part A Polym. Chem. 2012, 50, 2406–2414. [CrossRef]

18. Gao, H.; Jones, M.-C.; Tewari, P.; Ranger, M.; Leroux, J.-C. Star-shaped alkylated poly(glycerol methacrylate)
reverse micelles: Synthesis and evaluation of their solubilizing properties in dichloromethane. J. Polym. Sci.
Part A Polym. Chem. 2007, 45, 2425–2435. [CrossRef]

19. Wang, Z.; Zhao, Z.; Zhang, J.; Li, Z.; Gao, Y.; Wang, C.; Zhang, H.; Yang, B. Multifunctional
nanoparticles/silica microsphere assemblies using polyglycidyl methacrylate shells as supports. J. Colloid
Interface Sci. 2009, 339, 83–90. [CrossRef]

20. Dong, X.; Zheng, Y.; Huang, Y.; Chen, X.; Jing, X. Synthesis and characterization of multifunctional
poly(glycidyl methacrylate) microspheres and their use in cell separation. Anal. Biochem. 2010, 405, 207–212.
[CrossRef]

http://dx.doi.org/10.1039/C4RA10631H
http://dx.doi.org/10.1039/B406727D
http://www.ncbi.nlm.nih.gov/pubmed/15726163
http://dx.doi.org/10.1039/c2cc32408c
http://www.ncbi.nlm.nih.gov/pubmed/22737687
http://dx.doi.org/10.1038/nmat2614
http://dx.doi.org/10.1016/j.addr.2006.09.020
http://www.ncbi.nlm.nih.gov/pubmed/17125884
http://dx.doi.org/10.1016/j.jconrel.2007.12.017
http://dx.doi.org/10.1002/marc.1987.030081002
http://dx.doi.org/10.1021/cr500129h
http://dx.doi.org/10.1039/c3cs60079c
http://dx.doi.org/10.1021/ma9804951
http://dx.doi.org/10.1021/ma3001719
http://dx.doi.org/10.1039/C7RA11093F
http://dx.doi.org/10.1002/macp.1966.020970111
http://dx.doi.org/10.1002/pola.27491
http://dx.doi.org/10.1002/polc.5070470120
http://dx.doi.org/10.1002/pola.26016
http://dx.doi.org/10.1002/pola.22004
http://dx.doi.org/10.1016/j.jcis.2009.07.034
http://dx.doi.org/10.1016/j.ab.2010.06.022


Nanomaterials 2019, 9, 458 20 of 21

21. Kocak, G.; Solmaz, G.; Dikmen, Z.; Bütün, V. Preparation of Cross-Linked Micelles from Glycidyl
Methacrylate Based Block Copolymers and Their Usages as Nanoreactors in the Preparation of Gold
Nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 514–526. [CrossRef]

22. Bains, G.; Patel, A.B.; Narayanaswami, V. Pyrene: A Probe to Study Protein Conformation and
Conformational Changes. Molecules 2011, 16, 7909–7935. [CrossRef] [PubMed]

23. Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer
composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [CrossRef]

24. Petrov, P.; Stassin, F.; Pagnoulle, C.; Jérôme, R. Noncovalent functionalization of multi-walled carbon
nanotubes by pyrene containing polymers. Chem. Commun. 2003, 0, 2904–2905. [CrossRef]

25. Meuer, S.; Braun, L.; Schilling, T.; Zentel, R. α-Pyrene polymer functionalized multiwalled carbon nanotubes:
Solubility, stability and depletion phenomena. Polymer (Guildf) 2009, 50, 154–160. [CrossRef]

26. Bahun, G.J.; Wang, C.; Adronov, A. Solubilizing single-walled carbon nanotubes with pyrene-functionalized
block copolymers. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1941–1951. [CrossRef]

27. Parikh, K.; Cattanach, K.; Rao, R.; Suh, D.-S.; Wu, A.; Manohar, S.K. Flexible vapour sensors using single
walled carbon nanotubes. Sensors Actuators B Chem. 2006, 113, 55–63. [CrossRef]

28. Zhao, J.; Buldum, A.; Han, J.; Lu, J.P. Gas molecule adsorption in carbon nanotubes and nanotube bundles.
Nanotechnology 2002, 13, 195. [CrossRef]

29. Kong, J.; Chapline, M.G.; Dai, H. Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors.
Adv. Mater. 2011, 13, 1384–1386. [CrossRef]

30. Raffa, P.; Brandenburg, P.; Wever, D.A.Z.; Broekhuis, A.A.; Picchioni, F. Polystyrene-poly(sodium
methacrylate) amphiphilic block copolymers by ATRP: Effect of structure, pH, and ionic strength on rheology
of aqueous solutions. Macromolecules 2013, 46, 7106–7111. [CrossRef]

31. Raffa, P.; Stuart, M.C.A.; Broekhuis, A.A.; Picchioni, F. The effect of hydrophilic and hydrophobic block length
on the rheology of amphiphilic diblock Polystyrene-b-Poly(sodium methacrylate) copolymers prepared by
ATRP. J. Colloid Interface Sci. 2014, 428, 152–161. [CrossRef] [PubMed]

32. Meijerink, M.; van Mastrigt, F.; Franken, L.E.; Stuart, M.C.A.; Picchioni, F.; Raffa, P. Triblock copolymers of
styrene and sodium methacrylate as smart materials: Synthesis and rheological characterization. Pure Appl.
Chem. 2017, 89, 1641–1658. [CrossRef]

33. Raffa, P.; Broekhuis, A.A.; Picchioni, F. Polymeric surfactants for enhanced oil recovery: A review. J. Pet. Sci.
Eng. 2016, 145, 723–733. [CrossRef]

34. Tsarevsky, N.V.; Jakubowski, W. Atom transfer radical polymerization of functional monomers employing
Cu-based catalysts at low concentration: Polymerization of glycidyl methacrylate. J. Polym. Sci. Pol. Chem.
2011, 49, 918–925. [CrossRef]

35. Izunobi, J.U.; Higginbotham, C.L. Polymer molecular weight analysis by1H NMR spectroscopy. J. Chem.
Educ. 2011, 88, 1098–1104. [CrossRef]

36. Wang, T.-L.; Liu, Y.-Z.; Jeng, B.-C.; Cai, Y.-C. The Effect of Initiators and Reaction Conditions on the Polymer
Syntheses by Atom Transfer Radical Polymerization. J. Polym. Res. 2005, 12, 67–75. [CrossRef]

37. Chakraborti, A.K.; Rudrawar, S.; Kondaskar, A. An efficient synthesis of 2-amino alcohols by silica gel
catalysed opening of epoxide rings by amines. Org. Biomol. Chem. 2004, 2, 1277–1280. [CrossRef] [PubMed]

38. Chaudhuri, A.; Haldar, S.; Chattopadhyay, A. Organization and dynamics in micellar structural transition
monitored by pyrene fluorescence. Biochem. Biophys. Res. Commun. 2009, 390, 728–732. [CrossRef]

39. Numata, Y.; Nirasawa, T.; Suzuka, I. Excited states of pyrene excimer observed by photodissociation
spectroscopy in a supersonic jet. J. Photochem. Photobiol. A Chem. 2010, 209, 27–31. [CrossRef]

40. Kathiravan, A.; Sundaravel, K.; Jaccob, M.; Dhinagaran, G.; Rameshkumar, A.; Arul Ananth, D.; Sivasudha, T.
Pyrene Schiff Base: Aggregation Induced Emission, and Antimicrobial Properties. J. Phys. Chem. B 2014, 118,
13573–13581. [CrossRef]

41. De Halleux, V.; Mamdouh, W.; De Feyter, S.; De Schryver, F.; Levin, J.; Geerts, Y.H. Emission properties of a
highly fluorescent pyrene dye in solution and in the liquid state. J. Photochem. Photobiol. A Chem. 2006, 178,
251–257. [CrossRef]

42. Bains, G.K.; Kim, S.H.; Sorin, E.J.; Narayanaswami, V. The extent of pyrene excimer fluorescence emission
is a reflector of distance and flexibility: Analysis of the segment linking the LDL receptor-binding and
tetramerization domains of apolipoprotein E3. Biochemistry 2012, 51, 6207–6219. [CrossRef]

http://dx.doi.org/10.1002/pola.28922
http://dx.doi.org/10.3390/molecules16097909
http://www.ncbi.nlm.nih.gov/pubmed/22143550
http://dx.doi.org/10.1016/j.compscitech.2008.06.018
http://dx.doi.org/10.1039/B307751A
http://dx.doi.org/10.1016/j.polymer.2008.10.039
http://dx.doi.org/10.1002/pola.21308
http://dx.doi.org/10.1016/j.snb.2005.02.021
http://dx.doi.org/10.1088/0957-4484/13/2/312
http://dx.doi.org/10.1002/1521-4095(200109)13:18&lt;1384::AID-ADMA1384&gt;3.0.CO;2-8
http://dx.doi.org/10.1021/ma401453j
http://dx.doi.org/10.1016/j.jcis.2014.04.047
http://www.ncbi.nlm.nih.gov/pubmed/24910048
http://dx.doi.org/10.1515/pac-2016-1021
http://dx.doi.org/10.1016/j.petrol.2016.07.007
http://dx.doi.org/10.1002/pola.24503
http://dx.doi.org/10.1021/ed100461v
http://dx.doi.org/10.1007/s10965-004-1874-y
http://dx.doi.org/10.1039/b400588k
http://www.ncbi.nlm.nih.gov/pubmed/15105916
http://dx.doi.org/10.1016/j.bbrc.2009.10.037
http://dx.doi.org/10.1016/j.jphotochem.2009.10.004
http://dx.doi.org/10.1021/jp509697n
http://dx.doi.org/10.1016/j.jphotochem.2005.10.039
http://dx.doi.org/10.1021/bi3005285


Nanomaterials 2019, 9, 458 21 of 21

43. Saltiel, C.; Manickavasagam, S.; Mengüc, M.P.; Andrews, R. Light-scattering and dispersion behavior of
multiwalled carbon nanotubes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2005, 22, 1546–1554. [CrossRef]

44. Malhofer, A.; Rother, M.; Zakharko, Y.; Graf, A.; Schießl, S.P.; Zaumseil, J. Direct visualization of percolation
paths in carbon nanotube/polymer composites. Org. Electron. Phys. Mater. Appl. 2017, 45, 151–158.
[CrossRef]

45. Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006,
39, 5194–5205. [CrossRef]

46. Hsu, J.C.; Cao, W.; Yang, F.; Yang, T.J.; Lee, S. Absorption behavior of poly(methyl methacrylate)-multiwalled
carbon nanotube composites: Effects of UV irradiation. Phys. Chem. Chem. Phys. 2017, 19, 7359–7369.
[CrossRef]

47. Vayer, M.; Vital, A.; Sinturel, C. New insights into polymer-solvent affinity in thin films. Eur. Polym. J. 2017,
93, 132–139. [CrossRef]

48. Paoletti, C.; He, M.; Salvo, P.; Melai, B.; Calisi, N.; Mannini, M.; Cortigiani, B.; Bellagambi, F.G.; Swager, T.M.;
Di Francesco, F.; et al. Room temperature amine sensors enabled by sidewall functionalization of
single-walled carbon nanotubes. RSC Adv. 2018, 8, 5578–5585. [CrossRef]

49. Grabowska, B.; Holtzer, M. Structural Examination of The Cross-Linking Reaction Mechanism of Polyacrylate
Binding Agents. Arch. Metall. Mater. 2009, 54, 427–437.

50. Kimerling, A.S.; Rochefort, W.E.; Bhatia, S.R. Rheology of Block Polyelectrolyte Solutions and Gels: A Review.
Ind. Eng. Chem. Res. 2006, 45, 6885–6889. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/JOSAA.22.001546
http://dx.doi.org/10.1016/j.orgel.2017.03.010
http://dx.doi.org/10.1021/ma060733p
http://dx.doi.org/10.1039/C6CP08738H
http://dx.doi.org/10.1016/j.eurpolymj.2017.05.035
http://dx.doi.org/10.1039/C7RA13304A
http://dx.doi.org/10.1021/ie051034o
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Synthetic Procedure, Functionalization, Hydrolysis and Neutralization of Terpolymers 
	Synthesis of Polystyrene Macroinitiator (PS-Br) 
	Synthesis of Terpolymer polystyrene-block-(glycidyl methacrylate-co-tert-butyl methacrylate), PS-b-(GMA-r-tBMA) 
	Kinetic Experiments 
	Functionalization of PS-b-(GMA-r-tBMA) 
	Functionalization with 1-AMP 
	Hydrolysis and Neutralization of PS-b-(GMA-r-tBMA) and TP-AMP 

	Nanocomposite and VOC Exposure Setup Preparation 
	Characterization and Instruments 

	Results and Discussion 
	ATRP Synthesis of PS-b-(tBMA-co-GMA) Terpolymer 
	Kinetic Analysis 
	Functionalization with 1-Pyrenemethylamine (1-AMP) 
	CNTs Dispersion and Stabilization by AMP-Functionalized Terpolymer 
	Scanning Electron Microscopy (SEM) Analysis of CNTs Dispersion 
	Percolation Threshold Calculation 
	Volatile Organic Compound (VOCs) Exposure Experiments 
	Hydrolysis and Neutralization of TP and AMP-Functionalized Polymers 
	Rheological Measurements 

	Conclusions 
	References

